You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 November 2016Super-resolution optical nano imaging through transparent microsphere
(Conference Presentation)
Pushing the resolution limit of the optical microscope beyond 100 nm is revolutionary in the field of super-resolution imaging. It has been demonstrated that when a dielectric transparent microsphere at a diameter of a few microns is located between the sample and objective lens, its resolution can be enhanced. In this talk, both contact and non-contact modes of the microsphere optical super-resolution imaging are presented. In the contact mode, where the microsphere is in touch with the sample surface, fine features with the size of 38 nm can be observed. However, the contact mode has a critical drawback that the relative location of the microsphere and sample cannot be adjusted, thus limiting the imaging field and contaminating the sample surface. To address this issue, a non-contact scanning mode of the microsphere super-resolution imaging is developed by attaching the high refractive index microsphere onto thin glass substrate and control the movement of the microsphere by a nano-stage. The gap between the sample and microsphere is around a few microns in the oil immersion condition. Features with the size of 75 nm can be observed by the non-contact scanning mode of the microsphere under a conventional optical microscope. The resolution is expected to be higher when the microsphere is engineered with micron size structures on the surface.