Paper
26 September 2016 Simple and advanced ferromagnet/molecule spinterfaces
M. Gruber, F. Ibrahim, F. Djedhloul, C. Barraud, G. Garreau, S. Boukari, H. Isshiki, L. Joly, E. Urbain, M. Peter, M. Studniarek, V. Da Costa, H. Jabbar, H. Bulou, V. Davesne, U. Halisdemir, J. Chen, D. Xenioti, J. Arabski, K. Bouzehouane, C. Deranlot, S. Fusil, E. Otero, F. Choueikani, K. Chen, P. Ohresser, F. Bertran, P. Le Fèvre, A. Taleb-Ibrahimi, W. Wulfhekel, S. Hajjar-Garreau, P. Wetzel, P. Seneor, R. Mattana, F. Petroff, F. Scheurer, W. Weber, M. Alouani, E. Beaurepaire, M. Bowen
Author Affiliations +
Abstract
Spin-polarized charge transfer between a ferromagnet and a molecule can promote molecular ferromagnetism 1, 2 and hybridized interfacial states3, 4. Observations of high spin-polarization of Fermi level states at room temperature5 designate such interfaces as a very promising candidate toward achieving a highly spin-polarized, nanoscale current source at room temperature, when compared to other solutions such as half-metallic systems and solid-state tunnelling over the past decades. We will discuss three aspects of this research. 1) Does the ferromagnet/molecule interface, also called an organic spinterface, exhibit this high spin-polarization as a generic feature? Spin-polarized photoemission experiments reveal that a high spin-polarization of electronics states at the Fermi level also exist at the simple interface between ferromagnetic cobalt and amorphous carbon6. Furthermore, this effect is general to an array of ferromagnetic and molecular candidates7. 2) Integrating molecules with intrinsic properties (e.g. spin crossover molecules) into a spinterface toward enhanced functionality requires lowering the charge transfer onto the molecule8 while magnetizing it1,2. We propose to achieve this by utilizing interlayer exchange coupling within a more advanced organic spinterface architecture. We present results at room temperature across the fcc Co(001)/Cu/manganese phthalocyanine (MnPc) system9. 3) Finally, we discuss how the Co/MnPc spinterface’s ferromagnetism stabilizes antiferromagnetic ordering at room temperature onto subsequent molecules away from the spinterface, which in turn can exchange bias the Co layer at low temperature10. Consequences include tunnelling anisotropic magnetoresistance across a CoPc tunnel barrier11. This augurs new possibilities to transmit spin information across organic semiconductors using spin flip excitations12.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
M. Gruber, F. Ibrahim, F. Djedhloul, C. Barraud, G. Garreau, S. Boukari, H. Isshiki, L. Joly, E. Urbain, M. Peter, M. Studniarek, V. Da Costa, H. Jabbar, H. Bulou, V. Davesne, U. Halisdemir, J. Chen, D. Xenioti, J. Arabski, K. Bouzehouane, C. Deranlot, S. Fusil, E. Otero, F. Choueikani, K. Chen, P. Ohresser, F. Bertran, P. Le Fèvre, A. Taleb-Ibrahimi, W. Wulfhekel, S. Hajjar-Garreau, P. Wetzel, P. Seneor, R. Mattana, F. Petroff, F. Scheurer, W. Weber, M. Alouani, E. Beaurepaire, and M. Bowen "Simple and advanced ferromagnet/molecule spinterfaces", Proc. SPIE 9931, Spintronics IX, 99313O (26 September 2016); https://doi.org/10.1117/12.2239067
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Molecules

Interfaces

Ferromagnetics

Magnetism

Copper

Spintronics

Iron

Back to Top