PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Use of diamond as a semiconductor material suffers from the high activation energy of all known impurity dopants (0.37 eV for Boron, 0.6 eV for Phosphorous). To achieve the simultaneous carrier concentration and mobility desired for devices operating at room temperature, growth of a nanometric thick ‘delta’ layer doped to above the metal insulator transition adjacent to high mobility intrinsic material can provide a 2D high mobility conduction layer. Critical to obtaining the enhanced mobility of the carriers in the layer next to the ‘delta’ doped layer is the abruptness of the doping interface. Single and multiple nanometer thick epitaxial layers of heavily boron ‘delta’ doped diamond have been grown on high quality, intrinsic lab grown diamond single crystals. These layers were grown in a custom microwave plasma activated chemical vapor deposition reactor based on a rapid reactant switching technique. Characterization of the ‘delta’ layers by various analytical techniques will be presented. Electrical measurements demonstrating enhanced hole mobility (100 to 800 cm2/V sec) as well as other electrical characterizations will be presented.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.