You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 September 2016Efficient HOMO-LUMO separation by multiple resonance effect toward ultrapure blue thermally activated delayed fluorescence
Organic light-emitting diodes (OLEDs) play an important role in the new generation of flat-panel displays. Conventional OLEDs employing fluorescent materials together with triplet–triplet annihilation suffer from a relatively low internal quantum efficiency (IQE) of ~62.5%. On the other hand, the IQE of OLEDs employing phosphorescent or thermally activated delayed fluorescence (TADF) materials can reach ~100%. However, these materials exhibit very broad peaks with a full-width at half-maximum (FWHM) of 70–100 nm and cannot satisfy the color-purity requirements for displays. Therefore, the latest commercial OLED displays employ blue fluorescent materials with a relatively low IQE, and efficient blue emitters with a small FWHM are highly needed. In our manuscript, we present organic molecules that exhibit ultrapure blue fluorescence based on TADF. These molecules consist of three benzene rings connected by one boron and two nitrogen atoms, which establish a rigid polycyclic framework and significant localization of the highest occupied and lowest unoccupied molecular orbitals by a multiple resonance effect. An OLED device based on the new emitter exhibits ultrapure blue emission at 467 nm with an FWHM of 28 nm, Commission Internationale de l’Eclairage (CIE) coordinates of (0.12, 0.13), and an IQE of ~100%, which represent record-setting performance for blue OLED devices.