You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 September 2016The optomechanical analysis of high-accuracy mesh design in optical transmission components
This paper presents the optomechanical analysis of the thermal effect by the finite difference method (FDM) in refraction optical components. The incident rays through the FDM elements, the temperature, or the stress in the ray path are estimated by weighting. The weighting will introduce some error in the calculated optical path difference (OPD) and bring some high-frequency aberration into the optical simulation; therefore, the mesh design process must consider the optical ray path footprint. The incident and emergence rays’ footprints are associated at the lens surface by Patran software; those associated footprints will add into the mesh point at the lens surface. The incident rays separate into several sections; each section can find its nearest grid point in the lens FDM mesh. Thus, moving the nearest grid point to the incident ray section can reduce the weighting or interpolation error in OPD calculations. The calculation results can evaluate the thermal or stress effect in optical transmission components more accurately.