You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 October 2016Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector
We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for
micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron
Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold
counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous
pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by
varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the
detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy
threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were
made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term
stability (linear regression of whole-chip response over one hour of acquisitions: y = -0.0038x + 2284; standard
deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image)
make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement
corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower
energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for
calibrated, energy-specific material decomposition and K edge difference imaging approaches.
The alert did not successfully save. Please try again later.
Steven M. Jorgensen, Andrew J. Vercnocke, David S. Rundle, Philip H. Butler, Cynthia H. McCollough, Erik L. Ritman, "Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector," Proc. SPIE 9969, Radiation Detectors: Systems and Applications XVII, 99690J (3 October 2016); https://doi.org/10.1117/12.2236501