Translator Disclaimer
Presentation + Paper
19 September 2016 Detector level ABI spectral response function: FM4 analysis and comparison for different ABI modules
Author Affiliations +
A new generation of imaging instruments Advanced Baseline Imager (ABI) is to be launched aboard the Geostationary Operational Environmental Satellites - R Series (GOES-R). Four ABI flight modules (FM) are planned to be launched on GOES-R,S,T,U, the first one in the fall of 2016. Pre-launch testing is on-going for FM3 and FM4. ABI has 16 spectral channels, six in the visible/near infrared (VNIR 0.47 − 2.25 μm), and ten in the thermal infrared (TIR 3.9 − 13.3 μm) spectral regions, to be calibrated on-orbit by observing respectively a solar diffuser and a blackbody. Each channel has hundreds of detectors arranged in columns. Operationally one Analytic Generation of Spectral Response (ANGEN) function will be used to represent the spectral response function (SRF) of all detectors in a band. The Vendor conducted prelaunch end-to-end SRF testing to compare to ANGEN; detector specific SRF data was taken for: i) best detector selected (BDS) mode - for FM 2,3, and 4; and ii) all detectors (column mode) - for four spectral bands in FM3 and FM4. The GOES-R calibration working group (CWG) has independently used the SRF test data for FM2 and FM3 to study the potential impact of detector-to-detector SRF differences on the ABI detected Earth view radiances. In this paper we expand the CWG analysis to include the FM4 SRF test data - the results are in agreement with the Vendor analysis, and show excellent instrument performance and compare the detector-to-detector SRF differences and their potential impact on the detected Earth view radiances for all of the tested ABI modules.
Conference Presentation
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Boryana Efremova, Aaron J. Pearlman, Frank Padula, and Xiangqian Wu "Detector level ABI spectral response function: FM4 analysis and comparison for different ABI modules", Proc. SPIE 9972, Earth Observing Systems XXI, 99720S (19 September 2016);

Back to Top