You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 September 2016Assessment of MODIS on-orbit calibration using a deep convective cloud technique
1Science Systems and Applications, Inc. (United States) 2Science Systems and Applications, Inc. (United States) 3NASA Goddard Space Flight Ctr. (United States) 4NASA Langley Research Ctr. (United States)
The MODerate Resolution Imaging Spectroradiometer (MODIS) sensors onboard Terra and Aqua satellites are calibrated on-orbit with a solar diffuser (SD) for the reflective solar bands (RSB). The MODIS sensors are operating beyond their designed lifetime and hence present a major challenge to maintain the calibration accuracy. The degradation of the onboard SD is tracked by a solar diffuser stability monitor (SDSM) over a wavelength range from 0.41 to 0.94 μm. Therefore, any degradation of the SD beyond 0.94 μm cannot be captured by the SDSM. The uncharacterized degradation at wavelengths beyond this limit could adversely affect the Level 1B (L1B) product. To reduce the calibration uncertainties caused by the SD degradation, invariant Earth-scene targets are used to monitor and calibrate the MODIS L1B product. The use of deep convective clouds (DCCs) is one such method and particularly significant for the short-wave infrared (SWIR) bands in assessing their long-term calibration stability. In this study, we use the DCC technique to assess the performance of the Terra and Aqua MODIS Collection-6 L1B for RSB 1 3-7 , and 26, with spectral coverage from 0.47 to 2.13 μm. Results show relatively stable trends in Terra and Aqua MODIS reflectance for most bands. Careful attention needs to be paid to Aqua band 1, Terra bands 3 and 26 as their trends are larger than 1% during the study time period. We check the feasibility of using the DCC technique to assess the stability in MODIS bands 17-19. The assessment test on response versus scan angle (RVS) calibration shows substantial trend difference for Aqua band 1between different angles of incidence (AOIs). The DCC technique can be used to improve the RVS calibration in the future.
The alert did not successfully save. Please try again later.
Qiaozhen Mu, Aisheng Wu, Tiejun Chang, Amit Angal, Daniel Link, Xiaoxiong Xiong, David R. Doelling, Rajendra Bhatt, "Assessment of MODIS on-orbit calibration using a deep convective cloud technique," Proc. SPIE 9972, Earth Observing Systems XXI, 997210 (19 September 2016); https://doi.org/10.1117/12.2237047