You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 October 2016Generating object proposals for improved object detection in aerial images
Screening of aerial images covering large areas is important for many applications such as surveillance, tracing or rescue tasks. To reduce the workload of image analysts, an automatic detection of candidate objects is required. In general, object detection is performed by applying classifiers or a cascade of classifiers within a sliding window algorithm. However, the huge number of windows to classify, especially in case of multiple object scales, makes these approaches computationally expensive. To overcome this challenge, we reduce the number of candidate windows by generating so called object proposals. Object proposals are a set of candidate regions in an image that are likely to contain an object. We apply the Selective Search approach that has been broadly used as proposals method for detectors like R-CNN or Fast R-CNN. Therefore, a set of small regions is generated by initial segmentation followed by hierarchical grouping of the initial regions to generate proposals at different scales. To reduce the computational costs of the original approach, which consists of 80 combinations of segmentation settings and grouping strategies, we only apply the most appropriate combination. Therefore, we analyze the impact of varying segmentation settings, different merging strategies, and various colour spaces by calculating the recall with regard to the number of object proposals and the intersection over union between generated proposals and ground truth annotations. As aerial images differ considerably from datasets that are typically used for exploring object proposals methods, in particular in object size and the image fraction occupied by an object, we further adapt the Selective Search algorithm to aerial images by replacing the random order of generated proposals by a weighted order based on the object proposal size and integrate a termination criterion for the merging strategies. Finally, the adapted approach is compared to the original Selective Search algorithm and to baseline approaches like sliding window on the publicly available DLR 3K Munich Vehicle Aerial Image Dataset to show how the number of candidate windows to classify can be clearly reduced.
The alert did not successfully save. Please try again later.
Lars W. Sommer, Tobias Schuchert, Jürgen Beyerer, "Generating object proposals for improved object detection in aerial images," Proc. SPIE 9988, Electro-Optical Remote Sensing X, 99880N (21 October 2016); https://doi.org/10.1117/12.2241527