Paper
21 October 2016 Accuracy analysis of a mobile tracking system for angular position determination of flying targets
Author Affiliations +
Proceedings Volume 9989, Technologies for Optical Countermeasures XIII; 99890T (2016) https://doi.org/10.1117/12.2241211
Event: SPIE Security + Defence, 2016, Edinburgh, United Kingdom
Abstract
Lasers arouse an increasing interest in remote sensing applications. In order to deliver as much as possible of the available laser power onto a flying object the subsystems of a beam control system have to operate precisely together. One important subsystem is responsible for determination of the target’s angular position.

Here, we focus on an optical system for measuring precisely the angular position of flying objects. We designed this subunit of a beam control system exclusively from readily available commercial-off-the-shelf components. Two industrial cameras were used for angle measuring and for guiding the system to the position of the flying object. Both cameras are mounted on a modified astronomical mount with high-precision angle encoders. To achieve a high accuracy we temporally synchronize the acquisition of the angle from the pan tilt unit with the exposure of the camera. Therefore, a FPGA-based readout device for the rotary encoders was designed and implemented. Additionally, we determined and evaluated the influence of the distortion of the lenses to the measurement.

We investigated various scenarios to determine the accuracy and the limitations of our system for angular position determination of flying targets. Performance tests were taken indoor and outdoor at our test sites. A target can be mounted on a fast moving linear stage. The position of this linear stage is continuously read out by a high resolution encoder so we know the target’s position with a dynamic accuracy in the range of a few μm. With this setup we evaluated the spatial resolution of our tracking system. We showed that the presented system can determine the angular position of fast flying objects with an uncertainty of only 2 μrad RMS. With this mobile tracking system for angular position determination of flying targets we designed an accurate cost-efficient opportunity for further developments.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Andreas Walther, Ivo Buske, and Wolfgang Riede "Accuracy analysis of a mobile tracking system for angular position determination of flying targets", Proc. SPIE 9989, Technologies for Optical Countermeasures XIII, 99890T (21 October 2016); https://doi.org/10.1117/12.2241211
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Cameras

Computer programming

Distortion

Light emitting diodes

Imaging systems

Astronomy

Image processing

Back to Top