PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
High-energy laser pulses in the nanosecond regime used to be spectrally broadened to mitigate the stimulated Brillouin scattering known to deteriorate the optical elements. Due to propagating effects, this spectrum broadening lead to FM-to-AM conversion, where the UV laser beam experiences an amplitude modulation at frequencies which are harmonics of the phase modulation frequency. We study the impact of the FM-to-AM conversion on the Brillouin backscattering by applying an amplitude modulation on the UV pump laser beam operating at 351 nm and with a 3 ns pulse duration.
Experimental measurements show that adding an amplitude modulation frequency on a phase-modulated laser beam could enhance the stimulated Brillouin scattering and lead to laser damage. Thanks to a theoretical and numerical analysis, we show that this singular behavior originates from a resonance between the frequency of the amplitude modulation and the low orders harmonic frequencies of the phase modulated laser beam.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.