M. Ossiander,1,2 K. Golyari,3 K. Scharl,3 I. Floss,4 V. Smejkal,4 C. Lemell,4 H. K. Hampel,5 M. L. Meretskahttps://orcid.org/0000-0001-8749-9374,6 S. W. D. Lim,7 N. Knefz,5 T. Jauk,5 F. Capasso,7 F. Krausz,3 M. Schultze1
1Technische Univ. Graz (Austria) 2Harvard Univ. (United States) 3Max-Planck-Institut für Quantenoptik (Germany) 4Technische Univ. Wien (Austria) 5Graz Univ. of Technology (Austria) 6Harvard John A. Paulson School of Engineering and Applied Sciences (Germany) 7Harvard John A. Paulson School of Engineering and Applied Sciences (United States)
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
We detect macroscopic currents driven by intense light fields in a photoconductive antenna, which we switch on using ultrafast vacuum ultraviolet light pulses. By comparing these currents with the vector potential of the incident light, we can follow nonequilibrium inter- and intra-band carrier dynamics with attosecond resolution.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
M. Ossiander, K. Golyari, K. Scharl, I. Floss, V. Smejkal, C. Lemell, H. K. Hampel, M. L. Meretska, S. W. D. Lim, N. Knefz, T. Jauk, F. Capasso, F. Krausz, M. Schultze, "Conduction band dynamics revealed by attosecond currents," Proc. SPIE PC12992, Advances in Ultrafast Condensed Phase Physics IV, PC129920D (11 June 2024); https://doi.org/10.1117/12.3021896