

STRAY LIGHT Analysis and Control

Eric C. Fest

Library of Congress Cataloging-in-Publication Data

Fest, Eric C.
Stray light analysis and control / Eric Fest. pages cm
Includes bibliographical references and index.
ISBN 978-0-8194-9325-5
1. Optical instruments-Design and construction. 2. Light-Scattering. I. Title. QC372.2.D4F47 2013 621.36-dc23

2012049924

Published by

SPIE—The International Society for Optical Engineering P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360.676.3290 Fax: +1 360.647.1445 Email: spie@spie.org Web: http://spie.org

Copyright © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thoughts of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First printing

Contents

Pre	face		xi
Ack	nowle	dgments	xv
Cha	pter 1	Introduction and Terminology	1
1.1 1.2 1.3	Book F Book C Stray L 1.3.1 S 1.3.2 S 1.3.3 C 1.3.4 L 1.3.5 L 1.3.6 C	Prerequities Drganization Light Terminology Stray light paths Specular and scatter stray light mechanisms Critical and illuminated surfaces n-field and out-of-field stray light Internal and external stray light	4 6 6 7 8 8 9 9
1.4	Summ		10
Cha	pter 2	Basic Radiometry for Stray Light Analysis	13
2.1	Radior 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8 2.1.9 2.1.10	netric Terms Flux, or power, and radiometric versus photometric units Reflectance, transmittance, and absorption Solid angle and projected solid angle Radiance Blackbody radiance Throughput Intensity Exitance Irradiance Bidirectional scattering distribution function	13 14 16 18 18 22 23 23 23 24 25
2.2	Radiat 2.2.1 2.2.2 2.2.3	ive Transfer Point source transmittance Detector field of view Veiling glare index	29 31 32 32

2.3 2.4	2.2.4 2.2.5 2.2.6 Detect 2.3.1 2.3.2 Summ	Exclusion angle Estimation of stray light using basic radiative transfer Uncertainty of stray light estimates or Responsivity Noise equivalent irradiance Noise equivalent delta temperature ary	32 33 36 36 36 37 38
Cha	pter 3	Basic Ray Tracing for Stray Light Analysis	41
3.1	Buildin 3.1.1	g the Stray Light Model Defining optical and mechanical geometry	41 41
32	3.1.Z Ray Tr	Defining optical properties	43 43
0.2	3.2.1 3.2.2	Using ray statistics to quantify speed of convergence Aiming scattered rays to increase the speed	43
		of convergence	45
	3.2.3	Backward ray tracing	48
	3.2.4	Finding stray light paths using detector FOV	49
	3.2.5	Determining critical and illuminated surfaces	50
	3.2.6	Performing internal stray light calculations	51
	3.2.1	of convergence	55
	328	Using Monte Carlo ray splitting to increase	55
	5.2.0	speed of convergence	55
	329	Calculating the effect of stray light on	00
	0.2.0	modulation transfer function	56
3.3	Summ	ary	58
.			
Cha	pter 4	Scattering from Optical Surface	64
		Roughness and Coatings	61
4.1	Scatte	ring from Uncoated Optical Surface Roughness	62
	4.1.1	BSDF from RMS surface roughness	68
	4.1.2	BSDF from PSD	70
	4.1.3	BSDF from empirical fits to measured data	71
4.0	4.1.4	Artifacts from roughness scatter	72
4.Z	Scatte	ring from Coated Optical Surface Roughness	73
4.3 1 1	Summ	any from Scratches and Digs	75 75
4.4	Summ	ai y	75
Cha	pter 5	Scattering from Particulate Contaminants	77
5.1	Scatte	ring from Spherical Particles (Mie Scatter Theory)	78
5.2	Particle	e Density Function Models	80
	5.2.1	The IEST CC1246D cleanliness standard	81
	5.2.2	Measured (tabulated) distribution	87

5.3	5.2.3 BSDF 5.3.1	Determining the particle density function using typical cleanliness levels, fallout rates, or direct measurement 5.2.3.1 Use of typical cleanliness levels 5.2.3.2 Use of fallout rates (uncleaned surfaces only) 5.2.3.3 Use of a measured (tabulated) density function Models BSDF from PAC	87 89 89 90 91 91
	5.3.2 5.3.3 5.3.4	BSDF from Mie scatter calculations BSDF from empirical fits to measured data Determining the uncertainty in BSDF from the uncertainty in particle density function	92 92 92
5.4	5.3.5 Comp	Artifacts from contamination scatter arison of Scatter from Contaminants and Scatter	93
5.5 5.6 5.7	from S Scatte Molec Summ	Surface Roughness Fring from Inclusions in Bulk Media ular Contamination Fary	95 95 98 98
Cha	apter 6	Scattering from Black Surface Treatments	101
6.1	Physic 6.1.1 6.1.2	cs of Scattering from Black Surface Treatments BRDF from empirical fits to measured data Using published BRDF data	102 104 109
6.2	6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	Activity for black surface treatment scatter ion Criteria for Black Surface Treatments Absorption in the sensor waveband Specularity at high AOIs Particulate contamination Molecular contamination	112 113 113 113 114 114
6.3	Types 6.3.1 6.3.2 6.3.3	of Black Surface Treatments Appliqués Treatments that reduce surface thickness Treatments that increase surface thickness 6.3.3.1 Painting 6.3.3.2 Fused powders 6.3.3.3 Black oxide coatings 6.3.3.4 Anodize y of Widely Used Black Surface Treatments	114 115 115 116 116 116 116 119 119 120
6.5	Summ	hary	120
Cha	apter 7	Ghost Reflections, Aperture Diffraction, and Diffraction from Diffractive Optical Elements	123
7.1	Ghost 7.1.1	Reflections Reflectance of uncoated and coated surfaces	123 124

vii

	7.1.1.1 7.1.1.2 7.1.2 Reflecta	Uncoated surfaces Coated surfaces ance from typical values	124 125 126
	7.1.3 Reflecta	ance from the stack definition or	128
	7.1.4 Reflecta 7.1.5 Artifacts	ance from measured data from ghost reflections	128 128
	7.1.6 "Reflect	ive" ghosts	131
7.2	Aperture Diffrac	ction	132
	7.2.1 Aperture	e diffraction theory	132
	7.2.2 Calculat	tion of aperture diffraction in stray light	
	analysis	programs	133
	7.2.3 Artifacts	from aperture diffraction	134
7 0	7.2.4 Express	Bions for wide-angle diffraction calculations	135
1.3		Fractive Optical Elements	13/
	7.3.1 DUE UII	from DOE diffraction	130
	7.3.2 Antilacts	ng from DOE transition regions	140
7.4	Summary	ing norm DOE transition regions	140
Cha	nter 9 Ontio	- Design for Strey Light Control	115
Cha	pier o Oplica	a Design for Stray Light Control	145
8.1	Use a Field Sto	p	145
8.2	Use an Unobsc	cured Optical Design	147
8.3	Minimize the N	umber of Optical Elements between the	
8.3	Minimize the Ne Aperture Stop a	umber of Optical Elements between the and the Focal Plane	148
8.3 8.4	Minimize the N Aperture Stop a Use a Lyot Stop	umber of Optical Elements between the and the Focal Plane p	148 150
8.3 8.4	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic	148 150
8.3 8.4	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions	148 150 151
8.3 8.4	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express 8.4.2 Calculat	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions ting Lyot stop diameter from coherent	148 150 151
8.3 8.4	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express 8.4.2 Calculat beam at	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions ting Lyot stop diameter from coherent nalysis	148 150 151 152
8.38.48.5	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express 8.4.2 Calculat beam an Use a Pupil Ma from Struts and	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions ting Lyot stop diameter from coherent nalysis sk to Block Diffraction and Scattering	148 150 151 152
8.38.48.58.6	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express 8.4.2 Calculat beam at Use a Pupil Ma from Struts and Minimize Illumit	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions ting Lyot stop diameter from coherent nalysis sk to Block Diffraction and Scattering I Other Obscurations	148 150 151 152 153 154
 8.3 8.4 8.5 8.6 8.7 	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express 8.4.2 Calculat beam at Use a Pupil Ma from Struts and Minimize Illumit Minimize the Na	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions ting Lyot stop diameter from coherent nalysis sk to Block Diffraction and Scattering I Other Obscurations nation of the Aperture Stop	148 150 151 152 153 154
 8.3 8.4 8.5 8.6 8.7 	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express 8.4.2 Calculat beam an Use a Pupil Ma from Struts and Minimize Illumin Minimize the Na Refractive Elem	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions ting Lyot stop diameter from coherent nalysis sk to Block Diffraction and Scattering I Other Obscurations nation of the Aperture Stop umber of Optical Elements, Especially nents	148 150 151 152 153 154 154
 8.3 8.4 8.5 8.6 8.7 8.8 	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express 8.4.2 Calculat beam an Use a Pupil Ma from Struts and Minimize Illumin Minimize the Na Refractive Elem Avoid Optical E	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions ting Lyot stop diameter from coherent nalysis usk to Block Diffraction and Scattering I Other Obscurations nation of the Aperture Stop umber of Optical Elements, Especially nents	148 150 151 152 153 154 154 155
 8.3 8.4 8.5 8.6 8.7 8.8 8.9 	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express 8.4.2 Calculat beam at Use a Pupil Ma from Struts and Minimize Illumit Minimize the Na Refractive Elem Avoid Optical E Avoid Ghosts F	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions ting Lyot stop diameter from coherent nalysis sk to Block Diffraction and Scattering I Other Obscurations nation of the Aperture Stop umber of Optical Elements, Especially nents Elements at Intermediate Images Focused at the Focal Plane	148 150 151 152 153 154 154 155 155
 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express 8.4.2 Calculat beam an Use a Pupil Ma from Struts and Minimize Illumin Minimize the Na Refractive Elem Avoid Optical E Avoid Ghosts F Minimize Vigne	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions ting Lyot stop diameter from coherent nalysis sk to Block Diffraction and Scattering I Other Obscurations nation of the Aperture Stop umber of Optical Elements, Especially nents Elements at Intermediate Images Focused at the Focal Plane tting, Including the Projected Solid Angle	148 150 151 152 153 154 154 155 155
8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express 8.4.2 Calculat beam an Use a Pupil Ma from Struts and Minimize Illumin Minimize the Na Refractive Elem Avoid Optical E Avoid Ghosts F Minimize Vigne of Struts	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions ting Lyot stop diameter from coherent nalysis usk to Block Diffraction and Scattering I Other Obscurations nation of the Aperture Stop umber of Optical Elements, Especially nents Elements at Intermediate Images Focused at the Focal Plane titing, Including the Projected Solid Angle	148 150 151 152 153 154 154 155 155 156
 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express 8.4.2 Calculat beam an Use a Pupil Ma from Struts and Minimize Illumin Minimize the Na Refractive Elem Avoid Optical E Avoid Ghosts F Minimize Vigne of Struts Use Temporal,	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions ting Lyot stop diameter from coherent nalysis sk to Block Diffraction and Scattering I Other Obscurations nation of the Aperture Stop umber of Optical Elements, Especially nents Elements at Intermediate Images Focused at the Focal Plane titing, Including the Projected Solid Angle Spectral, or Polarization Filters	148 150 151 152 153 154 154 155 155 155
 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express 8.4.2 Calculat beam an Use a Pupil Ma from Struts and Minimize Illumin Minimize the Na Refractive Elem Avoid Optical E Avoid Ghosts F Minimize Vigne of Struts Use Temporal, Use Nonuniform	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions ting Lyot stop diameter from coherent nalysis sk to Block Diffraction and Scattering I Other Obscurations nation of the Aperture Stop umber of Optical Elements, Especially nents Elements at Intermediate Images Focused at the Focal Plane titing, Including the Projected Solid Angle Spectral, or Polarization Filters nity Compensation and Reflective Warm	148 150 151 152 153 154 154 155 155 155
 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 	Minimize the Na Aperture Stop a Use a Lyot Stop 8.4.1 Calculat express 8.4.2 Calculat beam an Use a Pupil Ma from Struts and Minimize Illumin Minimize Illumin Minimize the Na Refractive Elem Avoid Optical E Avoid Ghosts F Minimize Vigne of Struts Use Temporal, Use Nonuniforr Shields in IR Sy	umber of Optical Elements between the and the Focal Plane p ting Lyot stop diameter from analytic ions ting Lyot stop diameter from coherent nalysis usk to Block Diffraction and Scattering I Other Obscurations nation of the Aperture Stop umber of Optical Elements, Especially nents Elements at Intermediate Images Focused at the Focal Plane titing, Including the Projected Solid Angle Spectral, or Polarization Filters nity Compensation and Reflective Warm systems	148 150 151 152 153 154 155 155 155 156 157

Chapter 9 Baffle and Cold Shield Design	163
 9.1 Design of the Main Baffles and Cold Shields 9.2 Design of Vanes for Main Baffles and Cold Shields 9.2.1 Optimal aperture diameter, depth, and spacing 	164 167
for baffle vanes 9.2.2 Edge radius, bevel angle, and angle for baffle vane 9.2.3 Groove-shaped baffle vanes 9.3 Design of Baffles for Cassegrain-Type Systems 9.4 Design of Reflective Baffle Vanes 9.5 Design of Masks 9.6 Summary	168 172 172 174 174 178 181
Chapter 10 Measurement of BSDF, TIS, and System Stray Light	183
 10.1 Measurement of BSDF (Scatterometers) 10.2 Measurement of TIS 10.3 Measurement of System Stray Light 10.3.1 Sensor radiometric calibration 10.3.2 Collimated source test 10.3.3 Extended source test 10.3.4 Solar tests 10.3.4.1 Using direct sunlight 10.3.4.2 Using a heliostat 10.4 Internal Stray Light Testing 10.5 Summary 	183 186 188 189 190 191 191 192 193 193
Chapter 11 Stray Light Engineering Process	195
11.1 Define Stray Light Requirements	195
exclusion angle	196
comparable systems	198
Levels, and Coatings	198
 11.3 Build Stray Light Model, Add Baffles and Black Surface Treatments 11.4 Compute Stray Light Performance 11.5 Build and Test 11.6 Process Completion 11.7 Summary 11.8 Guidelines and Rules of Thumb 	198 199 200 202 202 202

Index

205

ix

Preface

In 1741, the great Swiss mathematician Leonhard Euler was asked by King Frederick the Great of Prussia to write a tutorial on natural philosophy and science for his niece, the Princess of Anhalt-Dessau. Euler agreed and began writing the tutorial as a series of letters to the Princess, about one a week, for nearly 250 weeks. These letters were eventually published as a collection and became some of the first popular science writing.¹

Portrait of Leonhard Euler, by Johann Georg Brucker (1756).

In a letter entitled "Precautions to be observed in the Construction of Telescopes"² (shown in the second figure), Euler recommends that the Princess

"... (enclose the telescope) in a tube, that no other rays, except those which are transmitted through the objective, may reach the other lenses... If by any accident the tube shall be perforated ever so slightly, the extraneous light would confound the representation of the object."

LETTER CVIII.

Precautions to be observed in the Construction of Telefcopes. Necessity of blackening the Instide of Tubes. Diaphragms.

A FTER these refearches respecting the construction of telescopes, I must suggest and explain certain precautions necessary to be used; which, though they relate neither to the lenses themselves, nor to their arrangement, are nevertheless of such importance, that if they are not very carefully obferved, the best instrument is rendered entirely useless. It is not sufficient that the lenses should be arranged in such a manner that all the rays which fall upon them shall be transmitted through these lenses to the eye; care must be taken, besides, to prevent Vol. II. Ff the the transmission of extraneous rays through the telefcope, to difturb the representation. Let the following precautions, then, be taken.

I. The lenfes, of which a telefcope is compofed, muft be inclofed in a tube, that no other rays, except thofe which are transmitted through the objective, may reach the other lenfes. For this effect, the tube muft be very clofe throughout, that not a chink admit the smallest portion of light. If by any accident the tube shall be perforated ever fo shightly, the extraneous light admitted would confound the reprefentation of the object.

II. It is likewife of importance to blacken, throughout, the infide of the telefcope, of the deepeft black pofible, as it is well known that this colour reflects not the rays of light, be they ever fo powerful. You must have observed, accordingly, that the tubes of telefcopes are always blackened internally. A fingle reflection will fhew the neceflity of it.

Excerpts from Leonhard Euler's tutorial. The figures show the telescope before and after the addition of field stops, which were added for stray light control.

He also suggests that she "[...] blacken, throughout, the inside of the telescope, of the deepest black possible, as it is well known that this colour reflects not the rays of light, be they ever so powerful".

Though he calls them "diaphragms" and not field stops, Euler goes on to suggest their use as a further means of "diminishing the unpleasant effect of which I have been speaking." This unpleasant effect is, of course, what we now call stray light, and this letter shows that it was identified as a problem hundreds of years ago. It is remarkable that the methods Euler discussed to control it (i.e., the use black surface treatments, field stops, and baffles) are still some of the primary methods used to control it today (see Chapters 6, 8, and 9, respectively). Of course, some things have changed; Euler and the Princess didn't have the massive computing power we have today, and therefore were unable to predict the stray light performance of a telescope to the accuracy that is now possible. In addition, the occurrence of stray light in their telescope was an "unpleasant effect" and was not as serious a

problem as, say, the loss of scientific data due to stray light in a multi-billion-dollar space-based telescope.

However, the letter shows that the problem and many of its solutions remain the same. The goal of Euler's letter and of this book are similar: to provide optical engineers with the information and analytical tools necessary to design and build optical systems with sufficient stray light control. In addition to Euler's letter, there have been hundreds of papers published on the subject, and it is impossible to include the content of all of them here. Therefore, only the content that is most applicable to the task of *optical system engineering* is discussed. This is an important distinction, as many previous publications deal with the science of optical scattering and stray light, but fewer address the application of this science in engineering practice. This book summarizes the important scientific results, providing references for more detailed study, and then applies these theories to the engineering of optical systems. This book also considers the economics of performing stray light analysis, which is a dimension that is also lacking in the current literature. Sometimes the engineer tasked with performing a stray light analysis has months of time and a large budget, and other times has 15 minutes and no budget. This book provides tools and solutions for a spectrum of budgets, and quantifies the accuracy associated with each approach.

> Eric Fest Tucson, AZ February 2013 eric@phobosoptics.com

- 1. T. McGew (Ed.), Discussion of Euler's "Letters to a German Princess", http://homepages.wmich.edu/~mcgrew/euler.htm.
- 2. L. Euler and N. de Condorcet, *Letters of Euler to a German Princess, on Different Subjects in Physics and Philosophy, Volume 2*, H. Hunter, Trans., translated from the French and published by Murray and Highley (1802).

Acknowledgments

Many people helped me write this book, and I'd like to take a moment to thank them.

I'd like to thank Dave Rock, who gave me my first job in optics and, to this day, serves as my role model. Much of the content of this book I learned from him, and I will always be grateful for all he taught me and for the helpful feedback he provided for this book.

I'd like to thank my co-workers, including Chad Martin, John McCloy, Dave Markason, and Dave Jenkins, from whom I've learned a tremendous amount about stray light analysis. Special thanks goes to Mike Schaub, who helped me set up the Zemax model of the Maksutov–Cassegrain telescope used throughout this book. I'd also like to thank Scott Sparrold at Edmund Optics, Margy Green at Raytheon, and Michael Dittman at Ball Aerospace for many fruitful discussions and for providing me with some of the material in this book. I'd also like to thank Chris Staats at Schmitt Measurement Systems for teaching me the intricacies of measuring BSDF.

This book probably would not have happened without the help of Rich Pfisterer of Photon Engineering LLC, who encouraged me to write it and provided an excellent model for it in his Stray Light Short Course Notes. Rich also spent many hours reviewing it, and I thank him for his tireless efforts.

I was very fortunate to have the help of Bob Breault of Breault Research Organization, who is one of the founders of the science of stray light analysis and who provided me with many comments and suggestions that greatly improved this book. For the many hours he spent reviewing and discussing it with me, I thank him.

I also owe thanks to the other reviewers of this book, who gave selflessly of their time and by doing so greatly improved it: Scott Ellis, Paul Spyak, Rick Juergens, and Matt Jenkins. I'd also like to thank the people at SPIE Press who made this book a reality, especially the book's editor, Scott McNeill, who provided invaluable feedback and who was very understanding when I asked for schedule extensions.

Last, but certainly not least, I'd like to thank my wife, Gina, who accommodated my writing schedule with incredible patience. I am extremely fortunate to be married to her.

This book is dedicated to my daughters, Fiona and Marlena.