Introduction to OPTICAL TESTING

Tutorial Texts Series

- Basic Electro-Optics for Electrical Engineers, Glenn D. Boreman, Vol. TT31
- Optical Engineering Fundamentals, Bruce H. Walker, Vol. TT30
- Introduction to Radiometry, William L. Wolfe, Vol. TT29
- An Introduction to Interpretation of Graphic Images, Sergey Ablameyko, Vol. TT27
- Thermal Infrared Characterization of Ground Targets and Backgrounds, Pieter A. Jacobs, Vol. TT26
- Introduction to Imaging Spectrometers, William L. Wolfe, Vol. TT25
- Introduction to Infrared System Design, William L. Wolfe, Vol. TT24
- Introduction to Computer-based Imaging Systems, Divyendu Sinha and Edward R. Dougherty, Vol. TT23
- Optical Communication Receiver Design, Stephen B. Alexander, Vol. TT22
- Mounting Lenses in Optical Instruments, Paul R. Yoder, Jr., Vol. TT21
- Optical Design Fundamentals for Infrared Systems, Max J. Riedl, Vol. TT20
- An Introduction to Real-Time Imaging, Edward R. Dougherty and Phillip A. Laplante, Vol. TT19
- Introduction to Wavefront Sensors, Joseph M. Geary, Vol. TT18
- Integration of Lasers and Fiber Optics into Robotic Systems, Janusz A. Marszalec and Elzbieta A. Marszalec, Vol. TT17
- An Introduction to Nonlinear Image Processing, Edward R. Dougherty and Jaakko Astola, Vol. TT16
- Introduction to Optical Testing, Joseph M. Geary, Vol. TT15
- Sensor and Data Fusion Concepts and Applications, Lawrence A. Klein, Vol. TT14
- Practical Applications of Infrared Thermal Sensing and Imaging Equipment, Herbert Kaplan, Vol. TT13
- Image Formation in Low-Voltage Scanning Electron Microscopy, L. Reimer, Vol. TT12
- Diazonaphthoquinone-based Resists, Ralph Dammel, Vol. TT11
- Infrared Window and Dome Materials, Daniel C. Harris, Vol. TT10
- An Introduction to Morphological Image Processing, Edward R. Dougherty, Vol. TT9
- An Introduction to Optics in Computers, Henri H. Arsenault and Yunlong Sheng, Vol. TT8
- Digital Image Compression Techniques, Majid Rabbani and Paul W. Jones, Vol. TT7
- Aberration Theory Made Simple, Virendra N. Mahajan, Vol. TT6
- Single-Frequency Semiconductor Lasers, Jens Buus, Vol. TT5
- An Introduction to Biological and Artificial Neural Networks for Pattern Recognition, Steven K. Rogers and Matthew Kabrisky, Vol. TT4
- Practical Applications of Infrared Thermal Sensing and Imaging Equipment, Herbert Kaplan, Vol. TT13
- Infrared Fiber Optics, Paul Klocek and George H. Sigel, Jr., Vol. TT2
- Spectrally Selective Surfaces for Heating and Cooling Applications, C. G. Granqvist, Vol. TT1

Introduction to OPTICAL TESTING

Joseph M. Geary

Donald C. O'Shea, Series Editor Georgia Institute of Technology

Tutorial Texts in Optical Engineering Volume TT15

SPIE OPTICAL ENGINEERING PRESS

A Publication of SPIE—The International Society for Optical Engineering Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Geary, Joseph M. Introduction to optical testing / Joseph M. Geary. p. cm. — (SPIE tutorial texts in optical engineering ; v. TT 15) Includes bibliographical references and index. ISBN 0-8194-1377-1 1. Optical instruments — Testing. 2. Electronic Instruments. I. Title. II. Series: Tutorial texts in optical engineering ; v. TT 15. TS514.G43 1993 681'.4'0287—dc20 93-10679 CIP

Published by SPIE—The International Society for Optical Engineering P.O. Box 10 Bellingham, Washington 98227-0010

Copyright © 1993 The Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

Printed in the United States of America Second Printing

Introduction to the Series

These Tutorial Texts provide an introduction to specific optical technologies for both professionals and students. Based on selected SPIE short courses, they are intended to be accessible to readers with a basic physics or engineering background. Each text presents the fundamental theory to build a basic understanding as well as the information necessary to give the reader practical working knowledge. The included references form an essential part of each text for the reader requiring a more in-depth study.

Many of the books in the series will be aimed at readers looking for a concise tutorial introduction to new technical fields, such as CCDs, sensor fusion, computer vision, or neural networks, where there may be only limited introductory material. Still others will present topics in classical optics tailored to the interests of a specific audience such as mechanical or electrical engineers. In this respect the Tutorial Text serves the function of a textbook. With its focus on a specialized or advanced topic, the Tutorial Text may also serve as a monograph, although with a marked emphasis on fundamentals.

As the series develops, a broad spectrum of technical fields will be represented. One advantage of this series and a major factor in the planning of future titles is our ability to cover new fields as they are developing, giving people the basic knowledge necessary to understand and apply new technologies.

Donald C. O'Shea Georgia Institute of Technology August 1993

Contents

1.1	Introduction 1
1.2	Effective Focal Length 2
	1.2.1 Focal Length via T-Bar Nodal Slide
	1.2.2 Focal Length via Magnification
1.3	f-number
1.4	Axial Color
1.5	Field Curvature and Distortion 12
1.6	Transmission 14
1.7	Relative Illumination Falloff 15
1.8	Veiling Glare 15
1.9	Thermal Behavior 17
1.10	References
Appo	endix 1.1 Basic Geometrical Optics 21
Appo	endix 1.2 Relative Illumination Falloff

Chapter 2. Aberration and Resolution Measurements

2.1	Introduction
2.2	Spherical Aberration
	2.2.1 Annular Zone Method 27
	2.2.2 Minimum Blur Method 28
	2.2.3 Transverse Ray Method 29
	2.2.4 Axial Intensity Method 29
2.3	Astigmatism 35
2.4	Coma
2.5	Image Resolution
	2.5.1 Resolution Tests Using Film 40
	2.5.2 Aerial Resolution Tests 43
2.6	Modulation Transfer Function Tests 43
	2.6.1 MTF via Sinusoidal Targets 45
	2.6.2 MTF via Slit Scans of the PSF 47
	2.6.3 MTF via Knife Edge Scan 48
2.7	References

Chapter 3. Interferometric Testing of Optical Systems

3.1	Introduction	51
3.2	Mathematical Description of Aberrations	53
3.3	Fizeau Interferometer	56
3.4	Analyzing an Interferogram	59
3.5	Testing a Lens	64
3.6	Retrace Error	65
3.7	Collecting and Handling Data	68
3.8	Environmental Constraints	69
3.9	Mounting	70
3.10	References	70
Appe	ndix 3.1 Testing Configurations Using a Fizeau Interferometer.	71

Chapter 4. Wavefront Sensors

4.1	Introduction	3
4.2	Principles of Operation	4
4.3	Direct Measure of W(x,y): Point Diffraction Interferometer 76	6
4.4	Measures of Differential Wavefront (dW)	8
	4.4.1 Laser Wavefront Analyzer 78	8
	4.4.2 Lateral Shear 8	0
	4.4.3 Rotating Grating 82	2
4.5	Measures of Transverse Ray Error (T) 82	5
	4.5.1 Shack-Hartmann Test	7
	4.5.2 SHAPE	7
4.6	References	1

Chapter 5. General Light Beam Measurements

5.1	Introduction
5.2	Power-Related Measurements
	5.2.1 Far-Field Measurements
	5.2.2 Near-Field Measurements
5.3	Color
5.4	Coherence Measurements 103
	5.4.1 Temporal Coherence 103
	5.4.2 Spatial Coherence 105
	5.4.3 Fourier Transform Spectroscopy 107
5.5	Polarization 108
5.6	Directionality (Pointing): Beam Tilt Sensing 114
5.7	References 119

Chapter 6. Component Measurements

6.1	Introduction
6.2	Radius of Curvature 121
	6.2.1 Radius of Curvature Using Interferometry 121
	6.2.2 Spherometry 121
	6.2.3 Estimating Curvature by Eye 123
6.3	Refractive Index 123
	6.3.1 Critical Angle 123
	6.3.2 Brewster's Angle 125
	6.3.3 Focus Shift 125
6.4	Spectral Transmission 127
6.5	Collimation 129
	6.5.1 Beam Diameter vs Distance 129
	6.5.2 Autocollimation 129
	6.5.3 Shear Plate 130
6.6	Surface Roughness 131
6.7	Light Scattering 134
6.8	Ellipsometry 137
6.9	Instruments for (Black and White) Photographic Film 138
	6.9.1 Sensitometer 141
	6.9.2 Densitometer 141
	6.9.3 Microdensitometer 142
6.10	Extended Source Brightness (Radiance) 144
6.11	References 146
Index	

Preface

This tutorial is a practical "how to" course in optical testing. The approach taken is not unlike a guided lab tour. We explain what we are trying to measure and how to go about it. Emphasis is therefore on techniques, procedures, and instrumentation rather than mathematical analysis. The goal is to provide a basic understanding of the measurements made, and the tools used to make those measurements.

Optical testing instrumentation has certainly improved over the decades. Electronics are more compact. Detectors are more sensitive and have better signal to noise. Lasers have made interferometry practical. Computers are ubiquitous. They drive experiments, position components, collect, analyze, and display data. Tests can be conducted which were once prohibitive because of the sheer volume of data required. Such improvements have made optical testing easier. They have not altered the fundamental principles of optical testing.

Optical instruments measure information carried by light. Interest lies either in the light itself, or some modification made by interaction with an object under study. The characteristics of light that are susceptible to measurement are intensity, phase, color, polarization, coherence, and directionality. Among other things, the reader will learn how to measure and characterize imaging systems, perform optical bench measurements to determine first and third order properties of optical systems, set up and operate the Fizeau interferometer and evaluate fringe data, conduct beam diagnostics (such as wavefront sensing), and perform radiometric calibrations.

The level of the text is not taxing. However, any previous exposure to geometric and physical optics, either in the form of an undergraduate course or text (at the level of *Optics* by Hecht and Zajac), or through some practical hands-on experience, would certainly be helpful.

This tutorial had its origins at New Mexico State University. Every May, at the conclusion of the regular semester, the Applied Optics Lab offers a series of short courses in optics. The courses cover a variety of topics, and are open to government, industry, and academic professionals.

When initially asked to prepare this tutorial I hesitated because of the large number of figures involved, and my poor talent as an artist. I therefore owe a debt of gratitude first to Dr. Tom Wilson of Swales & Associates for providing support for the illustrations; and second, to Mike Scriven whose fine artistic talents transformed my crude drawings into professional illustrations.

This tutorial would never have been completed without the substantial help of Rick Hermann and Eric Pepper at SPIE. I must also thank Dr. Don O'Shea (Georgia Institute of Technology) and Dr. John Loomis (University of Dayton) for reviewing the manuscript and providing a wealth of suggestions which have greatly improved the text. I would like to dedicate this work to two of my mentors in optical testing: Mr. Bill Folger and Dr. Jim Wyant. At the Naval Air Development Center (now Naval Air Warfare Center) Bill patiently taught me the ins and outs, dos and don'ts of photographic testing of aerial cameras. When I was a student at the Optical Sciences Center (University of Arizona), Jim opened up the fascinating world of interferometry for me, and guided my Master's thesis. The knowledge I gained from these gentlemen about optical testing has been of great value in my career.

Joseph Geary July 1993