Electronic Imaging Applications in Mobile Healthcare

Electronic Imaging Applications in Mobile Healthcare

Jinshan Tang Sos S. Agaian Jindong Tan *Editors*

SPIE PRESS Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Names: Tang, Jinshan, editor. | Agaian, S. S., editor. | Tan, Jindong, editor.

Title: Electronic imaging applications in mobile healthcare / Jinshan Tang, Sos S. Agaian, and Jindong Tan, editors.

Description: Bellingham, Washington : SPIE Press, [2016] | ©2016 | Includes bibliographical references and index.

Identifiers: LCCN 2015032233 ISBN 9781628418729 (alk. paper) | ISBN 1628418729 (alk. paper)

Subjects: LCSH: Imaging systems in medicine. | Wireless communication systems in medical care.

Classification: LCC R857.O6 M62 2016 | DDC 616.07/54—dc23 LC record available at http://lccn.loc.gov/2015032233

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360.676.3290 Fax: +1 360.647.1445 Email: books@spie.org Web: http://spie.org

Copyright © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the authors and editors. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First printing.

Contents

	eface		xi
Lis	List of Contributors		
Ac	ronyms	and Abbreviations	xvii
IN	lobile l	Healthcare Image Processing and Enhanced Visualization	3
1		uction to Electronic Imaging Applications in Mobile Healthcare	3
	Zilong		
	1.1		3
	1.2	5 5	5
	1.3	Mobile Device Use in Healthcare	5
		1.3.1 Some common mobile platforms	5
		1.3.2 Key techniques used in mobile electronic imaging	7
		1.3.2.1 Auto-focus technology	7
		1.3.2.2 Image coding, transmission, and storage	8
		1.3.2.3 Image security	8
	1.4	Examples of Mobile Healthcare Applications	9
	1.5	Future Research Directions	11
		1.5.1 Developing algorithms with lower CPU and power	4.0
		consumption requirements	12
		1.5.2 GPU accelerated technology for mobile image analysis	12
	Refe	rences	13
2		bile Image Enhancement Technology for Low-Vision Patients	17
		Qiao and Jinshan Tang	
	2.1		17
	2.2	Image Enhancement Algorithm	18
		2.2.1 2D discrete wavelet transform	18
		2.2.2 Direct contrast enhancement in the wavelet	
		domain—Tang's algorithm	19
	2.3	Implementation on the Mobile Phone	22
		2.3.1 Xcode	22
		2.3.2 Framework of the system	23
	2.4	Experimental Results and Conclusions	23
		2.4.1 Enhancement effectiveness of Tang's algorithm	25

		2.4.2		ation of enhancement effectiveness of two contrast ation schemes Selecting the preferred enhancement images	26 28
				Perceived image quality	29
	Refe	rences			30
3	Artyor	n M. Gri	goryan an	olor Medical Imaging via Fast Fourier Transform	33
	3.1	Introdu			33
	3.2		-	the Quaternion Space	35
	3.3			Quaternion DFTs	38
		3.3.1		-row algorithm of the two-sided QDFT orithms for the 2D QDFT	42 45
			-	de 2D QDFT	49
		3.3.4	•	-row wise calculation of the 2D QDFT	50
	3.4			ernion Image Tensor Representation	51
	••••	3.4.1		le 2D QDFT tensor representation	53
	3.5	α-Root	-	e Enhancement with 2D QDFT	60
	3.6	Conclu	ision		63
	Refe	rences			64
4	Color	Enhand	cement a	nd Correction for Camera Cell Phone Medical	
	Image	es Using	g Quatern	ion Tools	77
	Artyor	n M. Gri	goryan an	nd Sos S. Agaian	
	4.1	Introdu	iction		77
	4.2			metic, 2D DFT, and Color Image Processing	81
		4.2.1	•	ternion numbers	81
	4.0	4.2.2		ions and color images	82
	4.3	Mappir 4.3.1	•	DFT in Quaternion Algebra	87
	4.4			ed 2D QDFT d Image Enhancement	88 91
	4.4	4.4.1		el image enhancement measure	91 91
	4.5		-	sform-based Image Enhancement	93
		4.5.1		or image quality measure	95
		4.5.2		ement of images by colors	98
	4.6	Conclu			104
	Refe	rences			104
5	An Ao	dapted F	Retinex A	Igorithm with Complexity Optimization for Mobile	
	Phone	e Medic	al Image	Enhancement	119
	Artyor	n M. Gri	goryan an	nd Sos S. Agaian	
	5.1	Introdu			119
	5.2		x Algorith		121
		5.2.1	•	cale retinex method	122
		5.2.2	Multisca	le retinex method	124

		5.2.3 Multiscale retinex color restoration method	129
	5.3	Fast Fourier Transform Multiscale Retinex	130
	5.4	FFT-based Image Enhancement: α-Rooting	134
	5.5	Script of the FFT-Multiscale Retinex	137
	5.6	Conclusion	142
	Refe	rences	142
:	Securit	y Issues in Mobile Healthcare Applications	153
6	Secur	e Medical Image Processing for Mobile Devices Using	
	0.00.0	Services	155
	Xiaoh	ui Yuan and Mahadevan Gomathisankaran	
	6.1	Introduction	155
	6.2	Background and Related Work	156
	6.3	Homomorphic RNS Encryption	157
		6.3.1 Semi-perfect secrecy	160
		6.3.2 Modulus confidentiality	161
		6.3.3 Montgomery representation variations	163
		6.3.4 Overflow and sign detection	164
	6.4		165
	6.5		167
		6.5.1 Implementation and experimental design	167
		6.5.2 Results and discussion	168
	6.6	Conclusion	171
	Refe	rences	171
7		hone Medical Image Encryption Based on a Method of	
	3D Sp	pirals	175
	-	n M. Grigoryan and Bryan Wiatrek	
	7.1	Introduction	175
		7.1.1 Modern cryptography	176
	7.2	Digital Images and Traditional Modern Image Cryptography	179
	7.3	Nontraditional Modern Image Cryptography	181
	7.4	Image, Tensor Representation, and Fourier Transform	190
	7.5	Decomposition by Directional Images	195
	7.6	Tensor Transform in Image Cryptography	201
	7.7	Image Encryption	207
		7.7.1 Block diagram of encryption	212
		7.7.2 Complexity: The number of keys	212
		7.7.2.1 Computation time	215
		7.7.2.2 2D DFT of the encryption	215
		7.7.2.3 Correlation of adjacent pixels in the	
		encrypted image	216
		7.7.2.4 Image decryption	217
		7.7.2.5 Image encryption in the general case of N \times M	217

	7.8	Encryp	ption of Color Images	223
	7.9	Conclu	usion	225
	Refe	rences		225
ш	Humar	n Exterr	nal Pulsometers and Activity Recognition Using	
	obile D			233
8	Huma	n Activ	ity Recognition and Processing for Mobile Applications	235
-			, Sahak Kaghyan, David Akopian, and Sos S. Agaian	
	8.1	Introdu		236
	8.2	Extern	al Environmental and Video-Sensor-based Approaches	
		for Act	tivity Classification	238
	8.3	Weara	ble Sensors and Mobile Devices as an Approach for	
		Activity	y Classification	239
		8.3.1	Mobile device positioning technologies used for activity	
			estimation	240
		8.3.2		241
		8.3.3	Using mobile devices and their sensors used for activity	0.40
		0.0.4	classification	243
		8.3.4	Strengths and weaknesses of mobile-sensor-based activity classification	244
		8.3.5	Activity recognition algorithms and platforms for	244
		0.5.5	smartphone-based activity recognition	245
	8.4	Splittin	g Activity Recognition Tasks for Mobile Computing	246
	0.1	8.4.1	Multithreading layered mobile computing	246
	8.5		ced Algorithms for Activity Classification	
			bile Devices	251
		8.5.1	Orientation-invariant motion signals	253
		8.5.2	Feature extraction	257
		8.5.3	Classification methods	258
	8.6		g of Algorithms	259
	8.7		uding Remarks	261
	Refe	rences		262
9	An Im	proved	Smartphone Heart Rate Acquisition System	271
	Gevor	g Karap	etyan, Rafayel Barseghyan, Hakob Sarukhanyan,	
	and S	os S. Ag	gaian	
	9.1	Introdu		271
		9.1.1	Background	274
		9.1.2	Mobile health market	276
		9.1.3	HR measurement via mobile phone camera with a	070
	0.0	Lee	finger over the camera	278
	9.2	-	ved Remote HR Acquisition System	279
	9.3	-	mentation and Validation of the Improved Smartphone HR	004
		Acquis	sition System	281

	9.3.1 Indoor measurement experiments	282
	9.3.2 Outdoor measurement experiments	283
	9.3.3 Measuring HR changes during anger and happiness	
	via mobile device	285
9.4	Implementation on Mobile a Device	285
	9.4.1 Computer simulations	286
9.5	Concluding Remarks	289
	nowledgments	289
Refe	rences	289
IV Mobile	e Healthcare Applications	295
	hone Application for Skin Cancer Monitoring	297
	ng Gu and Jinshan Tang	
	Introduction	297
	Development Environment	299
10.3	Skin Cancer Image Retrieval Using Boundary Information	300 300
	10.3.1 Introduction to image retrieval	
	10.3.2 Feature extraction using a Fourier descriptor 10.3.3 Similarity metric	301 301
10 /	System Description	301
10.4	10.4.1 Flowchart for the iPhone application prototype	301
	10.4.2 User interface for iPhone application	303
10.5	Experimental Results	304
	Conclusion	306
Refe	rences	306
11 A Mot	bile Healthcare Interface	309
Wei H	lu, Daikun Zou, Kai Zhang, Jun Liu, and Xiaoming Liu	
11.1	Introduction	309
11.2	Background	311
11.3	System Architecture Model	313
	11.3.1 System design	315
11.4	Module Design	316
	11.4.1 Module design for the doctor's end	316
	11.4.2 Module design for the nurse's end	318
	11.4.3 Module design for the data access interface	320
11.5	0 0 11	321
11.6		323
	11.6.1 Hardware description	323
	11.6.1.1 Hardware description of the doctor's end	323
	11.6.1.2 Hardware description of the nurse's end	323
	11.6.2 Implementation of system functions	324
	11.6.2.1 Implementation of the doctor's end	324
	11.6.2.2 Implementation of the nurse's end	328

		Conclu ences	sions	335 335
12 D	DietCa	ım: Mul	tiview Regular-Shaped Food Recognition with a	
C	amer	ra Phon	e	339
F	anyu	Kong, F	longsheng He, Hollie A. Raynor, and Jindong Tan	
	12.1	Introdu	ction	339
	12.2	Related	1 Work	342
	12.3	Multivie	ew Food Recognition	345
		12.3.1	Food features	345
		12.3.2	Camera calibration	347
		12.3.3	Perspective distance	348
		12.3.4	Multiview representation	349
	12.4	Implem	entation	353
	12.5	Experir	nent	353
		12.5.1	Dataset	354
		12.5.2	Baseline methods	354
		12.5.3	Segmentation results	355
		12.5.4	Classification results	356
	12.6	Discus	sion	360
	12.7	Conclu	sion	360
	Refer	rences		361
Inde	х			365

х

Preface

Information technology is changing healthcare systems in revolutionary ways; there can be no health care reform without an information revolution. One information technology that is transforming healthcare systems is mobile technology. As it develops and matures, mobile technology is having a significant impact on healthcare, and emerging mobile technologies are attracting significant attention as well as investment of time and effort among researchers and industrial developers. The combination of mobile technology with healthcare has produced an important research area called mHealth. In 2011, U.S. Secretary of Health and Human Services, Kathleen Sebelius, referred to mHealth as "the biggest technology breakthrough of our time" and maintained that its use would "address our greatest national challenge." Based on related research, mobile health is projected to be a 26 billion dollar industry by 2017.

Mobile technology has wide-ranging applications in human healthcare, such as monitoring elderly patients, security access control for electronic health records, and remote radiology. The primary drivers behind these applications are varied, as evidenced by the following facts:

- Current mobile computing devices already offer many advanced features, such as high-quality cameras, web searching, sound recording, and global positioning systems (GPS).¹
- The capabilities of mobile computing devices (mobile tablet devices and smartphones) are growing.
- The implementation of mobile imaging platform/systems is growing. Currently, thousands of apps are available, including apps for disease diagnosis, diet and disease tracking, medication and exercise planning, and blood pressure monitoring.
- A growing number of physicians are recognizing the advantages of using mobile tools.
- The mobile technologies in current use are already providing new opportunities by boosting communication between different healthcare

providers and between healthcare providers and patients, and by allowing access to medical images from virtually any location.

In fact, a 2012 study by Manhattan Research discovered that approximately 62% of U.S. doctors utilize some type of tablet device in their practice, nearly doubling the adoption rate since $2011.^2$

According to industry evaluations, 500 million smartphone users worldwide will be using a healthcare application by 2018, and 50% of the more than 3.4 billion smartphone and tablet users will have downloaded mobile health applications.³ Moreover, the Food and Drug Administration (FDA) "recognizes the extensive variety of actual and potential functions of mobile apps, the rapid pace of innovation in mobile apps, and the potential benefits and risks to public health represented by these apps."⁴ Finally, mobile computing devices have become commonplace in healthcare settings, leading to rapid growth in the development of biomedical software applications for these platforms.^{5,6}

The aim of this book is to publish state-of-the-art research in electronic imaging technologies as applied to mobile healthcare, and to promote research in mHealth. The twelve chapters in this book are organized into four parts:

Part I deals with image processing and enhanced visualization. Chapter 1 introduces image processing techniques for mobile healthcare systems. Chapter 2 presents image enhancement technology for low-vision patients who use mobile devices to see images. Chapter 3 describes the application of fast Fourier transform-based methods for color medical imaging in mobile devices. Chapter 4 presents new quaternion-based image enhancement tools that can be used as a preprocessing step in conventional cell phone imaging systems by improving the interpretability of information in images for phone viewers. Chapter 5 develops an adapted retinex algorithm for medical image enhancement using mobile phones.

Part II deals with security issues in mobile healthcare applications. Chapter 6 examines security issues for mobile devices using cloud services and presents a homomorphic encryption method that enables direct operation over the encoded data and hence facilitates complete privacy protection. Chapter 7 proposes a novel and fast encryption of images and their decryption without loss of information for medical image viewing on a cell phone.

Part III covers human external pulsometers and activity recognition using mobile devices. Chapter 8 addresses human activity recognition and processing in mobile environments. Chapter 9 develops mobile applications to measure a person's heart rate using a mobile phone camera.

Part IV includes three chapters on mobile healthcare applications. Chapter 10 deals with skin cancer monitoring with an iPhone using image retrieval techniques. Chapter 11 presents a user interface for mobile healthcare. Finally, Chapter 12 presents an automatic multiview food classification method for a food intake assessment system on a smartphone.

We hope that this book will inspire further research in mHealth.

Jinshan Tang Sos S. Agaian Jindong Tan January 2016

References

- 1. M. N. Kamel Boulos, S. Wheeler, C. Tavares, and R. Jones, "How smartphones are changing the face of mobile and participatory health care; An overview, with example from eCAALYX," *Biomed. Eng. Online* **2011**, 24 (2011).
- 2. Manhattan Research, Taking the Pulse® U.S. 2012 survey, Contact: Stephanie Cooper, May, 2012.
- 3. Research 2 Guidance website: http://www.research2guidance.com/ 500m-people-will-be-using-healthcare-mobile-applications-in-2015-2/.
- 4. Guidance for Industry and Food and Drug Administration Staff: http:// www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/ GuidanceDocuments/UCM263366.pdf.
- 5. S. Wallace, M. Clark, and J. White, "'It's on my iPhone:' Attitudes to the use of mobile computing devices in medical education, mixed-methods study," *BMJ Open* **2**(4), e001099 (2012).
- 6. T. D. Aungst, "Medical applications for pharmacists using mobile devices," *Ann. Pharmacother.* **47**(7–8), 1088–1095 (2013).

List of Contributors

Sos S. Agaian

The University of Texas at San Antonio, San Antonio, Texas USA

David Akopian

The University of Texas at San Antonio, San Antonio, Texas, USA

Rafayel Barseghyan

Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia

Mahadevan Gomathisankaran Microsoft Corporation, Redmond, Washington, USA

Artyom M. Grigoryan The University of Texas at San

Antonio, San Antonio, Texas, USA

Yanliang Gu

Michigan Technological University, Houghton, Michigan, USA

Hongsheng He

University of Tennessee, Knoxville, Tennessee, USA

Wei Hu

Wuhan University of Science and Technology, Wuhan, China and Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan, China

Zilong Hu

Michigan Technological University, Houghton, Michigan, USA

Sahak Kaghyan

Institute for Informatics and Automation Problems, National Academy of Sciences of Armenia

Gevorg Karapetyan

Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia

Fanyu Kong

Google, Inc., New York, New York, USA

Jun Liu

Wuhan University of Science and Technology, Wuhan, China and Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan, China

Xiaoming Liu

Wuhan University of Science and Technology, Wuhan, China and Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan, China

Jafet Morales

The University of Texas at San Antonio, San Antonio, Texas, USA

Fahao Qiao

Michigan Technological University, Houghton, Michigan, USA

Hollie A. Raynor

University of Tennessee, Knoxville, Tennessee, USA

Hakob Sarukhanyan

Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia

Jindong Tan

University of Tennessee, Knoxville, Tennessee, USA

Jinshan Tang

Michigan Technological University, Houghton, Michigan, USA

Bryan Wiatrek

The University of Texas at San Antonio, San Antonio, Texas, USA

Xiaohui Yuan

University of North Texas, Denton, Texas, USA

Kai Zhang

Wuhan University of Science and Technology, Wuhan, China and Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan, China

Daikun Zou

Wuhan University of Science and Technology, Wuhan, China and Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan, China

Acronyms and Abbreviations

A-GPS	assisted global positioning system
ADT	Android Development Tools
AES	Advanced Encryption Standard
AF	auto-focus
API	application programming interface
BPM	beats per minute
BSS	blind source separation
CA	certificate authority
CBIR	content-based image retrieval
CFS	correlation-based feature selection
CPU	central processing unit
CT	computed tomography
DCT	discrete cosine transform
DES	Data Encryption Standard
DFT	discrete Fourier transform
DICOM	Digital Imaging and Communications in Medicine
DMP	digital motion processor
DoG	difference of Gaussian
DR	diabetic retinopathy
DSA	Digital Signature Algorithm
DT	decision table
DTr	decision tree
DT-CWT	dual-tree complex wavelet transform
DT-RCWF	dual-tree rotated complex wavelet filter
DTW	dynamic time warping
DUT	discrete unitary transform
DWT	discrete wavelet transform
ECG	electrocardiogram
EKG	electrocardiogram
E-OTD	enhanced observed time difference
FDA	Food and Drug Administration (U.S.)
FIR	finite impulse response
FISH	fluorescence in situ hybridization
	-

FFT	fast Fourier transform
FPS	frames per second
GDC	great common divisor
GPS	global positioning system
GPU	graphics processing unit
GSM	Global System for Mobile communications
HAR	human activity recognition
HD	high definition
HF	heart failure
HIS	Hospital Information System
HOG	histogram of oriented gradient
HMM	hidden Markov model
HR	heart rate
HSV	hue-saturation-value
ICA	independent component analysis
ICT	information and communication technology
IDE	integrated development environment
IDFT	inverse discrete Fourier transform
IIR	infinite impulse response
INS	inertial navigation system
iOS	iPhone operating system
JVM	Java virtual machine
kNN	k-nearest neighbor
LAN	local area network
LBP	local binary pattern
MEMS	micro-electromechanical system
mHealth	mobile health
MRI	magnetic resonance imaging
MSER	maximally stable extremal regions
MSR	multiscale retinex
MSR-CR	multiscale retinex color restoration
MST	minimum spanning tree-based (method)
NB	naïve Bayes
NDK	Native Development Kit (Android)
OCT	optical coherence tomography
OHMD	optical head-mounted display
OTDOA	observed time difference of arrival
PACS	picture archiving and communication system
PC	personal computer
PCA	principal component analysis
PDA	personal digital assistant
PDR	Physician's Desk Reference
PFE	<i>p</i> -Fibonacci encryption
	I JI

PFID	Pittsburg Fast-food Image Dataset
PKI	public key infrastructure
PPG	photoplethysmography
PSDQ	preprocessed signal data-holder queue
QDFT	quaternion discrete Fourier transform
RAM	random access memory
RMIS	remote medical information system
RMSE	root mean square error
RNS	residue number system
ROI	region of interest
RSA	Rivest, Shamir, Adleman (developers of the cryptographic
	algorithm called RSA)
RSDQ	raw signal data-holder queue
SD	secure digital (card)
SDK	Software Development Kit (Android)
SIFT	scale-invariant feature transform
SMC	secure multiparty computation
SNR	signal-to-noise ratio
SSR	single-scale retinex
SVM	support vector machine
UI	user interface
USB	universal serial bus
WLAN	wireless local area network
WMA	weighted moving average