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Preface

People often speak of the finite difference time domain (FDTD) method, as if
there were only one such method, formulated long ago by wise sages and fixed
for all time. This is not so. FDTD is a topic of active research, and its
methodology is constantly evolving. FDTD and FDTD-like methods can be
used to solve a wide variety of problems, including—but not limited to—the
wave equation, Maxwell’s equations, and the Schrödinger equation.

FDTD is particularly useful for investigating time-dependent phenomena.
As the name suggests, the time evolution of a system is computed at discrete
time steps, and periodic visualizations can show its time evolution—
information that is not available in a frequency domain technique. This
yields useful physical insights into transient processes as well as an intuitive
feel for what is happening; often, one can see at a glance if something is wrong
with a calculation—saving not only computer time, but more importantly,
human time.

In essence, an FDTD algorithm is derived from a difference equation
model of the differential equation to be solved by replacing the derivatives
with finite difference (FD) expressions. (We use indefinite articles to indicate
that there can be more than one FD model and more than one FDTD
algorithm.) As we shall demonstrate in this book, the accuracy and stability of
FDTD algorithms can be greatly improved by using what are called
nonstandard FD models on which nonstandard FDTD is based.

High-precision FDTD is the primary—but not the only—subject of this
book. Although the basic FDTD algorithm is simple, you will encounter
many ‘devils in the details’ when you actually try to use it to solve a problem.
Throughout this book we address these devilish details.

Green’s functions, although an elegant analytical construct, are of
limited practical use to solve differential equations because they can be
difficult to find, but the discrete Green’s function (DGF) of a difference
equation model of a differential equation can be found using FDTD. The
DGF methodology is a useful alternative to conventional FDTD for certain
problems.
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Besides introducing useful new methodologies, we have written this book
to give our readers new insights, along with the analytical background
necessary to develop their own methodologies to solve new problems on the
leading edges of photonics and electromagnetics research. We explain not
only how FDTD works, but why it works. We delve into the details of a few
analytical solutions against which the numerical solutions can be compared to
validate FDTD algorithms and to elucidate their limitations.

We make no attempt to be encyclopedic; rather, we delve deeply (devils in
the details) into a few of the most important and basic methodologies. We
hope that our readers can use this book to write their own working programs
and improve on our methods, and that they will share what they have learned
with the community.

Our experience in solving real-life applications with FDTD has taught us
that there are two distinct communities: those who see FDTD from the
algorithmic–computational point of view and those who see themselves
primarily as users of black-box software. We believe that FDTD simulations
must be guided by an understanding of Maxwell’s equations and how these
equations incorporate material properties. This premise is an important focus
of this book. Through the simulation examples presented, we have attempted
to show that FDTD and related techniques can be very useful in solving
practical problems.

Summary of the Contents

• Chapter 1 introduces FD expressions and develops the notation that is
used throughout this book. The appendices give some supplementary
advanced topics.

• Chapter 2 introduces algorithms in general. We analyze a few example
algorithms in detail and discuss their accuracy and numerical stability.
In the appendices we introduce additional advanced topics. Working
programs illustrate some of the main ideas.

• Chapter 3 develops the basic concepts of the FDTD methodology using
the simple harmonic oscillator as a vehicle. We then introduce the
nonstandard FDTD methodology. We go on to develop analytic
solutions for both the differential equations and their corresponding
difference equations using Green’s functions. In the appendices we
review some basic mathematical concepts and derive Green’s functions
for differential and difference equations. We also analyze the accuracy
and stability of a few simple FDTD algorithms.

• Chapters 4–7 present FDTD for the wave equation. Following a
strategy of stepwise increasing complexity, we start with the one-
dimensional wave equation and develop the machinery needed to solve
useful problems using FDTD. The appendices contain advanced
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material (Green’s function solutions, including the development of a
Green’s function for the finite difference form of the wave equation) and
deal with various devilish details. We then extend these developments to
two and three dimensions, and give some working example programs.

• Chapter 8 provides a brief review of electromagnetic theory.
• Chapters 9 and 10 present FDTD for Maxwell’s equations. We first
develop standard and nonstandard FDTD (the Yee algorithm) in one
dimension, and then extend the methodology to two and three
dimensions. This completes the development of conventional and
nonstandard FDTD. Working programs illustrate some the main ideas.

• Chapter 11 provides example problems.
• Chapters 12–14 present FDTD for the dispersive case and provide
example problems in photonics design. We introduce some of our latest
research results on how to improve accuracy in the dispersive case. We
solve some interesting photonics problems and discuss photonics design
for engineering a subwavelength structure to have desired optical
properties.

Audience

Our intended audience includes intelligent beginners such as students,
experimental scientists who want to model their experiments, practical
engineers, and theoretical researchers grappling with problems that cannot be
solved analytically.

We introduce our nonstandard FDTD methodology as a useful tool for
computational professionals as well as for beginners.

Very few members of the physics community are aware of the wide utility
of FDTD methods, and we hope that our book will inform this group.

We include working FDTD programs that bring wave and electromag-
netic phenomena to life. Our analytic solutions motivate the study of
mathematical physics as a practical tool. Indeed, this book could be useful for
teaching a mathematical physics, applied mathematics, or engineering class.

We also hope that advanced practitioners of FDTD can use this book to
extend the nonstandard approach to other FDTD methodologies not covered
here.

Finally, this book is written for researchers who want to develop new
methodologies that go beyond those we have presented.

Acknowledgments

We thank Professor Ronald Mickens, one of the great pioneers of the
nonstandard methodology, as well as our colleagues, collaborators, and
students, who are too numerous to list.

xvPreface



Author Contact

We welcome comments and suggestions from our readers. James B. Cole and
Sasawatee Banerjee can be contacted at cole.banerjee.book@gmail.com.

James B. Cole
Sasawatee Banerjee

May 2017

xvi Preface




