
Chapter 2

Imaging of self-luminous
objects in terms of wave theory

§7. Diffraction problems solved on the basis of Maxwell’s theory
We have seen that a centered system (microscope objective) images
a surface element point-to-point and in similarity, using arbitrarily
wide-angled ray bundles, only if the sine condition

sinu1

sinu
“
n

n1
¨

1
β

is fulfilled. If the system is so designed that this condition is satisfied,
then all incoming rays to any point of the image remain perpendicular
to a spherical surface centered on this point.xvi The lens designerxvii

cannot offer anything more than this. We wonder whether and under
what conditions this purely geometrical, pointwise concentration of
rays is also physically present. Let us for the moment remain on
the fiction of geometrical optics, that there were actually luminous
points, so only the spherical wave emanating from this point would
be a reality. Only with free, absolutely unhindered propagation, as
would be the case in an arbitrarily extended, homogeneous medium,

21



22 Chapter 2. Imaging of self-luminous objects §7

will the energy propagate along the radii exactly, as the ray theory
assumes. If, however, as is always the case in reality, obstacles of
any kind stand in the way of light propagation, i.e., if the medium
exhibits inhomogeneities abruptly, light propagation can no longer
be covered by ray-theoretic calculations; the wave fronts are no longer
concentric spheres, but are somewhat deformed in a way (diffraction).
The actually occurring propagation and distribution of the energy has
been calculated based on Maxwell’s electromagnetic theory of light
only for very special cases.

The diffraction phenomenon appearing at the straight edge of
an otherwise infinitely extended screen was treated by Sommerfeld.1
Schwarzschild2 succeeded in calculating the diffraction phenomenon
associated with an infinitely extended slit of arbitrary width. Nat-
urally, the numerical calculation becomes more difficult the smaller
the slit width is in comparison to the wavelength. In addition, it
must be emphasized that in both cases the material of the screen
had to be assumed to have infinite conductivity. Under the same re-
striction, J. J. Thomson3 could calculate the diffraction phenomenon
of a sphere, whereas G. Mie4 and P. Debye5 carried out this case
for spheres of arbitrary material. W. Seitz6 and W. v. Ignatowsky7

calculated the diffraction phenomenon of an infinitely long metallic
cylinder of circular cross section and arbitrary conductivity, whereas
Cl. Schaefer8 carried out this calculation on cylinders of dielectric
material and had it confirmed experimentally with the help of elec-

1Mathem. Ann. 47, 317 (1896).
2ibid. 55 177 (1902).
3J. J. Thomson, Recent Researches in Electricity and Magnetism, p. 361.
4Ann. d. Phys. 25, 377 (1908).
5P. Debye, Dissertation. Munich 1908.
6Ann. d. Phys. 16, 746 (1905); 19, 554 (1906).
7Ann. d. Phys. 18, 495 (1905).
8Phys. Zeitschr. X, 8, 261.
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trical waves (Großmann9). Finally, the diffraction phenomenon on
metallic cylinders of elliptical cross section was treated (B. Sieger10
and K. Aichi11), if only for material of infinitely large conductivity.

§8. The Kirchhoff principle
In general, the treatment of diffraction phenomena according to the
Kirchhoff principle gives a far simpler form, allowing then the cal-
culation of cases of our interest. Applying Green’s theoremsxviii to a
function ϕ, which satisfies the wave equationxix

B2ϕ

Bt2
“ a2∆ϕ , (12)

Kirchhoff12 obtained the value of the function ϕ at an observation
point P (Fig. 11) as a function of time t in terms of values ofϕ, Bϕ{Bt,
and Bϕ{Bν on the observation point–enclosing surface Σwith inward
normal ν; here one must, for the magnitudes ofϕ, Bϕ{Bt, and Bϕ{Bν,
insert the values that they possess at position dσ at time t1 “ t´ r{a,
where r denotes the radius vector P dσ and a the velocity of light in
space V . It isxx

ϕPptq “
1

4π

ż

Σ

dσ

„

ϕ
Bp1{rq

Bν
´

1
ar

Bϕ

Bt
¨

Br

Bν
´

1
r

Bϕ

Bν



t1“t´ r
a

. (13)

Kirchhoff used this theorem to derive an approximation of the
light intensity at observation point P (Fig. 12), if waves originating
from L are disturbed by some obstacles. We want to carry out the
calculation for the special case of an obstacle that is an opaque screen
with aperture Σ1. For this we place the surface of integration around

9Dissertation, Breslau 1909.
10Ann. d. Phys. 23, 626 (1908).
11Proc. Tokyo Mathem. Physical Soc. (2) 4, 966 (1908).
12Kirchhoff, Lectures on Mathematical Physics, Vol. II, Optics, 1891 (in German).
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Figure 11
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point P so that it is completely separated from L and let this surface
consist of two parts, Σ1 and Σ2. Part Σ2 wraps itself around the side
of the screen facing the observation point and is thought of as closed
at infinity. Let part Σ1 be bordered by edges of the aperture.

The calculation of ϕPptq can only be carried out if one knows
the values of ϕ, Bϕ{Bt, and Bϕ{Bν at all points of the surface of
integration; if one makes the natural hypothesis, that the values on
surface Σ1 are the same as those of the undisturbed propagation, and are
zero on all points of surface Σ2, then this assumption corresponds to
the empirical knowledge that the bigger the aperture relative to the
wavelength of the light, the closer it comes to the truth. In this case,
the integral extends only over surface Σ1.

The hypotheses made are strictly satisfied only for the undisturbed
propagation. Here one knows the values of ϕ at P. We want to show
that the calculation of ϕ by means of the Kirchhoff principle leads to
this known value. For this we choose a sphere of radius R centered on
P (Fig. 13) as the surface of integration and set, for points on surface
Σ, as

Figure 13
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ϕ “
A

r1
cos 2π

ˆ

t

T
´
r1

λ

˙

.

Then we get
Bϕ

Bt
“ ´

A

r1

2π
T

sin 2π
ˆ

t

T
´
r1

λ

˙

,

Bϕ

Bν
“

Bϕ

Br1
cospr1,νq “ cospr1,νq

"

´
A

r2
1

cos 2π
ˆ

t

T
´
r1

λ

˙

`
A

r1

2π
λ

¨ sin 2π
ˆ

t

t
´
r1

λ

˙*

,

Bp1{rq

Bν
“ ´

1
r2 cospr,νq “ `

1
r2 ,

cospr1,νq “
p2 ´ r2 ´ r2

1
2rr1

.

We take, as element dσ (Fig. 14) of the surface of integration, the
piece of surface that is sliced from the spherical surface by two planes

Figure 14
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perpendicular to PL and separated from each other by a distance dz.
We then have

dσ “ 2πRdz .

Since according to Fig. 14 we have

r2
1 “ pp´ zq2

` h2

R2
“ z2

` h2 ,

it follows then

r2
1 “ R2

` p2
´ 2pz .

Differentiating this equation gives

dz “ ´
r1 dr1

p
,

where the limits of integration with respect to r1 are p´ R and p` R.
Inserting all these values, we have

ϕPptq “ ´
1

4π

p´R
ż

p`R

2πRr1 dr1

p

"

A

r1R2 cos ϑ´
A2π
aRr1T

sin ϑ

´
App2 ´ R2 ´ r2

1q

Rr1 ¨ 2Rr1

ˆ

´
cos ϑ
r1

`
2π
λ

sin ϑ
˙*

,

where

ϑ “ 2π
ˆ

t

T
´
R` r1

λ

˙

;
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or recast,

ϕPptq “ ´
A

2p

p´R
ż

p`R

dr1

"

cos ϑ
R

´
2π sin ϑ
λ

`
p2 ´ R2 ´ r2

1
2Rr1

ˆ

ˆ

cos ϑ
r1

´
2π
λ

sin ϑ
˙*

“ ´
A

2p

p´R
ż

p`R

dr1

"

cos ϑ
R

ˆ

1 `
p2 ´ R2 ´ r2

1
2r2

1

˙

´
2π sin ϑ
λ

ˆ

1 `
p2 ´ R2 ´ r2

1
2Rr1

˙*

“ `
AR

2p

p´R
ż

p`R

dr1

d
”

cosϑ
R

´

1 `
p2´R2´r2

1
2r1R

¯ı

dr1

“
AR

2p

„

cos ϑ
R

ˆ

1 `
p2 ´ R2 ´ r2

1
2r1R

˙p´R

p`R

“
A

p
cos 2π

ˆ

t

T
´
p

λ

˙

,

i.e., the light disturbance taking place at P for the undisturbed
propagation.

We now want to calculate the diffraction phenomenon caused by
an arbitrary aperture in a planar screen for the case in which the point
of light L is situated infinitely far from the diffraction aperture, that is,
a plane wave is perpendicularly incident on the screen. The xy-plane
(Fig. 15) is to lie in the plane of the screen, and the piece let go from
the screen (diffracting aperture) is chosen as the surface of integration
Σ1. As the expression of the light disturbance ϕ, we set

ϕ “ A cos 2π
ˆ

t

T
´
z

λ

˙

.
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Figure 15
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We then have

1
a

Bϕ

Bt
“ ´

2πA
λ

sin 2π
ˆ

t

T
´
z

λ

˙

,

Bϕ

Bν
“

Bϕ

Bz
“

2πA
λ

sin 2π
ˆ

t

T
´
z

λ

˙

,

Br

Bν
“ cospr, zq “ ´ cos ε ,

and therefore

ϕPptq “
1

4π

ż

dσ

"

A

r2 cos ε cos ϑ´
2πA cos ε

rλ
sin ϑ´

2πA
rλ

sin ϑ
*

,

where
ϑ “ 2π

ˆ

t

T
´
r

λ

˙

.



30 Chapter 2. Imaging of self-luminous objects §9

If the distance r from the aperture to point P is large compared to the
wavelength λ, the first term in the braces is negligible compared to
the other two terms, and we obtain

ϕPptq “ ´
A

λ

ż

dσ

r

1 ` cos ε
2

sin 2π
ˆ

t

T
´
r

λ

˙

. (14)

§9. Discussion of expression for the intensity at the
observation point

From here, if one forms the average value ϕ2
Pptq,xxi it is then a direct

measure of the observed intensity at observation point P; this is a
consequence of the fact that we have used the ansatz of ϕ being a
plane wave. For clarification, we note the following: according to
the electromagnetic theory of light, the intensity of the field at every
position is given by E2, where E is simply the electric vector at the
place of observation. For illustration, the following useful solution
of Maxwell’s equations is well known for spherical waves as well as
for plane waves:xxii

Ex “
B2ϕ

Bx2 ´
1
a2

B2ϕ

Bt2
, Hx “ 0 ,

Ey “
B2ϕ

ByBx
, Hy “ `

1
a

B2ϕ

BzBt
,

Ez “
B2ϕ

BzBx
, Hz “ ´

1
a

B2ϕ

ByBt
,

where ϕmust satisfy the equationxxiii

B2ϕ

Bt2
“ a2∆ϕ .

Here, E and H designate electric and magnetic vectors of the field.
Let us start with a plane wave

ϕ “ A cos 2π
ˆ

t

T
´
z

λ

˙

,
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and get

Ex “
4π2A

λ2 cos 2π
ˆ

t

T
´
z

λ

˙

, Hx “ 0 ,

Ey “ 0 , Hy “
4π2A

λ2 cos 2π
ˆ

t

T
´
z

λ

˙

,

Ez “ 0 , Hz “ 0 .

Therefore,

E2 “ E2
x “

1
2

ˆ

4π2A

λ2

˙2

“
8π4

λ4 A
2 .

On the other hand,ϕ2 “ 1
2A

2, which illustrates that, in the case of
plane waves, ϕ2 differs from E2, which is relevant for the intensity, by
only a constant factor, and that ϕ2 may be seen as a measure of the
intensity.

The case of spherical waves is different, for which we have to start
withxxiv

ϕ “
A

r
cos 2π

ˆ

t

T
´
r

λ

˙

,

where r “
a

x2 ` y2 ` z2. If r is large compared to λ, then we get

|E| “
4π2A sin ϑ
λ2r

cos 2π
ˆ

t

T
´
r

λ

˙

, (15)

where ϑ is the angle formed by the radial vector r with the x-axis.xxv

From this it follows then

E2 “
8π4A2 sin2 ϑ

λ4r2 ,

whereas
ϕ2 “

A2

2r2 ;
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one therefore sees that, with spherical waves, one may not regard the
last expression of ϕ2 as a measure of the intensity, because the true
intensity E2 still varies with the direction ϑ at a constant r.

We may add that the field determined by Eq. 15 can be viewed as
originating from an electric dipole or Hertzian oscillator whose axis
of oscillation coincides with the x-axis.

In reality, one deals with the radiation of spatial objects that can
be thought of as filled with radiating dipoles. In order to give a
concept of the number of such dipoles, we must know the ratio of the
number of radiating to the number of overall available molecules per
unit volume. If we take luminous hydrogen as a basis and make the
assumption that every molecule possesses one electron, then in every
cubic centimeter, according to Ladenburg-Loria,13 only 4ˆ1012 are so-
called radiating “dispersion electrons,” compared to 2 ˆ 1017 overall
available electrons (molecules). In a cube of luminous hydrogen with
an edge length of 0.001 mm “ 1µm, there would then still be about
four dispersion electrons present. In luminous vapors, however, even
more dispersion electrons are present in such a volume element; in
sodium vapor, e.g., there are about 1000. In reality, in radiating
gases or vapors, we are not even dealing with individual undisturbed
oscillating dipoles. On the other hand, we know that in radiating
black bodies every surface element radiates according to Lambert’s
cosine law,14 so that in free radiation the intensity at observation point
P (Fig. 16) has the value

A2

r2 cosu ;

here, too, the intensity depends on the direction of radiation r. There-
fore, ϕ2 is a measure of intensity in neither free nor disturbed light
propagation. Only when the luminous surface element is situated

13Phys. Zeitschr. (9) 24, 875.
14O. Lummer and F. Reiche, Dependence of radiation from a “Bunsen plate” (Bec

Méker) on the radiating angle, Verh. d. Schles. Ges. f. V. K. (1910) (in German).
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Figure 16
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so far from the diffracting aperture that we can consider the incident
waves as planar, may we regard ϕ2

Pptq as a measure of intensity.

§10. Comparison of the Kirchhoff principle with the
Fresnel–Huygens principle

We return to our expression (Eq. 14) for the light disturbance occur-
ring at observation point P behind the diffraction aperture. It is

ϕPptq “ ´
A

λ

ż

dσ

r

1 ` cos ε
2

sin 2π
ˆ

t

T
´
r

λ

˙

.

In this version, we can interpret our formula as an expression
of the Fresnel–Huygens principle, according to which one obtains
the resulting light disturbance at observation point P due to the in-
terference of imaginary coherent elemental waves leaving from all
elements of the diffraction aperture. In our experience, the formula
leading to correct results shows which factors to use when one takes
into account the contribution of individual elemental waves; we can
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Figure 17
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write the contribution of each surface element dσ (Fig. 17) of the
diffracting aperture as

´
A1

r
sin 2π

ˆ

t

T
´
r

λ

˙

“
A1

r
cos

„

2π
ˆ

t

T
´
r

λ

˙

`
π

2



,

where
A1

“
Adσ

λ

ˆ

1 ` cos ε
2

˙

.

Therefore, it is as if every element dσ sends out a spherical wave
whose amplitude is A1 at the unit distance, and whose phase with
respect to that of the incident wave has been shifted by π{2. The
amplitude, which one must enclose in the elemental waves in the
direction of r, is to be set proportional to 1`cosε

2 , where ε is the an-
gle between r and the incident direction of the impinging radiation.
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In other words, it means that every surface element dσ should not
radiate according to Lambert’s cosine law, according to which the
amplitude would be proportional to

?
cos ε; instead, the amplitude

should vary proportional to 1`cosε
2 . One may easily see that both laws

agree with each other up to the terms of order ε2.xxvi However, there
is absolutely no reason for assuming that these so defined elemental
waves represent any kind of reality.

Fresnel made qualitatively similar assumptions in order to calcu-
late the diffraction effect of an aperture. According to him, different
surface elements contribute to the light disturbance at the observa-
tion point (1) proportional to its size; (2) inversely proportional to the
distance from the observation point; and (3) proportional to a fac-
tor dependent on the direction with respect to the normal, with the
normal direction being the maximum. Except for the phase of the os-
cillation, the Fresnel–Huygens principle also describes correctly the
intensity distribution at least at a relatively large distance from the
diffraction screen.

§11. Fraunhofer diffraction
One becomes independent of this proportionality factor, which is
`1`cosε

2

˘

according to the Kirchhoff principle, if one lets the observa-
tion point go to infinity. To find the form that the phase takes in this
case, we start from the relationship

r2
“ px´ ξq

2
` py´ ηq

2
` z2 ,

where x, y, z are the coordinates of the observation point and ξ, η, 0
are those of element dσ. If we set

x2
` y2

` z2
“ r2

0 ,

it follows then

r “ r0

d

1 `
ξ2 ` η2 ´ 2pxξ` yηq

r2
0

;
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if we let r0 grow without restraint, ξ and η will always be small
compared to r0 and one can expand the square root in the following
manner:xxvii

r “ r0

"

1 `
ξ2 ` η2

2r2
0

´
xξ` yη

r2
0

´
pxξ` yηq2

2r4
0

*

.

If we set for the moment x{r0 “ α, y{r0 “ β, we get

r “ r0 ´

ˆ

pξα` ηβq `
ξ2 ` η2 ´ pξα` ηβq2

2r0

˙

.

And so for infinitely large r0,

r “ r0 ´ pξα` ηβq “ r0 ´
xξ` yη

r0
.

Therefore,

ϕPptq “ ´
A

λ

ż

dσ

r
sin 2π

ˆ

t1

T
`
xξ` yη

r0λ

˙

, (16)

where we set t1 “ t´ r0{c.
The phenomenon given by this expression is called Fraunhofer

diffraction; it is exceptional in both formal and physical respects.
Whereas with finite distance, be it of the luminous point or the obser-
vation point (Fresnel diffraction), quadratic terms in ξ and η appear in
the expression for the phase, they disappear in Fraunhofer diffraction
in which the luminous point and the observation point lie at infinity. This
is realized if one brings the luminous point to the focal plane of a con-
vex lens and observes the phenomenon in the focal plane of a second
convex lens. Light source and observation point therefore lie in the
planes that are, with respect to the imaging system (the two convex
lenses), conjugate to each other. We want to show that we always get
Fraunhofer diffraction; i.e., we always retain only linear terms in ξ
and η in the expression for the phase if we make the luminous point
and the observation point an arbitrary conjugate pair of points with
respect to the imaging system. For this we investigate an auxiliary
consideration.
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§12. Auxiliary consideration

Let the diaphragm BB (Fig. 18) cut out, from the spherical wave
coming from L, a piece of surface BOB that we choose as the surface
of integration. If dϕ is an element of that surface and r is the distance
between this element and observation point P1, then we can depict
the light disturbance at P1 using the expression

s “

ż

A

e

µ

λ

1
r
dϕ sin 2π

ˆ

t

T
´
e` r

λ

˙

,

Figure 18
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where A{e is the amplitude of the light disturbance at dϕ and the
factor µ takes into account the inclination of the elemental ray rwith
respect to dϕ.

We choose O as the origin of a rectangular Cartesian coordinate
system, LOP as the z-axis, the line through O pointing upward and
perpendicular to LOP as the y-axis, and the line perpendicular to the
drawing going into the paper as the x-axis.

If ξηζ are the coordinates of dϕ, xyz are those of P1, and we
designate line segment P dϕ as r0, then

r2
“ px´ ξq

2
` py´ ηq

2
` pz´ ζq

2

“ px2
` y2

q ´ 2pxξ` yηq ` r2
0 .

The equation of the sphere is valid for the coordinates of dϕ:

ξ2
` η2

` pe` ζq
2

“ e2 or ξ2
` η2

“ ´ζ2
´ 2eζ .

Therefore,

r2
0 “ ξ2

` η2
` pz´ ζq

2
“ pz´ ζq

2
´ ζ2

´ 2eζ “ z2
´ 2ζpz` eq .

r2
0 takes on a particularly simple value if

z “ ´e .

Then (Fig. 19),

r2
0 “ e2 and r2

´ r2
0 “ pr` eqpr´ eq “ x2

` y2
´ 2pxξ` yηq .

If we set

r´ e “ ρ and therefore r` e “ ρ` 2e ,



§12 Auxiliary consideration 39

Figure 19
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then the following equation is valid:

ρ2
` 2eρ` r2pxξ` yηq ´ px2

` y2
qs “ 0 .

It follows that

ρ “ ´e`
a

e2 ´ r2pxξ` yηq ´ px2 ` y2qs

or

ρ “ ´e` e

d

1 ´ 2
xξ` yη´

x2`y2

2
e2 .

If x and y are small compared to e, i.e., if one limits oneself to
observation points close to the line LOP, then

ρ “ ´e` e

ˆ

1 ´
xξ` yη

e2

˙

,
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or finally,

ρ “ ´
xξ` yη

e
. (17)

This simplification of the value ρ for z “ ´e, i.e., for the observa-
tion points that lie in the object plane itself, acquires a physical meaning
with the introduction of imaging systems.

§13. Diffraction phenomena occurring in pairs of conjugate planes
of optical systems

In Fig. 20, let the surface element df lying at L glow and its image
df1, projected by system Q, lie at P. Let diaphragm BB act as the
entrance pupil that cuts an effective piece of the surface out of a

Figure 20
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sphere centered at L with radius e. Let dϕ be an element of the
surface; then the “amplitude” of the outgoing wave from df at dϕ is
A
e

“ α, where the designation “amplitude” is so understood that the
intensity at the location of dϕ is given by the expression

Jdϕ “ α2 df “
A2

e2 df .

If we designate the rectilinear distance (dotted) from dϕ to P as
r1, then according to the Huygens principle, the without-the-lens light
disturbance at P due to dϕwould have the amplitude

1
λ
αdϕ

1
r1
ψpw1

q ,

where ψpw1q should take into account, with the interference of ele-
mental waves, the influence of the inclination of the various elemental
rays r1 with respect to the direction of the axis LP and the inclination
of the element dϕ to the associated elemental ray r1.

In the presence of the lens, from each element dϕ come the el-
emental rays that run in the immediate vicinity of chief ray R1 as-
sociated with dϕ, where R1 also denotes the path length from dϕ

toward P. With the lens we can therefore set the amplitude of the
light disturbance at P originating from dϕ as

1
λ
αdϕ fpR1

qψpu1
q ,

where ψpu1q takes into account the various inclinations of the inter-
fering elemental waves with respect to the axis and fpR1q their various
geometrical lengths. The inclination of dϕ with respect to the effec-
tive elemental waves going out from dϕ is the same for all dϕ. Since
the geometrical length R1 depends only on the accompanying angle
of divergence u,xxviii we can then set

fpR1
q “ σpuq ,
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and the resulting disturbance at P becomes

s “
1
λ

ż

αdϕσpuqψpu1
q sin 2π

ˆ

t

T
´ δP

˙

,

if δP designates the equal optical path length for all elemental rays
between L and P.

The intensity at P is then given by

JP “ s2 df .

Toward a point P1 (Fig. 21) in the image plane come elemental
pencils from dϕ that are seemingly coming from L1, which is the

Figure 21
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conjugate point of P1. If the observation points are limited to be very
close to the axis, one can express the resulting disturbance at P1 as

s “
1
λ

ż

αdϕσpuqψpu1
q sin 2π

ˆ

t

T
´ δP1

˙

,

where δP1 is the sum of the optical path length Ldϕ and the optical
path length dϕaP1. Now

dϕaP1 “ L1AP1 ´ L1dϕ ,

where L1AP1 is a constant for the fixed location of P1 and varies with
the location of P1.

Therefore,xxix

LdϕP1 “ const ´ pL1dϕ´ Ldϕq

and with that

δP1 “ ´
e1 ´ e

λ
` const “ ´

ρ

λ
` const,

if one designates the segment L1 dϕ by e1. If P1 moves toward P,
e1 “ e and the above constant becomes equal to δP. The phase
difference between P and P1 is exactly the same as that between their
conjugate points L and L1. If we designate the coordinates of L1 by x,
y, z and those of dϕ by ξ, η, ζ, then, as described earlier,xxx

δP1 “ const ´
ρ

λ
“ const `

yη` xξ

eλ
.

With this, we obtain the resulting disturbance at P1:

s “
1
λ

ż

αdϕσpuqψpu1
q sin 2π

ˆ

t

T
´
xξ` yη

eλ

˙

, (18)

where the constant phase difference is lumped into t.



44 Chapter 2. Imaging of self-luminous objects §14

It should be pointed out here once and for all that in the expression
for the light disturbance at observation point P1 in the image plane
found according to rules of geometrical optics, the coordinates of the
observation point itself do not appear. Rather, the coordinates xy of
the P1-conjugate point L1 in the object plane appear. Actually, we
would have to substitute x and ywith the expression

x “ x1
{β , y “ y1

{β ,

where x1y1 designate the coordinates of P1 andβdesignates the lateral
magnification. We do not, however, want to carry out this substitu-
tion because it only complicates the discussion of the expression of
s and does not change the essence of the matter. The intensities cal-
culated using pairs x1y1 and xy are exactly the same. If one depicts
the diffraction phenomenon calculated in the image plane according
to the rules of geometrical optics in the object plane, this depicted
phenomenon is identical with the phenomenon calculated using the
object points xy according to Eq. 18. One would see this phenomenon
by replacing the optical systemQwith the eye and accommodating on
the object plane. In this respect, we are entitled to designate the phe-
nomenon depicted by the expression s the “diffraction phenomenon
in the object plane.”

§14. Determination of factors α, σpuq, and ψpu1q based on energy
considerations

To determine σpuq, we presuppose that the sine condition is fulfilled.
The energy principle says that in this case, the entire energy striking
the system from object element df (Fig. 22) must flow through the
point-to-point conjugate and similar image element df1. Since the
same amount of energy must flow into conjugate elemental cones,
we have

df ¨dϕ ¨A2
“ df1 dϕ1A12 ,

if dϕ and dϕ1 denote those surface elements that the elemental cones
cut out of unit spheres about df and df1, and A and A1 denote
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Figure 22

dϕ1

df1
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1dϕ

udf
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amplitudes present at dϕ and dϕ1. If β denotes the lateral mag-
nification of the system, then

β2
“
A2 dϕ

A12 dϕ1
.

If one introduces polar coordinates in a known manner,xxxi then
dϕ “ sinududv
dϕ1

“ sinu1 du1 dv .
Therefore,

dϕ

dϕ1
“

sinudu
sinu1 du1

.

One obtains a relationship between u and u1 using the sine con-
ditionxxxii

sinu1
“
λ1

λ
¨

1
β

sinu ,
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where β denotes lateral magnification. Differentiation of the above
expression yields

cosu1 du1
“
λ1

λ
¨

1
β

¨ cosudu

and therefore

dϕ1
“ dϕ ¨

ˆ

λ1

λ

˙2

¨

ˆ

1
β

˙2 cosu
cosu1

.

If one inserts this value of dϕ1 into the energy equation, it follows
then

A12

A2 “
λ2 cosu1

λ12 cosu
“
n12 cosu1

n2 cosu
. (19)

If u1 “ 0, i.e., the image moves to infinity, then

A2
“
n2 cosu
n12 ¨A12 .

Only when A12 is a constant for all elemental cones, i.e., when the
plane wave front has the same intensity everywhere in the image space, does
the above relationship transition to the law

A2
“ const n2

¨ cosu , (20)

which represents the combination of the Lambert cosine law with the
Kirchhoff–Clausius law of radiation.

We now construct the resulting light disturbance at P1 while we
consider, as boundary surfaces, one surface I situated at the distance
e (Fig. 23) with elements dϕ and the other surface II located in the
image space with elements dϕ1. Let us denote the light disturbance
at P1 based on the boundary surface I as s1; then, as before, we get

s1 “
1
λ

ż

I

αdϕσpuqψpu1
q sin 2π

ˆ

t

T
´
xξ` yη

eλ

˙

,
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Figure 23
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where x, y, ´e are the coordinates of P1’s conjugate point L1, and ξ,
η are the coordinates of dϕ. On the basis of boundary surface II,

s2 “
1
λ1

ż

II

α1

e1
dϕ1ψpu1

q sin 2π
ˆ

t

T
`
x1ξ1 ` y1η1

e1λ1

˙

;

here, σpuq is replaced by 1{e1 since our surface of integration, in the
sense of light propagation, is located after the systemQ; x1, y1 are the
coordinates of P1 and ξ1, η1 are those of dϕ1.

If we introduce polar coordinates by making the substitution

ξ “ e sinu cos v
η “ e sinu sin v

dϕ “ e2 sinududv ,
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we get

s1 “
1
λ

2π
ż

0

dv

U
ż

0

duασpuqψpu1
qe2 sinu sin 2π

ˆ

t

T
´ sinux cos v` y sin v

λ

˙

,

where U denotes the half angle of the aperture in the object space.
Let us also introduce polar coordinates in s2 and set in addition

x1
“ xβ , y1

“ yβ .

If one bears in mind that for β ă 0, ξ and ξ1 as well as η and η1

have the same sign, but x and x1 as well as y and y1 have opposite
signs, whereas the reverse occurs for β ą 0; by considering the sine
condition,xxxiii one obtains

s2 “
1
λ1

2π
ż

0

dv

U
ż

0

duα1e1

ˆ

λ1

λ

˙2 ˆ

1
β

˙2 cosu
cosu1

ψpu1
q sinu¨

sin 2π
ˆ

t

T
´ sinux cos v` y sin v

λ

˙

.

By equating s1 and s2, we obtain the relation

α1e1λ
1

λ

ˆ

1
β

˙2 cosu
cosu1

“ αepeσq

or
A1λ

1

λ
¨

1
β2

cosu
cosu1

“ Aeσ .

By using the value of A1

A

`

“ α1e1

αe

˘

obtained from the energy prin-
ciple,xxxiv we finally obtain

eσ “
1
β2

c

cosu
cosu1

. (21)
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To determine ψpu1q, we construct for one time the resulting light
disturbance at P under the premise that L glows and using surface
II as the boundary surface. For another time, the resulting light
disturbance is at Lunder the premise that P, the image of L, glows and
using surface I as the intermediate surface. One can think of realizing
this assumption by setting up a perfect mirror perpendicular to the
axis at the location of P. The resulting light disturbance is given by
the expression s2 in the first case, if one sets x “ y “ 0 in it; for
the case that P, the image of L, glows and I is used as the boundary
surface, we obtain, for the light disturbance at L,

s1
1 “

1
λ

ż

dϕ
α

e
ψpuq sin 2π t

T

or, in polar coordinates,

s1
1 “

1
λ

2π
ż

0

dv

U
ż

0

duαe sinuψpuq sin 2π t
T

.

The amplitudes of the light disturbance at P (if L glows) and at L (if
P glows) follow a known relationship. To determine this relationship,
let us consider the following.

The contribution that the element dϕ1 provides to the light dis-
turbance is

ds2 “ B1 sin 2π t
T

,

where

B1
“

1
λ1
dvduα1e1

ˆ

λ1

λ

˙2 1
β2

cosu
cosu1

ψpu1
q sinu .

We ask ourselves how large the resulting intensity caused by this
contribution at P is. It is just as large as if df1 itself radiated. That is,

JP “ ds2
2 df

1
“

1
2
B12 df1 ,
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and therefore the energy that flows through df1 in time dt is

EP “ JP df
1 dt “

1
2
B12

pdf1
q

2 dt .

Analogously, if df1 radiates, the energy flowing through df that
comes from dϕ is

EL “
1
2
B2

pdfq2 dt ,

where we define

B “
1
λ
dvduαeψpuq sinu .

According to the energy principle we must have

EP “ EL ,

and it follows that
B1 df1

“ Bdf

or

1
λ1
dvduα1e1

ˆ

λ1

λ

˙2 1
β2

cosu
cosu1

ψpu1
q sinu ¨ β2

“
1
λ
dvduαeψpuq sinu ;

or if one inserts here the previously obtained value of α1e1{αe,

ψpu1q

ψpuq
“

c

cosu1

cosu
or

ψpu1q
?

cosu1
“

ψpuq
?

cosu
.

Indeed, u and u1 are dependent on each other in this special case;
however, one can assign, by varying β (changing the system), every
arbitrary value of u to the same u1, so it is valid that

ψpu1q
?

cosu1
“

ψpu1q
?cosu1

“
ψpu2q

?cosu2
;



§15 Light disturbance at the observation point 51

therefore, we must have
ψpu1

q “
?

cosu1 . (22)

§15. Expression of light disturbance at the observation point
If the radiating surface element radiates according to Lambert’s law,

α “
const
e

?
cosu ,

considering the derived relationships (Eqs. 21 and 22)

σpuq “
const
e

c

cosu
cosu1

ψpu1
q “

?
cosu1 ,

Eq. 18 for the light disturbance at P1 finally takes the form

s “
k

λ

ż

I

cosu
e2 dϕ sin 2π

ˆ

t

T
´
xξ` yη

eλ

˙

or, since dϕ cosu “ dξdη,

s “
k

λ

ż

I

dξdη

e2 sin 2π
ˆ

t

T
´
xξ` yη

eλ

˙

, (23)

in which the integration extends over the projection of the boundary
surface on the ξη-plane.
x and y are the coordinates of L1, the point, with respect to the

system, conjugate to the observation point P1. The intensity at P1 is
given by

JP1 “ s2 df . (23a)

One can of course, in the calculation of the light disturbance at P1,
also use integral s1, which extends over surface II behind the system.
Then,

s1
“
k1

λ1

ż

II

dξ1 dη1

e12 sin 2π
ˆ

t

T
´
x1ξ1 ` y1η1

e1λ1

˙

; (24)
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x1 and y1 are the coordinates of the observation point P1. The intensity
at P1 is then

JP1 “ s12 df1
“ β2s12 df . (24a)

Whereas one reaches the final expression of s or s1 via a somewhat
laborious determination of factors σ and ψ, which of course allows a
deeper insight into the energy relationships, one obtains an expres-
sion in a shorter way by means of the Kirchhoff principle, which, for
u1 not too large, agrees with s1 found above.

§16. Determination of light disturbance at the observation point
using the Kirchhoff principle

Again let the intensity atdϕ of the radiation originating from element
df (Fig. 23) be

Jdϕ “ constcosu ¨ df

e2 .

According to the electromagnetic theory of light, up to a constant,
this intensity must be identical with the time average of the governing
electric field at the location of dϕ; that is,

Jdϕ “ E2 “ constcosu ¨ df

e2 . (25)

One can replace this unpolarized radiation of the surface element
df with the radiation of a dipole whose axis stands perpendicularly
to the axis of the system and rotates in the plane of element df about
the system axis.

Proof: it is generally known that the electric field at dϕ generated
by a stationary dipole at df isxxxv

e “
A

e
sin ϑ cos 2π

ˆ

t

T
´
e

λ

˙

,

provided that e is large compared to λ. ϑ is the angle that the radius
vector e (Fig. 24) forms with the axis OY of the dipole at O. If one



§16 Kirchhoff principle for a vector 53

Figure 24
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dϕ

e

Y

v

v

u

introduces polar coordinates e, u, v around the system axisOZ, then

cos ϑ “ sinu ¨ cos v

or
sin ϑ “

a

1 ´ sin2 u cos2 v ,
in which v, as the dipole rotates, varies between 0 and 2π. The average
value of the electric field is thereforexxxvi

E “
1

2π

2π
ż

0

edv “
A

e
cos 2π

ˆ

t

T
´
e

λ

˙

¨
1

2π

2π
ż

0

a

1 ´ sin2 u cos2 v dv

“
A

e
cos 2π

ˆ

t

T
´
e

λ

˙

cos2 u

2

ˆ

#

1 `

ˆ

1
2

˙2

tan4 u

2
`

ˆ

1
2 ¨ 4

˙2

tan8 u

2
` ¨ ¨ ¨

+

.xxxvii
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If u is not too large, we can restrict ourselves to the first term in
the series, because even for u “ 20o, the value of the second term is
only 0.00024. We therefore obtain

E “
A

e
cos 2π

ˆ

t

T
´
e

λ

˙

cos2 u

2

“
A

e
cos 2π

ˆ

t

T
´
e

λ

˙

¨
1 ` cosu

2
.

For not-too-large u we can replace the factor 1`cosu
2 by

?
cosu;

even with u “ 20o these two values agree to the third decimal place.xxxviii

Therefore, we finally obtain

E “
A

e
cos 2π

ˆ

t

T
´
e

λ

˙

¨
?

cosu ,

E2
“

1
2
A2

e2 cosu .

Therefore, if we set according to Eq. 25

A2
“ 2 ¨ const ¨ df ,

we have proved that one can replace the radiating surface element df
according to the cosine law with the radiation of a rotating dipole.

If the convergence angle u1 in the image space is not too large, as
we assume, then we are justified to set at the location of dϕ1,

e1
“
A1

e1
sin ϑ1 cos 2π

ˆ

t

T
`
e1

λ1

˙

or
e1

“
A1

e1

a

1 ´ sin2 u1 cos2 v cos 2π
ˆ

t

T
`
e1

λ1

˙

,

where ϑ1 for the image space has the analogous meaning as ϑ for the
object space, and denotes the angle between e1 and the axis of the
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dipole perpendicular to QP. To obtain unpolarized surface radiation,
we must subsequently still form the average value of this expression
over all v, from 0 to 2π.

To apply the Kirchhoff principle to a vector, we must insert, as sur-
face values, the values of those vector components and their derivatives
with respect to the normal of the integration surface that are parallel to
the resulting vector at the observation point. If we assume the bounding
aperture to be symmetrical with respect to axisQP, the resulting vector
e1 of the field at P (Fig. 25) and at paraxial point P1, generated by the

Figure 25

ν

II

II

P

P1
u1

e1

r

Q

dϕ1

ε

stationary dipole, has necessarily the direction parallel to the dipole
axis and perpendicular to axis QP. At dϕ1, however, e1 is tangential
to spherical surface II and therefore forms the angle π

2 ´ ϑ1 with the
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direction of the resulting vector at P1.
Thus, as surface values, we take

e1 cos
´π

2
´ ϑ1

¯

“ e1 sin ϑ1
“ e1

a

1 ´ sin2 u1 cos2 ν

and their derivatives with respect to ν.
If the dipole rotates, we form the average value of these magnitudes

with respect to v and obtain

E1
“

1
2π

2π
ż

0

e1
a

1 ´ sin2 u1 cos2 v dv

“
1

2π
A1

e1
cos 2π

ˆ

t

T
`
e1

λ1

˙

2π
ż

0

p1 ´ sin2 u1 cos2 vqdv

“
A1

e1
cos 2π

ˆ

t

T
`
e1

λ1

˙ ˆ

1 ´
1
2

sin2 u1

˙

;

and since u1 is assumed to be small,

E1
“
A1

e1
cos 2π

ˆ

t

T
`
e1

λ1

˙

¨ cosu1 . (26)

To apply Kirchhoff’s law on E1, we still have to show that E1 is
a solution of the wave equation (Eq. 12), which takes on, with the
introduction of polar coordinates and especially for the present case,
the following form:xxxix

1
a12

B2E1

Bt2
“

1
e1

B2pe1E1q

Be12 `
1

e12 sinu1

B
`

sinu1 BE1

Bu1

˘

Bu1
.

Here, a1 is the velocity of propagation of the waves in the image space.
A solution of this equation isxl

E1
“

const
e1

cosu1

"

cos 2π
ˆ

t

T
`
e1

λ1

˙

´
λ1

2πe1
sin 2π

ˆ

t

T
`
e1

λ1

˙*

,
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which, since e1 is large compared to λ1, reduces to the expression
identical to Eq. 26,

E1
“

const
e1

cosu1
¨ cos 2π

ˆ

t

T
`
e1

λ1

˙

.

With this it has been shown that E1 is a solution of the wave equation
for the case treated here and therefore can be inserted in place of ϕ
in Eq. 13 of the Kirchhoff principle.

If one introduces once again s1 via Eq. 24a,

JP1 “ E12 “ s12 ¨ df1 ,

after easy calculation,xli if one replaces rwith e1 in the amplitude and
1`cosu

2 with 1, one obtains

s1
“
k1

λ1

ż

II

dϕ1 cosu1

e12 sin 2π
ˆ

t

T
`
x1ξ1 ` y1η1

e1λ1

˙

“
k1

λ1

ż

II

dξ1 dη1

e12 sin 2π
ˆ

t

T
`
x1ξ1 ` y1η1

e1λ1

˙

,

which is exactly the above derived expression (Eq. 24).
It should be pointed out once more that one obtains the “effective

piece of boundary surface I” as one draws from the luminous point or
surface element all possible rays toward the boundary points on the
entrance pupil. The entirety of the intersections of these rays with
the spherical surface I form the boundary of the “effective piece.”
Integration in the expression of s is extended over the projection of
this “effective piece” onto the ξη-plane.

§17. Calculation of diffraction on an aperture of specific form for
points in the plane conjugate to the object plane in the presence
of a luminous surface element

We choose the form of the diffracting aperture in such a way that the
projection of the effective piece of the boundary surface onto the ξη-plane is
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a rectangle. The diffracting aperture in this case, as easily calculated,
is bordered by four hyperbolae and approximates better the form of
a rectangle the smaller the dimensions of the aperture.

LetOO1 (Fig. 26) be the optical axis of the imaging systemQ, and
O be the origin of the rectangular coordinate system whose z-axis
coincides with the optical axis; let the y-axis be pointed toward the
top, and the x-axis toward the back. Let the xy-plane be the object
plane containing a luminous surface element df at Lwith coordinates
XY. Let the plane perpendicular to OO1 and containing O1 be the
image plane conjugate to the object plane, and the observation point
lie at P1. Let the ray-limiting aperture be represented by the physical

Figure 26
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and perpendicular-to-the-z-axis standing diaphragm BB in front of
the imaging system Q. Let the radius of the L-centered sphere that
we choose as the boundary surface be e; let the luminous element be
always so close to the axis that the quadratic terms in x and X, and
y and Y can be neglected. Let dϕ be an element of the boundary
surface and its projection on the plane of the diaphragm have the
coordinates ξη. Then the light disturbance at point P1 situated close
to the z-axis is given by the expression

s “
k

λ

ξ2
ż

ξ1

η2
ż

η1

dξdη

e2 sin 2π
ˆ

t

T
´
x1ξ` y1η

eλ

˙

, (27)

where

x1
“ x´ X (27a)

y1
“ y´ Y

are the coordinates of point L1, which is conjugate to the observation
point P1, if one refers to them15 using the luminous element at L as the
starting point, and the integration is extended over the rectangular
projection of the effective pieces of the boundary surface. One sets

ξ1
“ ξ{e

η1
“ η{e

(28)

and Eq. 27 becomes

s “
k

λ

ξ1
2

ż

ξ1
1

η1
2

ż

η1
1

dξ1 dη1 sin 2π
ˆ

t

T
´
x1ξ1 ` y1η1

λ

˙

. (29)

15It should be emphasized that these relative coordinates x1y1 are not identical
with the absolute coordinates x1y1 of P1 used in previous paragraphs.
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If one decomposes the sine function into its components,

sin 2π
ˆ

t

T
´
x1ξ1

λ

˙

cos 2πy
1η1

λ
´ cos 2π

ˆ

t

T
´
x1ξ1

λ

˙

sin 2πy
1η1

λ
,

one can carry out the integrations with respect to ξ1 and η1 separately
and obtainxlii

s “
k

λ

sin 2πx1 ξ
1
2´ξ1

1
2λ

πx1

λ

¨
sin 2πy1 η

1
2´η1

1
2λ

πy1

λ

¨ sin 2π
ˆ

t

T
´
x1pξ1

2 ` ξ1
1q ` y1pη1

2 ` η1
1q

2λ

˙

.

The two integrations will no longer be independent of each other
if the projection of the effective boundary surface deviates from the
shape of the rectangle.

A simplification occurs if the aperture lies symmetrically with
respect to the z-axis. In this case,

ξ1
1 ` ξ1

2
2

“ 0 and η
1
1 ` η1

2
2

“ 0 .

If one further sets

ξ2 ´ ξ1 “ 2α and η2 ´ η1 “ 2β ,

where α and β denote the half width and height of the projection of
the boundary surface, we have

ξ1
2 ´ ξ1

1
2

“
α

e
“ α1 and η

1
2 ´ η1

1
2

“
β

e
“ β1 ,

where α1 and β1 are the sines of the aperture angle of the half width
and height of the projection of the symmetrical diaphragm. We then
have

s “
k

λ
4α1β1

sin 2πx1α1

λ

2πx1α1

λ

¨
sin 2πy1β1

λ

2πy1β1

λ

sin 2π t
T

. (30)
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The amplitude of the oscillation s, whose phase is given by sin 2π t
T

,
consists of, apart from a constant, the product of two factors of the
form Fpwq “ sinw

w
. The graph of this function of w is indicated in

Fig. 27. For w “ ˘aπ pa “ 1, 2, 3 . . .q, Fpwq “ 0; for w “ 0, Fpwq takes
on the undetermined expression 0{0, whose true value is one.

Figure 27
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Without further ado, one can see from the form of the function
that the amplitude has its maximum at w “ 0 and decreases gradu-
ally from there toward both sides symmetrically with increasing |w|.
Whereas the first factor

sin 2πx1α1

λ

2πx1α1

λ

depicts the amplitude in directions parallel to the x-axis, the second
factor,

sin 2πy1β1

λ

2πy1β1

λ

,
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independent from the first, reproduces the course of the amplitude in
directions parallel to the y-axis. One thus sees that the amplitude
of the oscillation is arranged in a checkered way and symmetrically
with respect to the lines x1 “ 0 and y1 “ 0 (or x “ X and y “ Y). The
amplitude is zero (minimum) on lines

x1
“ ˘a

λ

2α1
pa “ 1, 2, 3 . . .q

and
y1

“ ˘a
λ

2β1
pa “ 1, 2, 3 . . .q .

These lines form a system of rectangles in which the amplitude
increases gradually from the sides to the middle and has its maximum
there (the cross point of the diagonals). The closer the rectangle is
situated to the center of the pattern, the greater the maximum. In
the central rectangle, the amplitude reaches its absolute maximum
(Fig. 28) at the position of the luminous element (x1 “ 0, y1 “ 0).

Figure 29

One can see from the equations for the lines of minima that the
smaller the dimension of α1, defined for the angular “width” of the
diffracting aperture, the farther the lines parallel to the y-axis move
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Figure 28

away from each other, and the distance of the lines parallel to the
x-axis depends on β1 (angular “height”) in the same way.

If, for example, the width pαq is negligible compared to the height
pβq, i.e., the diffracting aperture is formed by a vertical narrow
slit, the distribution of the amplitude then takes on the appearance
sketched in Fig. 29.xliii The intensity distribution of the actually ob-
served diffraction phenomenon emerges from the obtained ampli-
tude distribution if one squares the amplitude at every location, for
in general, J “ s2 df.






