
Chapter 3

Imaging of illuminated objects

§18. Presence of several luminous points
In the presence of one luminous surface element, the diffraction pat-
tern is symmetrical with respect to the location of that element. This
applies to an arbitrarily located surface element, as long as one limits
oneself to points close to the axis of the system. The diffraction pattern
always remains stationary and moves with the luminous surface element.

With the simultaneous presence of several luminous elements, the
observed diffraction pattern depends on whether the individual ele-
ments emit independent incoherent waves from each other, or whether
the waves emitted from individual elements are coherent, i.e., capable
of interference.

The following laws hold, assuming that we are dealing with sev-
eral luminous “points”: If different wave trains are incoherent, one obtains
the resulting intensity at each location by simply summing the squares of the
amplitudes, i.e., the intensities, that are generated by individual luminous
points.

If n luminous “points” contribute to the light disturbance at the
observation point, and if the disturbance generated by their wave
trains are represented by the value of the electric field (of the light
vector),
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66 Chapter 3. Imaging of illuminated objects §18

E1 “ a1 cos
ˆ

2π t
T

` δ1

˙

E2 “ a2 cos
ˆ

2π t
T

` δ2

˙

¨ ¨ ¨ ¨ ¨ ¨

En “ an cos
ˆ

2π t
T

` δn

˙

,

then the resulting intensity in the case of incoherent wave trains is

Jinc “ E2
1 ` E2

2 ` ¨ ¨ ¨ ` E2
n ,

and is within an insignificant proportionality factor 1{2 given by

Jinc “ a2
1 ` a2

2 ` ¨ ¨ ¨ ` a2
n .

On the other hand, if the wave trains are coherent and their electric
field vectors E have almost the same direction, which we assume for
the sake of simplicity, then one has to first add the individual fields
at the observation point to yield

E “ E1 ` E2 ` ¨ ¨ ¨ ` En .

The intensity is then given by

Jcoh “ E2 .

If we bring E after summation into the form

E “ A cos 2π t
T

` B sin 2π t
T

,

the intensity is therefore, to within a factor of 1{2,xliv

Jcoh “ A2
` B2 .
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The difference in intensity calculation for both cases is most strik-
ing for the observation point that is reached by all wave trains with
the same phase. Then we have

Jinc “ a2
1 ` a2

2 ` ¨ ¨ ¨ ` a2
n (31)

in contrast to
Jcoh “ pa1 ` a2 ` ¨ ¨ ¨ ` anq

2 . (32)

If additionally the amplitudes of the individual waves are of equal
magnitude (a), we have

Jinc “ n ¨ a2 ,
Jcoh “ n2a2

“ n ¨ Jinc .

If Jcoh ą Jinc for one observation point, then there must necessarily
be another point for which the wave trains do not arrive with the same
phase, and we have Jcoh ă Jinc. This, however, is simply the nature of
interference.

§19. Presence of several luminous surface elements
In reality, we do not deal with luminous points but surface elements.
We want to represent the disturbance caused by a luminous surface
element df at observation point P by the previously used auxiliary
vector s that is proportional to the electric field, giving us the intensity
via form s2 df. Let

sP “ a cos
ˆ

2π t
T

` δ

˙

,

where we assume that all wave trains originating from the surface
element have combined physically at the location of the observation
point to a single wave train with amplitude a and phase

`

2π t
T

` δ
˘

.
An extended luminous surface consists of many surface elements.

The calculation of intensity at the observation point must therefore
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also be executed differently in the presence of a luminous surface,
depending on whether the constituent surface elements emit coherent
or incoherent wave trains. In the case of incoherence, the intensity is
simply

Jinc “

ż

s2 df

or to within a factor
Jinc “

ż

a2 df , (33)

where the integration extends over the luminous surface. If a is equal
for all surface elements, then we have

Jinc “ a2
ż

df “ a2F , (33a)

where F is the size of the surface. In the case of coherence, on the
other hand, one has to first calculate according to Huygens’ princi-
ple the induced disturbance over the entire luminous surface at the
observation point, that is, to form

S “

ż

cos
ˆ

2π t
T

` δ

˙

df , (34)

where again the integration extends over the luminous surface. Here-
upon, one has to bring S into the canonical form

S “ A cos 2π t
T

` B sin 2π t
T

. (35)

The intensity at the observation point is then

Jcoh “ A2
` B2 . (36)

If there exists an observation point at which all wave trains arrive
with equal phase and amplitude, then we get

S “ a cos
ˆ

2π t
T

` δ

˙
ż

df “ a cos
ˆ

2π t
T

` δ

˙

F ,
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where δ “ const. If we bring S to the form of Eq. 35, we have

A “ aF cos δ
B “ aF sin δ

and the intensity is
Jcoh “ a2

¨ F2 . (36a)

§20. Single luminous slit
Let the slit run parallel to the y-axis (vertically) and extend from
Y “ ´b to Y “ `b; let its width be small compared to its height and
therefore be designated as dX.

I. If the slit is covered with self-luminous surface elements, we
are dealing with incoherent wave trains. The intensity at the
location of the resulting diffraction pattern is to be calculated
according to Eq. 33 and becomes, if one substitutes x1 with x´X

and y1 with y´ Y, according to Eq. 30,

Jinc “

ˆ

k

λ
4α1β1

˙2

dX

˜

sin 2π px´Xqα1

λ

2π px´Xqα1

λ

¸2 Y“`b
ż

Y“´b

dY

˜

sin 2π py´Yqβ1

λ

2π py´Yqβ1

λ

¸2

.

(37)
If we set

2πpy´ Yqβ1

λ
“ w ,

then the integral appearing in Eq. 37 becomes

´
λ

2πβ1

2πpy´bq
β1

λ
ż

2πpy`bq
β1

λ

ˆ

sinw
w

˙2

dw “ `
λ

2πβ1

2πpy`bq
β1

λ
ż

2πpy´bq
β1

λ

ˆ

sinw
w

˙2

dw .

The graph of the function
` sinw

w

˘2 is shown schematically in
Fig. 30. The function becomes zero at the same locations as



70 Chapter 3. Imaging of illuminated objects §20

Figure 30

0´3π ´2π ´π π 2π 3π

the function sinw
w

that was previously discussed in more detail;
the greatest maximum of w, having a value of one, also lies at
w “ 0, whereas the secondary maxima are consistently smaller
than those of the function sinw

w
, and the entire curve lies above

the w-axis because of its quadratic character.

The integral is represented by the areal content between the
w-axis and the segment of the curve that is cut out by lines

w1 “ 2πpy´ bqβ1
{λ

and
w2 “ 2πpy` bqβ1

{λ .

The limits of the integral are different depending on the loca-
tion of the observation point xy relative to the luminous slit. If
we define as “slit zone” the areal strip formed by moving the
slit parallel to itself in both directions of the x-axis, we can dis-
tinguish three cases: the observation point lies outside the slit
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zone, in the immediate vicinity of its borders, or within the slit
zone.

1. y ą `b or y ă ´b and |y ´ b| is large compared to λ1 “

λ{β1; i.e., the observation point lies a considerable number
of wavelengths away from the edges to the outside. Then
we can set both limits of the integral to infinity, in fact both
positive if y ą b and both negative if y ă b. The integral
here becomes negligibly small.

2. y “ ˘b: In this case, the limits of the integral become 0
and 8 or 8 and 0, and the integral itself takes on the value
π{2 since we knowxlv

8
ż

0

ˆ

sinw
w

˙2

dw “ π{2 . (38)

3. y ă b and y ą ´b and further |b ´ y| large compared
to λ1 “ λ{β1; i.e., the observation point lies within the
slit zone, but a considerable number of wavelengths away
from the edges. In this case we can replace the limits of
the integral by ´8 and `8, and the integral takes on the
value of π.

For the intensity in Eq. 37, the integral under consideration is
multiplied by a function of x; accordingly, the intensity of light
is zero for all points outside the slit zone (case 1). For points in
the slit zone and near the borders (cases 3 and 2), the intensity
depends only on x and drops suddenly to half the value if the
observation point moves for constant x into one of the edges of
the slit zone.
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The intensity in the direction along the x-axis is given by the
expression

Jinc “ C ¨

ˆ

k

λ
4α1β1

˙2

dX ¨
λ

2πβ1

˜

sin 2π px´Xqα1

λ

2π px´Xqα1

λ

¸2

, (39)

where C “ 0 for case 1, C “ π{2 for case 2, and C “ π for case
3. This functional dependence is, apart from a constant factor,
the one schematically drawn in Fig. 30.

II. If the slit is covered with illuminated (i.e., not self-luminous) sur-
face elements, then we are dealing with coherent wave trains. We
therefore have to calculate the intensity according to Eqs. 34, 35,
and 36, so that we obtain

Jcoh “

»

–

k

λ
4α1β1 dX

sin 2π px´Xqα1

λ

2π px´Xqα1

λ

`b
ż

´b

dY ¨
sin 2π py´Yqβ1

λ

2π py´Yqβ1

λ

fi

fl

2

; (40)

if we set 2πpy´Yqβ1

λ
“ w, the integral becomes

`
λ

2πβ1

2πy`b
λ1

ż

2πy´b
λ1

sinw
w

dw .

The function sinw
w

has the graph drawn in Fig. 27. Since the
curve lies partly below the w-axis, the sign of the areal patches
represented by the integral changes, and the value of the in-
tegral therefore approaches a finite limit as w increases, faster
than the integral in case I, all else being equal.
To find the intensity versus position, we have to consider as
well the three cases separately, where the observation point is
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inside, outside, and on the edges of the slit zone. Since this
integral is

`8
ż

´8

sinw
w

dw “ π (41)

again, the resulting diffraction pattern has exactly the same ap-
pearance as in the case of the self-luminous slit. For homologous
points the intensity differs only by a constant factor, and at the
edges of the slit zone it goes to zero via the half-value even faster
for the illuminated slit than in the case of the self-luminous
slit.

§21. Two parallel and neighboring slits
Each of the two slits shall again be assumed to be infinitely narrow. Let
their distance ∆ be finite but of arbitrary value. As before, we would
like to treat the case of two self-luminous slits separately from the
case in which the slits receive their light from an external source. In
the latter case, we also need to discuss the influence on the diffraction
pattern exerted by the position of the light source on the illuminated
slits. This is because only with oblique illumination do noticeable
differences between diffraction patterns of self-luminous and illumi-
nated double slits become evident.

I. Self-luminous slits. Each slit generates the diffraction pattern
that was discussed in § 20 under I, whose appearance is com-
pletely identical for both slits. The center of each individual
diffraction pattern coincides with the center of the slit that gen-
erates it. Thus, we are dealing with the superposition of two
identical diffraction patterns whose principal maxima are sep-
arated from each other in the direction of the x-axis by the
distance ∆ of the two light slits. Since we are dealing with a
self-luminous double slit, the resulting intensity at each location
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is therefore the sum of the intensities caused by each luminous
slit.
This expression is given by the formula

Jinc “ const.

«

sin 2π px´X1qα1

λ

2π px´X1qα1

λ

ff2

` const.

«

sin 2π rx´pX1`∆qsα1

λ

2π rx´pX1`∆qsα1

λ

ff2

,

(42)

where X1 is the abscissa of the first luminous slit and X1 ` ∆ is
the abscissa of the second luminous slit.
We want to carry out the discussion of this expression only for
the two special cases ∆ “ λ{α1 and ∆ “ λ{2α1.

1. ∆ “ λ{α1. Then the expression for the resulting intensity
becomes

Jinc “ const.

«

sin 2πx´X1
∆

2πx´X1
∆

ff2

`const.

«

sin
`

2πx´X1
∆

´ 2π
˘

2πx´X1
∆

´ 2π

ff2

.

We recognize easily that the two intensity curves are sim-
ply shifted along the x-axis by a distance 2π (Fig. 31). Each
of the principal maxima coincides with the second mini-
mum of the other curve, while the first minima coincide
and bisect the distance ∆ “ λ{α1. By summing the or-
dinates we obtain the resulting intensity curve, which is
shown as the solid line in the figure. This curve exhibits
two principal maxima separated by the distance of the two
luminous slits (∆ “ λ{α1), and a steady and symmetrical
decrease in brightness that reaches the value zero in the
middle between the principal maxima. Going outward on
both sides there is a series of secondary maxima that are
separated from each other by complete minima.
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Figure 31

Intensity

∆ “ λ
α1

0´3π ´2π ´π `π `2π `3π

right component
left component
resulting intensity

2. ∆ “ λ{2α1. In this case, an analogous observation shows
that by superposing the two intensity curves, both prin-
cipal maxima merge into a single, correspondingly wider
central strip that exhibits a small intensity attenuation in
the center. The first secondary maxima are still clearly
noticeable (Fig. 32).

II. Illuminated slits. In this case, we are dealing with two infinitely
narrow slits of finite separation that receive their light from
an external source. As such, we would like to consider the
intensely bright filament of a light bulb that is located in the
focal plane of an objective lens, so that plane waves are emitted.
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Figure 32

Intensity

∆ “ λ
2α1

0´2π ´π `π `2π

right component
left component
resulting intensity

Let the filament be parallel to the direction of the slits. If the axis
of this collimator is perpendicular to the plane of the slits, then
coherent wave trains are emitted from there with zero phase
difference. Their phase difference deviates from zero, however,
if the axis of the collimator is tilted with respect to the plane of
the slits.
We first consider the case of normal incidence. If we designate
the angle of incidence of the light rays by u, then this case is
characterized by u “ 0.

A. u “ 0. The resulting intensity in the case of coherent wave
trains is given by the expression
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Jcoh “

«

const.
sin 2π px´X1qα1

λ

2π px´X1qα1

λ

` const.
sin 2π rx´pX1`∆qsα1

λ

2π rx´pX1`∆qsα1

λ

ff2

,

(43)

where the previous designations are kept. For this case,
too, we would like to discuss in more detail this expression
for the two special cases ∆ “ λ{α1 and ∆ “ λ{2α1.

1. ∆ “ λ{α1. In this case, both amplitude curves are
shifted from each other by 2π in the direction of the
x-axis and drawn in Fig. 33.

Figure 33

right amplitude component
left amplitude component
resulting amplitude
resulting intensity

0´3π ´2π ´π π 2π 3π

∆ “ λ
α1



78 Chapter 3. Imaging of illuminated objects §21

By summing the ordinates algebraically one obtains
the resulting amplitude, and by squaring it one ob-
tains the intensity of the resulting diffraction pattern.
One can easily see that the two principal maxima are
separated by a perfect minimum. The decrease of in-
tensity toward this minimum is happening here more
rapidly than in the analogous case of self-luminous
slits. Going outward, the principal maxima are fol-
lowed once again by secondary maxima, which in turn
are separated from each other by perfect minima. The
intensities of the corresponding secondary maxima
are of greater magnitude than in the former case.

2. ∆ “ λ{2α1. For this case, Fig. 34 shows the respective
position of the two amplitude curves. A consideration
analogous to the above teaches us that the two prin-
cipal maxima again merge into a single bright central
strip that, in contrast to the analogous case of self-
luminous slits, is brighter and drops faster, whereas,
conversely, the secondary maxima are evidently much
weaker than the former.

B. Angle of incidence u ą 0. In Fig. 35, let Sl1 and Sl2 be the
locations of the two slits of separation ∆, which are met by
light at an angle u. As before, let the slits be so narrow that
the phase can be considered constant even under oblique
incidence of light. The path difference for them is therefore

∆ sinu ,

so that the coherent disturbances emanating from Sl1 and
Sl2 can be represented by

α sin 2π
ˆ

t

T
`

1
2
∆ sinu
λ

˙
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Figure 34

right amplitude component
left amplitude component
resulting amplitude
resulting intensity

0´2π ´π π 2π

∆ “ λ
2α1

and

α sin 2π
ˆ

t

T
´

1
2
∆ sinu
λ

˙

.

If only slit Sl1 is present, then, according to earlier expla-
nations, the disturbance at the observation point is

s1 “ constsinw1

w1
sin 2π

ˆ

t

T
`

1
2
∆ sinu
λ

˙

.
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Figure 35

u

Sl1

Sl2

∆

If only the slit Sl2 is present, then the light disturbance at
the same observation point is

s2 “ constsinw2

w2
sin 2π

ˆ

t

T
´

1
2
∆ sinu
λ

˙

.

The values of w1 and w2 are the same as those in the
previously treated case of perpendicular incident light,
into which our present case transitions when u “ 0. Thus

#

w1 “
2πpx´X1qα1

λ

w2 “
2πrx´pX1`∆qsα1

λ
.
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If both slits act simultaneously, the light disturbance at the
observation point is then given by

S “ s1 ` s2 “ const
ˆ

sinw1

w1
`

sinw2

w2

˙

cosπ∆ sinu
λ

sin 2π t
T

` const
ˆ

sinw1

w1
´

sinw2

w2

˙

sinπ∆ sinu
λ

cos 2π t
T

“ A sin 2π t
T

` B cos 2π t
T

,

so that the intensity becomes

Jcoh “ A2
` B2

“ const2

«

ˆ

sinw1

w1

˙2

`

ˆ

sinw2

w2

˙2

`2sinw1

w1

sinw2

w2
cos 2π∆ sinu

λ



. (44)

It is readily apparent that this expression becomes identi-
cal with that for two self-luminous slits of equal separation
∆ (see § 21, I) in case the cosine disappears. This is the
case for

2π∆ sinu
λ

“ ˘p2a ` 1q
π

2
,

a “ 0, 1, 2,

i.e., for
sinu “ ˘

p2a ` 1qλ

4∆
.

We further see that the expression assumes likewise a very
simple form if the cosine becomes `1 or ´1. The former
occurs for

2π∆ sinu
λ

“ ˘2aπ ,

a “ 0, 1, 2,
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i.e., for
sinu “ ˘

aλ

∆
.

We then have

Jcoh “ const2
„

sinw1

w1
`

sinw2

w2

2

. (45)

This intensity distribution, occurring periodically with
variation of only u, is thus identical to that for two illumi-
nated slits of the same separation ∆ for normal incidence
(u “ 0).
The cosine becomes ´1 for

2π∆ sinu
λ

“ ˘p2a ` 1qπ , a “ 0, 1, 2,

i.e., for
sinu “ ˘

p2a ` 1qλ

2∆
.

In this case, we have

Jcoh “ const2
„

sinw1

w1
´

sinw2

w2

2

. (46)

Whereas in the previous cases of coherent waves the result-
ing disturbance was obtained by adding the amplitudes,
here the interesting case arises that the amplitudes of the
individual fields are to be subtracted in order to obtain the
resulting disturbance.
One consequence of this is the particularly noticeable dif-
ference, at these angles of incidence of light, between the
diffraction pattern of self-luminous and illuminated slits
of equal separation. This difference appears particularly
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striking for the special case ∆ “ λ
2α1 in which the angle of

incidence must be

sinu “ p2a ` 1qα1 .

For this case, Fig. 36 shows the respective position of the
two amplitude curves. The resulting amplitude of the
diffraction pattern is represented by the solidly drawn
curve.xlvi It can be seen that the two principal maxima
are separated by a perfect minimum, whereas in the self-
luminous slits and also in the illuminated slit with normal
incidence, the principal maxima are merged into a single
and correspondingly broader bright central strip.

Figure 36

right amplitude component
left amplitude component

resulting amplitude
resulting intensity

0´2π ´π π 2π

∆ “ λ
2α1
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§22. An illuminated slit of finite width

If the slit is self-luminous, the result is easy to assess. The slit of finite
width can be thought of as the result of shifting an infinitely narrow
slit parallel to the x-axis. One therefore only needs to construct the
diffraction pattern corresponding to the infinitely narrow slit situated
at different positions and then add the individual intensities at each
location. With the broadening of the self-luminous slit, the diffraction
pattern of an infinitely narrow slit must become more and more
unclear.1

Much more diverse are the phenomena of an illuminated slit of
finite width. The term that gives the light disturbance at the obser-
vation point, in the case of an illuminated slit, is

s “
k

λ

`a
ż

´a

`b
ż

´b

4α1β1 dXdY
sin 2πα1 x´X

λ

2πα1 x´X
λ

¨
sin 2πβ1 y´Y

λ

2πβ1 y´Y
λ

¨ sin 2π t
T

, (47)

where 2b and 2a denote the height and width of the illuminated
slit. If the slit is infinitely narrow, the integration over dX becomes
unnecessary and the integrand moves as a constant to the front of
the integral, a case that has already been dealt with in § 20. For an
infinitely narrow slit, the position of the light source, i.e., the direction
of the angle of incidence of light, is of no influence on the diffraction
pattern. In the case of a finite width of the slit, on the other hand, the

1This is the typical difference between a diffraction phenomenon and a pure in-
terference phenomenon with a self-luminous slit (Lummer–Haidinger interference
curves of equal inclination), in which only the angular magnitude of the visual
field grows with the broadening of the light source (slit).
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oblique incidence of the rays brings about phase differences along
dX, so that in this more general case the light disturbance becomes

s “
k

λ

`a
ż

´a

`b
ż

´b

4α1β1 dXdY
sin 2πα1 x´X

λ

2πα1 x´X
λ

¨
sin 2πβ1 y´Y

λ

2πβ1 y´Y
λ

¨ sin 2π
ˆ

t

T
´
X sinu
λ

˙

,

/

/

/

/

/

.

/

/

/

/

/

-

, (48)

where u is the angle of incidence of the incoming plane wave.
This expression can be written in the following form:

s “
k

λ

`b
ż

´b

dY 2β1
sin 2πβ1 y´Y

λ

2πβ1 y´Y
λ

¨

`a
ż

´a

dX 2α1
sin 2πα1 x´X

λ

2πα1 x´X
λ

¨ sin 2π
ˆ

t

T
´
X sinu
λ

˙

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

. (49)

This form reflects the formation of the resulting disturbance at the
observation point. Consider the slit as a checkered pattern consisting
of individual surface elements of size dXdY; the above form, when
calculating the disturbance at the observation point, initially takes
into account only the influence of surface elements located on a strip
parallel to the y-axis with width dX and height 2b, so that the first
integral in itself represents the already treated case of an infinitely
narrow illuminated slit. As we know, the value of this integral is, to
within a constant, equal to π for observation points within the “slit
zone” (see § 20).

The slit of finite width may be assembled purely from such strips
whose effect at the observation point is a function of the location of
the single strip and the prevailing phase there; i.e., it is a function of
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X. This influence of the width is taken into account by the second
integral.

In the calculation of s, we first restrict ourselves to the case in
which the phase is the same for all individual strips, i.e., we assume
normal incidence of light (u “ 0). Then we have to consider the
following integral:

J “

`a
ż

´a

dX
sin 2πα1 px´Xq

λ

2πα1 px´Xq

λ

.

To solve this integral, we employ an artifice. It is known that

sin 2πα1µ

πµ
“

`α1
ż

´α1

cosp2πµvqdv .

So if we set

µ “
x´ X

λ
,

the integral becomes

J “
1

2α1

`a
ż

´a

dX

`α1
ż

´α1

cos
ˆ

2πvx´ X

λ

˙

dv ,

and by switching the order of integration,

J “
1

2α1

`α1
ż

´α1

dv

`a
ż

´a

dX cos
ˆ

2πvx´ X

λ

˙

.



§22 Slit of finite width 87

Now we can carry out the integration over X and get

J “
1

2α1

`α1
ż

´α1

dv
sin 2πvx`a

λ
´ sin 2πvx´a

λ

2πv
λ

“

`α1
ż

´α1

dv
cos 2πvx

λ
¨ sin 2πva

λ

2πv
λ
α1

.

If we set
2πva

λ
“ w ,

then we obtain

J “
λ

2πα1

`2πaα1

λ
ż

´2πaα1

λ

dw
cos

`

x
a
w

˘

sinw
w

. (50)

We can see that this integral is a function of x; we would like to
compare it with the integral

J0 “
1
π

`8
ż

´8

dw
cos

`

x
a
w

˘

sinw
w

. (51)

To find the value of the integral in Eq. 51, we start with the task
of determining a function of x such that it takes on the value of 1
between x “ ´a and x “ `a, and the value 0 everywhere else.

In general, according to the Fourier integral theorem,xlvii

fpxq “
1
π

8
ż

0

dz

`8
ż

´8

fpuq cos zpu´ xqdu . (52)
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The function that we seek is therefore

fpxq “
1
π

8
ż

0

dz

`a
ż

´a

cos zpu´ xqdu

“
1
π

8
ż

0

dz
2
z

sinpazq cospzxq ,

or, if we set additionally az “ w,

fpxq “
2
π

8
ż

0

dw
sinw cos

`

x
a
w

˘

w

“
1
π

`8
ż

´8

dw
sinw cos

`

x
a
w

˘

w
“ J0 .

The value of J0 as a function of x is therefore

J0 “ 0 for

#

x ą ´8 and ă ´a

x ą `a

J0 “ 1 for

#

x ą ´a and
x ă `a

J0 “
1
2

for

#

x “ `a

x “ ´a

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

. (53)

Its graph is represented by solid lines in Fig. 37. If aα1 is much
greater thanλ, then J “ λ

2α1 J0 and the light distribution in the resulting
diffraction pattern is a uniformly bright strip of width 2a, outside of
which there is complete darkness. This light distribution in the image
becomes all the more congruent to that of the object (the illuminated
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Figure 37

´a

1

`a

slit), the greater the width a for a given opening angle α1 of the
diffracting aperture or the larger the opening angle for a given slit
width.

To gain an overview as to what values of the limits permit the use
of the integral J0 instead of the integral J, we consider the following:

`2πaα1

λ
ż

´2πaα1

λ

“

`8
ż

´8

´

´2πaα1

λ
ż

´8

´

`8
ż

`2πaα1

λ

.

Since the function to be integrated is an even function, the last
two integrals on the right are the same and we can write

J “
λ

2α1
J0 ´

λ

πα1

8
ż

2πaα1

λ

dw
sinw cos

`

x
a
w

˘

w
, (54)

so that the amplitude of the resulting disturbance becomes

const

$

’

&

’

%

J0 ´
2
π

8
ż

2πaα1

λ

dw
sinw
w

cos
´x

a
w

¯

,

/

.

/

-

.
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The integrand of the residual integral differs from the previously
discussed

` sinw
w

˘

only by a factor cos
`

x
a
w

˘

, which takes on the maxi-
mum value one. The residual integral is therefore, for all values of x,
less than the integral

P “
λ

α1π

`8
ż

2πaα1

λ

dw
sinw
w

.

If, for certain values of 2πaα1

λ
, this integral is negligible with re-

spect to the same integral between ´8 and `8, then we have a
stronger reason to neglect our residual integral in comparison to J0.
The following table shows the values of the integral as a function of
its lower limit 2πaα1

λ
:

2πaα1

λ
α1π
λ
P 2πaα1

λ
α1π
λ
P

0 1.5708 20 0.0226
1 0.6247 50 0.0192
2 ´0.0346 100 0.0086
5 0.0209 200 0.0024

10 ´0.0875 500 ´0.0018

It can be seen from the table that P decreases very rapidly and is
practically zero for a value of 2πaα1

λ
“ 2.

If, for example, half the opening angle is equal to 3o, so that α1

becomes approximately equal to 1{20, then the lower limit ofP equals
πa{10λ; further, if a “ 666λ, or equal to 4 mm for a wavelength of
λ “ 0.6µm, then P “ 0.0024 ¨ λ

α1π
and therefore J “ λ

2α1 tJ0 ´ 0.0016u

according to Eq. 54.
We can also write the amplitude of the resulting disturbance as

Apxq “ const 2
π

2πaα1

λ
ż

0

dw
sinw
w

cos
´x

a
w

¯

. (55)
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For x “ 0, i.e., in the middle of the slit, the value of the amplitude
is then

Ap0q “ const 2
π

2πaα1

λ
ż

0

dw
sinw
w

,

which transitions to “const” for large 2πaα1

λ
. At the edge of the slit,

for x “ a, we get

Apaq “ const 2
π

2πaα1

λ
ż

0

dw
sinw cosw

w
“ const 2

π
¨

1
2

4πaα1

λ
ż

0

sinw1

w1
dw1

if we set 2w “ w1. For large values of 2πaα1

λ
this value “ 1{2 const,

or half the value at the center. In general, this simple relationship
between Ap0q and Apaq does not exist, and the values of Ap0q and
2 ¨Apaq, respectively, are apparent from Figs. 38a and b (hatched).

It is easy to see that in the general case, for which we cannot set
2πaα1

λ
“ 8, the amplitudeA for x inside and outside the slit fluctuates.

To recognize this, we setxlviii

dApxq

dx
“
d

dx

$

’

&

’

%

2
π

2πaα1

λ
ż

0

dw
sinw
w

cos
´x

a
w

¯

,

/

.

/

-

“ ´
2
π

2πaα1

λ
ż

0

dw sinw sin
´

w
x

a

¯

“ `const
"

sinu
u

´
sin v
v

*

,

where
u “

2πα1pa` xq

λ
, v “

2πα1pa´ xq

λ
.



92 Chapter 3. Imaging of illuminated objects §22

Figure 38

w “ 4πaα1

λ

w “ 2πaα1

λ

sinw
w

Ap0q

2 ¨Apaq

0 π 2π 3π 4π 5π 6π 7π

0 π 2π 3π 4π 5π
w

(a)

(b)

Let us fix, for given values of a and α1, the point 2πα1a
λ

on the abscissa
(Fig. 39), which corresponds to the point x “ 0 (the middle of the
slit), and let us go from this point to the right and left of the axis a
distance 2πα1x

λ
. Then we have in the ordinates the values of sinu

u
and

sinv
v

, whose difference is to be formed.
To fix this idea, let us choose, for example

2πaα1

λ
“ 2π ,

so it is easy to see that if we let x grow from zero, first

sinu
u

´
sin v
v

, i.e., dApxq

dx

is positive until it grows to a maximum value, then decays, and
for u “ 3π, v “ π, i.e., for x “ a{2, it is again zero. From there,
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Figure 39

0´2π ´π

v
2πaα1

λ

π

u

2π 3π
w

4π

sinw
w

dApxq

dx
becomes negative and reaches its largest negative value for

u “ 4π, v “ 0, i.e., for x “ a at the edge of the slit. If x is allowed
to grow beyond the edge of the slit, dApxq

dx
increases again from its

minimum value and reaches the value 0 for u “ 5π, v “ ´π, i.e., x “

3{2a; in this way, the fluctuations of dApxq

dx
continue and gradually die

down.
Accordingly, the amplitude distribution will look somewhat like

what is shown in Fig. 40.
If we choose 2πaα1

λ
“ π, the graph of the amplitude Apxq in the

interior of the slit is somewhat different; the maximum is then at
x “ 0 (see Fig. 41).

If 2πaα1

λ
is very small compared to π, then we can place in the

expression for Apxq the nearly constant factor sinw
w

“ 1 in front of the
integral and get
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Figure 40

0

´3a
2

´a ´a
2

a
2 a

3a
2

Apxq

aα1 “ λ

x

Figure 41

0´a a

Apxq

aα1 “ 1
2λ

x
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Apxq “
2
π

2πaα1

λ
ż

0

dw cos
´xw

a

¯

“
2a
πx

¨ sin
ˆ

2πα1x

λ

˙

“
4aα1

λ
¨

sin
`2πα1x

λ

˘

2πα1x
λ

. (56)

Apxq has in this case the already discussed form sinw
w

. If 2πaα1

λ
is very

large compared to π, then, as can be seen from the consideration of
the form of dApxq

dx
, the fluctuations of the amplitude inside the slit are

very small, and the value of the amplitude is therefore almost con-
stant; only at the edges of the slit do fluctuations take place; namely (if
we consider only positive values of x, since the phenomenon is sym-
metrical with respect to the J-axis), since 2πaα1

λ
was already assumed

to be large, u is a fortiori large and therefore:

dApxq

dx
“ ´const ¨

sin v
v

.

Therefore, as vgets closer and closer to the value v “ 0 (as x increases),
i.e., x “ a (edge of the slit), the fluctuations of sinv

v
begin to become

more and more noticeable. We therefore obtain the image of the
amplitude indicated in Fig. 42:xlix the larger aα1

λ
becomes, the more

the variations at the edges converge, so that in the limit, for infinitely
large aα1

λ
, we obtain the amplitude graph already shown in Fig. 37

above.

§23. Finite slit whose two halves possess a constant difference in
phase

Let the slit have width 2a and height 2b; let the phase in the half slit
of height 2b and width a (x “ ´a to x “ 0) be equal to 2π t

T
, while
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Figure 42

0´a `a

in the other half slit (x “ 0 to x “ `a) let it be 2π t
T

` δ. Then the
resulting light disturbance at the observation point is

s “
k

λ

`b
ż

´b

dY 2β1
sin 2πβ1 y´Y

λ

2πβ1 y´Y
λ

$

&

%

0
ż

´a

dX 2α1
sin 2πα1 x´X

λ

2πα1 x´X
λ

sin 2π t
T

`

`a
ż

0

dX 2α1
sin 2πα1 x´X

λ

2πα1 x´X
λ

sin
ˆ

2π t
T

` δ

˙

,

.

-

. (57)

If the observation point lies within the slit zone, then, as was shown
previously (§ 20), the integral stretched out over dY becomes equal to
λ;l if we split up sin

`

2π t
T

` δ
˘

, we get

s “ A sin 2π t
T

` B cos 2π t
T

,
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where A and B are given by

A “k ¨

$

&

%

0
ż

´a

dX 2α1
sin 2πα1 x´X

λ

2πα1 x´X
λ

` cosδ

`a
ż

0

dX 2α1
sin 2πα1 x´X

λ

2πα1 x´X
λ

,

.

-

B “k sin δ
`a
ż

0

dX 2α1
sin 2πα1 x´X

λ

2πα1 x´X
λ

.

To obtain the intensity, we have to form

I “ A2
` B2

or I “ J21 ` J22 ` 2J1J2 cos δ ,

where J1 “ 2α1k

0
ż

´a

dX
sin 2πα1 x´X

λ

2πα1 x´X
λ

J2 “ 2α1k

a
ż

0

dX
sin 2πα1 x´X

λ

2πα1 x´X
λ

,

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

-

. (58)

We want to treat more special cases.

1. If δ “ 0, 2π, 4π, etc., i.e., the phase difference 0, λ, 2λ, etc., then
we have I “ pJ1 ` J2q2 “ J2, where

J “ 2α1k

`a
ż

´a

dX
sin 2πα1 x´X

λ

2πα1 x´X
λ

;

i.e., the intensity is of the same value as if the slit had no phase
difference.

2. If δ “ π, 3π, 5π . . ., i.e., the phase difference is “ λ
2 , 3λ

2 , 5λ
2 , etc.,

then we obtain
I “ pJ1 ´ J2q

2 . (59)
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If we set
2πα1

¨
x´ X

λ
“ w ,

then J1 and J2 take on the following values:

J1 “
λk

π

2πα1 x`a
λ

ż

2πα1x
λ

sinw
w

dw

J2 “
λk

π

2πα1x
λ

ż

2πα1 x´a
λ

sinw
w

dw

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

. (60)

We see immediately that for x “ 0, i.e., the center of the slit,
J1 “ J2 and therefore I “ 0; in the middle of the slit there is a
minimum, independent of the size of a.
To discuss further, we distinguish the two cases for which 2πα1a

λ

is small or large compared to π.

I. If 2πα1a
λ

is small, then we can expand according to Taylor’s
theorem as follows:li

J1 “
λk

π

#

sin 2πα1x
λ

2πα1x
λ

¨
2πα1a

λ

`

2πα1x
λ

cos 2πα1x
λ

´ sin 2πα1x
λ

`2πα1x
λ

˘2 ¨

`2πα1a
λ

˘2

2!

+

J2 “ ´
λk

π

#

sin 2πα1x
λ

2πα1x
λ

ˆ

´
2πα1a

λ

˙

`

2πα1x
λ

cos 2πα1x
λ

´ sin 2πα1x
λ

`2πα1x
λ

˘2 ¨

`

´2πα1a
λ

˘2

2!

+

,
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and get

J1 ´ J2 “
λk

π

2πα1x
λ

cos 2πα1x
λ

´ sin 2πα1x
λ

`2πα1x
λ

˘2 ¨

ˆ

2πα1a

λ

˙2

.

If we set

$

’

’

&

’

’

%

λk

π

ˆ

2πα1a

λ

˙2

“ c ,

2πα1x

λ
“ ξ ,

then we get

J1 ´ J2 “ c
ξ cos ξ´ sin ξ

ξ2 “ cfpξq .

To discuss the curve represented by the odd function

fpξq “
ξ cos ξ´ sin ξ

ξ2 ,

we first determine its zeros. It turns out that

fpξq “ 0 for ξ “ tan ξ ;

i.e., the zeros of the curve fpξq lie at the intersections of the
curves

η “ ξ and η “ tan ξ .

The locations indicated by ˆ in Fig. 43 are the zeros of the
function fpξq; with growing |ξ|, the zeros thus approach
the values ˘p2a` 1qπ

2 more and more closely.
We now determine the positions of the maxima and min-
ima of fpξq. Its derivative is

f1
pξq “

´ξ2 sin ξ´ 2ξ cos ξ` 2 sin ξ
ξ3 .
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Figure 43

´π
2´5π

2 ´2π ´π´3π
2 0

π
2 π 3π

2 2π 5π
2

ξ

η

η “ ξ

η
“

ta
n
ξ

The maxima and minima of fpξq are therefore at the loca-
tions for which

tan ξ “
2ξ

2 ´ ξ2 ,
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i.e., at the intersections of the curves

η “ tan ξ and η “
2ξ

2 ´ ξ2 .

Curve η “ 2ξ
2´ξ2 has the form that is represented by the

dashed lines in Fig. 43. The points marked by ˝ are there-
fore the locations of the maxima and minima of fpξq, and
fpξq itself is approximately represented by the bold curve.
fpξq has for negative ξ opposite but equal values as for
positive ξ.
If the intensity I “ c2rfpξqs2 is formed, the intensity distri-
bution shown in Fig. 44 is obtained. As we can see, two
principal maxima appear, separated by a complete mini-
mum and followed by secondary maxima and minima.
By assumption, 2πα1a

λ
is small compared toπ. It is therefore

a fortiori for points of the object slit that

ξ “
2πα1x

λ
is small compared to π

Figure 44

´5π
2 ´2π ´3π

2 ´π ´π
2

I

0 π
2 π 3π

2 2π 5π
2

ξ

slit
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and one obtains the surprising result that the slit itself appears
almost completely dark, and that the maxima and minima lie
symmetrically on both sides of it.

II. If 2πα1a
λ

is large, we need to consider only positive x be-
cause the quantity J1 ´ J2 changes only its sign for the
corresponding negative x, and I thus takes on the same
value.
First, suppose

ξ “
2πα1x

λ
is small.

Then we can setlii

J1 “
λk

π

ξ` 2πα1a
λ

ż

ξ

sinw
w

dw “
λk

π

$

&

%

π

2
´

ξ
ż

0

dw
w

w

,

.

-

“
λk

2
´
λk

π
ξ “

λk

2
´ 2kα1x .

Likewise,

J2 “
λk

2
` 2kα1x ;

therefore,
J1 ´ J2 “ ´4kα1x

and
I “ 16k2α12x2 .

Therefore, the lowest minimum is found at x “ 0; on both
sides the intensity grows in a steep, parabolic rise. Since
we can put

2πaα1

λ
` ξ “ 8 ,
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we can in general writeliii

J1 ´ J2 “ ´
2λk
π

ξ
ż

0

sinw
w

dw`
λk

π

ξ´ 2πα1a
λ

ż

´8

sinw
w

dw . (61)

Therefore, if ξ is large compared to π and the observation
point is so far from the edge (x “ a) of the slit that

ˇ

ˇ

ˇ

ˇ

ξ´
2πα1a

λ

ˇ

ˇ

ˇ

ˇ

“
2πα1

λ
|x´ a|

is still large compared to π, then we can set

ξ´
2πα1a

λ
“ ´8

and get

J1 ´ J2 “ ´
2λk
π

π

2
“ ´λk .

We have therefore inside the slit, except in the immedi-
ate vicinity of its center and its edges, a nearly constant
brightness.liv

At the edge (x “ a) we have

J1 ´ J2 “ ´
2λk
π

π

2
`
λk

π

π

2
“ ´

λk

2
.

At the edge, therefore, there is only 1{4 of the intensity that
prevails in the slit. If one is outside the slit and far enough
from its edges, then

ξ´
2πα1a

λ
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Figure 45

`a´a 0

I

x

is large compared to π and can be set to `8. We then get

J1 ´ J2 “ 0 and therefore also I “ 0 .

The graph of the intensity is therefore largely represented
by Fig. 45. This is not entirely correct. In fact, fluctuations
of I still appear near the center of the slit x “ 0 and the
edges x “ a. This can easily be recognized as follows.
For the sake of simplicity, we base the consideration on the
following numerical example:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2πα1a

λ
“ 50π ,

α1
“ 1 minute “

1
602 ,

λ “ 6 ¨ 10´4 mm ,
therefore a “ 54 mm .

Since the graph of

ϕpξq “

ξ
ż

0

sinw
w

dw
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Figure 46

ϕpξq

´π π 2π 3π 4π 5π

π
2

π
2

is the one sketched in Fig. 46, we see that

ϕpξq has a maximum for ξ “ π, 3π, 5π ¨ ¨ ¨

has a minimum for ξ “ 2π, 4π, 6π, etc.

Now, even for ξ “ π or ξ “ 2π,

ξ´
2πα1a

λ

#

equal to ´49π
or ´48π

is still deeply negative, so that in J1 ´ J2 the second integral
is small. The first, on the other hand, is “ ϕpξq, and
therefore we have, according to Eq. 61,

J1 ´ J2 “ ´
2λk
π
ϕpξq .

I therefore exhibits fluctuations of functional form rϕpξqs2,
so that I assumes a maximum for ξ “ π and a minimum
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for ξ “ 2π. The values ξ “ π and ξ “ 2π, however,
correspond to the values

x “
λ

2α1
“ 1 mm

and x “
λ

α1
“ 2 mm, respectively.

Thus, these “diffraction fringes” close to the center of the
slit are still clearly visible. Something quite analogous also
occurs at the edges of the slit (x “ ˘a), as we saw in the
previous section. The exact intensity curve will therefore
have the form shown in Fig. 47.lv

Figure 47

0´a `a

I

x

11

1
4

1
4

When the phase difference δ of the two halves of the gap
increases from 0 to π, the deep minimum in the center only
gradually forms (see Figs. 48a, b, and c).
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Figure 48

`a´a 0

I

(a) δ “ 0, 2π, 4π . . .

`a´a 0

I

(b) δ “ π
2 , 3π

2 , 5π
2 . . .

`a´a 0

I

(c) δ “ π, 3π, 5π . . .

§24. Slit of finite width with oblique incidence of light
Ifu is the angle of incidence of the light rays, then the light disturbance
at the observation point is

s “
k

λ

`b
ż

´b

dY 2β1
sin 2πβ1 y´Y

λ

2πβ1 y´Y
λ

`a
ż

´a

dX 2α1
sin 2πα1 x´X

λ

2πα1 x´X
λ

sin 2π
ˆ

t

T
´
X sinu
λ

˙

,

/

/

/

/

/

.

/

/

/

/

/

-

. (62)

Therefore, for points within the slit zone, we havelvi

s “ k

`a
ż

´a

dX 2α1
sin 2πα1 x´X

λ

2πα1 x´X
λ

sin 2π
„

t

T
´
x sinu
λ

`
px´ Xq sinu

λ


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“ k

`a
ż

´a

dX 2α1
sin 2πα1 x´X

λ

2πα1 x´X
λ

cos
ˆ

2π sinux´ X

λ

˙

sin 2π
ˆ

t

T
´
x sinu
λ

˙

` k

`a
ż

´a

dX 2α1
sin 2πα1 x´X

λ

2πα1 x´X
λ

sin
ˆ

2π sinux´ X

λ

˙

cos 2π
ˆ

t

T
´
x sinu
λ

˙

.

Because the last factors in both integrals do not contain X, we can
write

s “ A sin 2πt
1

T
` B cos 2πt

1

T
,

where t1
“ t´

x sinu
c

A “ k

`a
ż

´a

dX 2α1
sin 2πα1 x´X

λ

2πα1 x´X
λ

cos
ˆ

2π sinux´ X

λ

˙

B “ k

`a
ż

´a

dX 2α1
sin 2πα1 x´X

λ

2πα1 x´X
λ

sin
ˆ

2π sinux´ X

λ

˙

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

. (63)

If we set
2πα1x´ X

λ
“ w ,

then we have

A “
kλ

π

2πα1 x`a
λ

ż

2πα1 x´a
λ

dw ¨
sinw
w

¨ cos
ˆ

sinu
α1

w

˙

B “
kλ

π

2πα1 x`a
λ

ż

2πα1 x´a
λ

dw ¨
sinw
w

¨ sin
ˆ

sinu
α1

w

˙

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

(64)
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and the intensity is I “ A2 ` B2. We need to consider only positive
values of x since for a switch of xwith ´x, the value ofA is unchanged
and the sign of B changes, and therefore I remains the same.

To discuss the expression for B, we consider the integral

B8 “
1
π

`8
ż

´8

dw
sinw
w

sin
ˆ

sinu
α1

w

˙

“
1
π

0
ż

´8

dw
sinw
w

sin
ˆ

sinu
α1

w

˙

`
1
π

`8
ż

0

dw
sinw
w

sin
ˆ

sinu
α1

w

˙

.

It can readily be seen that the curve represented by the integrand
of the first integral is the symmetrical mirror image of the curve
represented by the integrand of the second integral with respect to
the w-axis. Therefore, B8 “ 0.lvii

To discuss A, we consider the integral

A8 “
1
π

`8
ż

´8

dw
sinw
w

¨ cos
ˆ

sinu
α1

w

˙

. (65)

According to earlier developments,lviii we have

A8 “ 0 for sinu ă ´α1 and sinu ą `α1 ,
A8 “ 1 for sinu ą ´α1 and simultaneously sinu ă `α1

A8 “
1
2

for sinu “ ˘α1 .

,

/

/

.

/

/

-

(66)

To compare our integrals A and Bwith A8 and B8, we set

x “ a` δ ,

where δ is the distance of the observation point from the edge of the
slit and is to be taken as positive if the observation point varies from
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Figure 49

x

0´a `a

x

δ

the edge with growing x (Fig. 49). Therefore, δ varies, for positive x,
between ´a and `8. Then we have

A “
kλ

π

2πα1 2a`δ
λ

ż

2πα1 δ
λ

dw
sinw
w

¨ cos
ˆ

sinu
α1

w

˙

B “
kλ

π

2πα1 2a`δ
λ

ż

2πα1 δ
λ

dw
sinw
w

¨ sin
ˆ

sinu
α1

w

˙

.
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For a slit of finite width (a somewhat ą1 mm) and a not too small
opening angle of the diffracting aperture (α1 somewhat ą1o), 2πaα1{λ

is so large compared to π that the upper limit inA and B can be set to
8. With respect to the lower limit, we again differentiate four cases.

1. The observation point is outside the slit and so far from the
edge that one can replace 2πα1δ{λ by `8: A “ 0 and B “ 0; i.e.,
the light disturbance is zero regardless of the angle of incidence
u. For points far away from the edge, therefore, there is no
difference between the phenomena of normal incidence of light
and those of oblique incidence of light.

2. The observation point lies within the slit and so far from the
edge that 2πα1δ{λ can be replaced by ´8; then we get

B “ B8 “ 0
A “ kλA8 .

The value of A8 still depends on the angle of incidence; in fact,
A “ kλ if sinu lies between ´α1 and `α1, i.e., if the incident
light rays extend through the slit into the diffracting aperture.
The total intensity here is then equal to k2λ2. On the other hand,
we haveA “ 0 if sinu ă ´α1 or sinu ą `α1, i.e., if the extended
light rays no longer hit the diffracing aperture. In this case, the
total intensity is therefore equal to zero for all points within the
slit but sufficiently far away from the edge.
If the marginal ray of the incident light beam just hits the edges
of the diffracting aperture, then sinu “ ˘α1 and A “ 1

2kλ; i.e.,
the total intensity is equal to k2λ2{4.

3. The observation point lies on the edge of the slit. In this case,
we have 2πα1δ{λ “ 0, and for each incidence angle the values
ofA and B are half of what they take on in case 2, i.e., when the
observation point is located within the slit.lix
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4. If the observation point lies in the immediate vicinity of the slit
edge, we must decompose the integralsA andB in the following
way:

A “
kλ

π

8
ż

0

´
kλ

π

2πα1δ{λ
ż

0

“
kλ

2
A8 ´

kλ

π

2πα1δ{λ
ż

0

B “
kλ

π

8
ż

0

´
kλ

π

2πα1δ{λ
ż

0

“ ´
kλ

π

2πα1δ{λ
ż

0

.

Of interest is the case where A8 “ 0, i.e., when the extended
light rays do not hit the diffracting aperture, or when

sinu ă ´α1

or sinu ą `α1 .

While, as we have seen, in this case the inside of the slit and
the slit edges become completely dark, the intensity for points
infinitely close to the slit edges retains finite values.
To calculate the intensity distribution close to the edges for
various u, we consider the following:
If the value of ρ “ sinu

α1 is large, e.g., the magnitude of α1 has the
value sin 1o » 1

60 , while u, e.g., “ 30o, so that sinu “ 1
2 , then the

graphs of the functions

fpwq “
sinw
w

cospρwq

and gpwq “
sinw
w

sinpρwq

are the ones plotted approximately in Figs. 50a and b.
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Figure 50
(a)

´2π ´π π 2π

fpwq

w

(b)

´2π ´π π 2π

gpwq

w

We observe that the curves fpwq and gpwq intersect the axis
ρ ´ 1 times between w “ 0 and w “ π at distances π

ρ
. The first

intersection after the pointw “ 0 happens for the fpwq curve at
w “ 1

2
π
ρ

, and for the gpwq curve at w “ π
ρ

. Now the intensity is
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I “ A2
` B2 ,

where A “ const

2πα1δ
λ

ż

0

dw
sinw
w

cospρwq

B “ const

2πα1δ
λ

ż

0

dw
sinw
w

sinpρwq .

If one then moves the boundary 2πα1δ
λ

along the axis of the
curves fpwq andgpwq and forms the corresponding areal content
represented by A or B, one can easily recognize the
following:

With growing |δ|, I executes a series of fluctuations with de-
creasing amplitude. The minima of the fluctuations lie at
locations

2πα1δ

λ
“ ˘

2aπ
ρ

pa “ 0, 1, 2, 3 . . .q ,

i.e., δ “ ˘
aλ

sinu
.

They maintain a distance λ
sinu

from each other. The intensity of
the maxima is extremely low.

If, on the other hand, sinu is only slightly different from α1,
that is to say sinu “ α1 ` ε, where ε is small, then, according to
simple calculation,lx
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A “
1
2

4πα1δ
λ

ż

0

sinw
w

dw`pεq

B “

2πα1δ
λ

ż

0

sin2w

w
dw`pεq ,

where pεq denotes quantities of the order of ε. Since the curve
sin2 w
w

always runs above the abscissa, B grows everywhere with
increasing δ, whereasA simultaneously experiences the known
fluctuations. The minima of the intensity thus occur at intervals

δ “
λ

2α1
.

The maxima of intensity here have finite values (Fig. 51).lxi

So far, we have always assumed that the slit is so wide that 2πaα1

λ

is large compared to π.
We now proceed to the consideration of a finite but very narrow

slit by assuming that 2πaα1

λ
is small compared to π, thereby gain-

ing a supplement and extension of the already discussed theory of
the infinitely narrow slit. In practice, in order to make 2πaα1

λ
small

compared to π, one must duly reduce α1, since, e.g., even for
α1

“ 1o

a “
1

100
mm

λ “ 6 ¨ 10´4 mm ,
2πaα1

λ
is about π

2 and still not small compared to π. If we set
$

’

&

’

%

2πaα1

λ
“ ε (small)

2πα1x

λ
“ ξ ,
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Figure 51

I

´a a0

then the expression for the intensity is

I “ A2
` B2

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

A “
kλ

π

ξ`ε
ż

ξ´ε

dw
sinw
w

cos
ˆ

sinu
α1

w

˙

B “
kλ

π

ξ`ε
ż

ξ´ε

dw
sinw
w

sin
ˆ

sinu
α1

w

˙

.

If sinu
α1 is not too large, so that ε sinu

α1 is small compared to 1, i.e., if we
have almost normal incidence, we can expand A and B according to
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the Taylor series and obtain in a first approximationlxii

I “ 4ε2k
2λ2

π2

ˆ

sin ξ
ξ

˙2

.

The same value applies to normal incidence, u “ 0. Thus, in the
slit itself (ξ » 0) there is an almost constant, strongest brightness;
maxima and minima line up symmetrically on both sides of the slit
(see Fig. 52).

Figure 52

´2π ´π ε0 π´ε

slit

2π

I

ξ

If the incidence is tilted, i.e., if sinu has a finite value, then, since
α1 is very small, the magnitude

ρ “
sinu
α1
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is very large. The graphs of the integrandsA and B, i.e., the functions

fpwq “
sinw
w

cospρwq

gpwq “
sinw
w

sinpρwq ,

are in this case already represented in Figs. 50a and b.
The graphs of A and B as functions of ξ therefore depend on the

ratio of the small interval of integration

2ε “
4πaα1

λ

to the likewise small quantity π{ρ, which represents the distance
between two successive zero points of the curves fpwq and gpwq. We
want to distinguish two main cases.

1. Let
2ε “ 2aπ

ρ
pa “ 1, 2, 3 . . .q .

Then we have

2a sinu “ aλ pa “ 1, 2, 3 . . .q ;

i.e., the path difference of the rays striking the edges of the
object slit is an integer multiple of the wavelength. It is then
for all ξ, as can be easily seen, A and B almost “ 0, since in
the formation of the integrals the adjacent pieces always cancel
each other out. The entire field of vision is therefore dark. This is
natural: the incident light experiences diffraction at the object
slit. The principal maximum lies in the extension of the incident
rays, that is, below the “diffraction angle” u. The minima lie in
the directions

sinu “
aλ

2a
pa “ 1, 2, 3 . . .q ,
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and the secondary maxima lie in the directions

sinu “
p2a ` 1qλ

2 ¨ 2a
pa “ 0, 1, 2, 3 . . .q .

In the considered case, sinu “ aλ
2a ; therefore, a minimum gen-

erated by the object slit falls on the diffracting slit pα,βq, and
the field of view is therefore dark, as deduced above.

2. Let
2ε “ p2a ` 1q

π

ρ
pa “ 0, 1, 2, 3 . . .q ;

then we have

2a sinu “
p2a ` 1q

2
¨ λ pa “ 0, 1, 2, 3 . . .q .

In this case, one of the secondary maxima of the diffraction im-
age generated by the object slit falls on the diffracting aperture.
One sees immediately that for ξ “ 0, that is, in the middle of the
slit, A has a value different from zero, which becomes smaller
the larger the 2ε, i.e., the more oblique the incidence of light
and therefore the higher the order of the maximum that falls
on the diffracting aperture. B, on the other hand, is always 0
for ξ “ 0.
If ξ now grows, A and B periodically assume maxima and
minima in rapid succession in such a way that whenever A
becomes near 0,B reaches its maximum value and vice versa. At
the same time, however, these maximum values decrease from
ξ “ 0 to ξ “ π, and then increase again, thus causing periodic
fluctuations in the “wide” intervals of π. Therefore, similar to
normal incidence of light, the well-known diffraction pattern
will appear, with the principal maximum at the place of the
object slit and its secondary maxima and minima symmetrically
on both sides, as shown in Fig. 52.
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§25. Switching of the order of integration in the calculation of the
resulting light disturbance

In what follows, we deal with the general problem: A point source
Q (Fig. 53) illuminates the object whose center L0 lies on the axis
of the imaging system. An arbitrary point L of the object has the

Figure 53

pX, Yq
e

pξ,ηq
x,y

r

Q r0
L0

L

coordinates X, Y. The image of the small object is sought using an
arbitrary aperture of the imaging system. As before, we introduce as
an “intermediate surface” a spherical surface whose points ξ,η have
the nearly constant distance e from the individual object points X, Y.
Then the light disturbance at a point X, Y of the object on the side
facing the intermediate surface can be represented by

KϕpX, Yq sin 2π
„

t

T
´ ΨpX, Yq



, (67)

where ϕpX, Yq is the transmission coefficient of the object element
dXdY, and KϕpX, Yq is the amplitude of the disturbance at the loca-
tion of the element dXdY. ΨpX, Yq can be divided into two parts:

ΨpX, Yq “
r´ r0

λ
`ψpX, Yq .
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In this case, the factor r´r0
λ

takes into account the oblique incidence
of the light and ψpX, Yq the delay of the waves as a result of passing
through the object element.

According to earlier results,lxiii the sought resulting disturbance
at the observation point x,y is then

S “
K

λ2

ĳ

object

dXdY ϕpX, Yq

ĳ

dξ1 dη1 sin 2π
„

t

T
´
ξ1px´ Xq

λ

´
η1py´ Yq

λ
´ ΨpX, Yq



,

where we set ξ1
“
ξ

e
, η1

“
η

e
.

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

(68)

The integration with respect to X, Y extends over the illuminated
object, the integration with respect to ξ1,η1 over the projection of the
“effective patch” of the intermediate surface.

In carrying out the integration, one can proceed as before. One
integrates first over the intermediate surface (ξ1,η1) and then over the
object (X, Y). The first integration provides, in the object plane,lxiv the
effect of diffraction of the extent-limiting aperture due to the presence
of one object element; the second integration takes into account the
extent of the object.

The formation of the image becomes physically clearer if one
reverses the order of the integrations and carries out the integration
with respect to X, Y first. This immediately provides the effect of
diffraction of the illuminated object at the location of the intermediate
surface. If the object is, e.g., a grating, then the well-known diffraction
spectra occur on the intermediate surface, the positions of which
depend on the grating constant and the angle of incidence of the light.
After performing the first integration, one can therefore abstract both
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the light source and the object since both have been replaced by the
diffraction spectra appearing on the intermediate surface.

The second integration over ξ1,η1 has therefore only the role of
calculating the interference effect of these diffraction spectra at a
point x,y in the object plane.

The resulting phenomenon (“image”) is thus the interference ef-
fect of a diffraction phenomenon: the primary one being the diffrac-
tion phenomenon on the intermediate surface created by the light
source and the object, and the secondary one being the effect of inter-
ference in the object plane. Only then can one recognize clearly the
difference between the image of a self-luminous and an illuminated
object.

In the presence of an object of a complicated structure, the eval-
uation of S is hardly feasible. On the other hand, general rules can
be derived that specify under what conditions an “image” similar to
the existing object appears, or to which fictitious object instead of the
existing one the appearing phenomenon is similar.

To derive these rules, we decompose the expression S into two
parts, S1 and S2. The first part, S1, emerges from S if the integration
is extended over the entire intermediate surface (hemisphere), i.e., if
ξ1 and η1 take on all values from ´1 to `1. S2, however, extends over
the entire intermediate surface with the exclusion of the “effective
part.”

For simplification, we set

X

λ
“ X1; Y

λ
“ Y1; x

λ
“ x1; y

λ
“ y1

ϕpλX1, λY1
q “ ϕ1pX1, Y1

q; ΨpλX1, λY1
q “ Ψ1pX1, Y1

q

,

.

-

. (69)
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We then get

S1 “ K

`1
ĳ

´1

dξ1 dη1

ĳ

object

dX1 dY1ϕ1pX1, Y1
q sin 2π

„

t

T
´ Ψ1pX1, Y1

q

´ξ1
px1

´ X1
q ´ η1

py1
´ Y1

q



S2 “ S1 ´ S .

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

(70)

The variables ξ1 “ ξ
e

and η1 “
η
e

are sines of the angles, and
therefore the following relations are valid:

´ 1 ď

#

ξ1

η1
ď `1 . (71)

If we represent ξ1 and η1 as orthogonal coordinates in the ξ1η1-
plane (Fig. 54), then ξ1,η1 have physical meaning only in the unit

Figure 54

physical region

´1

`1

`1

η1

0
ξ1

´1

region
imaginary
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circle around the origin. Outside this circle, the angles to which ξ1

and η1 belong as sines become imaginary.
Only in the interior of this unit circle does the function contained

in S1,

fpξ1,η1
q “ K

ĳ

object

dX1 dY1ϕ1pX1, Y1
q sin 2π

„

t

T

´Ψ1pX1, Y1
q ` ξ1X1

` η1Y1



,

/

/

/

/

.

/

/

/

/

-

, (72)

which represents the light disturbance in points ξ,η of the interme-
diate surface, have physical significance. Therefore, we want to call the
unit circle in the ξ1η1-plane the physical region and the exterior of the
unit circle the imaginary region.

Only in the physical region does fpξ1,η1q have a physical, real
meaning. On the other hand, in purely mathematical terms, of course,
one can continue the function fpξ1,η1q into the imaginary region. It
is as if one were unaware of the meaning of the variables ξ1,η1 and
treated them as infinitely variable.

For example, if the object is a grating, then part of the function
fpξ1,η1q would be the known grating-generated diffraction image that
extends across the hemisphere (intermediate surface) and breaks off
at its boundaries ξ1 “ ˘1 and η1 “ ˘1. Mathematically, on the other
hand, we can continue the diffraction image with its sharp, gradually
extinguishing maxima up to ξ1 “ ˘8 and η1 “ ˘8. The number
of maxima that are in the physical region depends on the grating
constant and is greater, the larger the grating constant. (See Fig. 55,
in which the amplitudes of the diffraction maxima are plotted.)lxv
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Figure 55

´1 `10

physical regionimaginary region imaginary region

If we form the integral

S˚
1 “ K

`8
ĳ

´8

dξ1 dη1

ĳ

object

dX1 dY1ϕ1pX1, Y1
q sin 2π

„

t

T
´ Ψ1pX1, Y1

q

´ξ1
px1

´ X1
q ´ η1

py1
´ Y1

q



,

/

/

/

/

/

.

/

/

/

/

/

-

,

(73)

which extends over all real and imaginary maxima, we shall be able
to identify this integral more closely with S1, the smaller the contri-
bution of fpξ1,η1q in the imaginary region, and in the example of a
grating, the smaller the number of maxima lying in the imaginary
region, i.e., the larger the grating constant. Strictly speaking, S˚

1 is
never equal to S1. However, if the diffration effect of the object rep-
resented by fpξ1,η1q in the imaginary region is vanishingly small, so that
almost the entire image of the function fpξ1,η1q has expanded in the
physical region, the equation

S1 “ S˚
1

represents in praxis a well usable approximation.
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We now prove that the expression S˚
1 transitions into the expres-

sion
Kϕpx,yq sin 2π

„

t

T
´ Ψpx,yq



,

if the observation point x,y coincides with the object point X, Y, i.e.,
that S˚

1 represents the light disturbance present at the object points
x,y on the side of the object that faces the intermediate surface.lxvi

For this purpose, we decompose the sine in the integral and write

S˚
1 “K

`8
ĳ

´8

dξ1 dη1

ĳ

object

dX1 dY1ϕ1pX1, Y1
q sin 2π

„

t

T
´ Ψ1



¨ cos 2πrξ1
px1

´ X1
q ` η1

py1
´ Y1

qs

´K

`8
ĳ

´8

dξ1 dη1

ĳ

object

dX1 dY1ϕ1pX1, Y1
q cos 2π

„

t

T
´ Ψ1



¨ sin 2πrξ1
px1

´ X1
q ` η1

py1
´ Y1

qs .

If we set

#

Kϕ1pX1, Y1q sin 2π
“

t
T

´ Ψ1
‰

“ FpX1, Y1q

Kϕ1pX1, Y1q cos 2π
“

t
T

´ Ψ1
‰

“ GpX1, Y1q ,
we get

S˚
1 “

`8
ĳ

´8

dξ1 dη1

ĳ

object

FpX1, Y1
qdX1 dY1 cos 2πrξ1

px1
´ X1

q ` η1
py1

´ Y1
qs

´

`8
ĳ

´8

dξ1 dη1

ĳ

object

GpX1, Y1
qdX1 dY1 sin 2πrξ1

px1
´ X1

q ` η1
py1

´ Y1
qs

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

.

(74)
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We can easily show that

`8
ĳ

´8

dξ1 dη1

ĳ

object

FpX1, Y1
qdX1 dY1 cos 2πrξ1

px1
´ X1

q ` η1
py1

´ Y1
qs

“ Fpx1,y1
q , if point x1,y1 lies inside the object,

“ 0 , if point x1,y1 lies outside the object,

and
`8
ĳ

´8

dξ1 dη1

ĳ

object

GpX1, Y1
qdX1 dY1 sin 2πrξ1

px1
´ X1

q ` η1
py1

´ Y1
qs

“ 0 for all locations of point x1,y1 .

This is because the two Fourier theorems apply:lxvii

`8
ż

´8

dξ

A2
ż

A1

dXFpXq cos 2πξpx´ Xq “

#

Fpxq , if x is inside A1 . . .A2

0 , if x is outside A1 . . .A2

and
`8
ż

´8

dξ

A2
ż

A1

dXFpXq sin 2πξpx´Aq “ 0 , for all values of x.

From this, it follows that

`8
ż

´8

dξ

A2
ż

A1

dXFpX,yq cos 2πξpx´ Xq “ Fpx,yq , if x is between A1 and A2,

and
`8
ż

´8

dη

B2
ż

B1

dY FpX, Yq cos 2πηpy´ Yq “ FpX,yq , if y is between B1 and B2.
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Therefore, by substitution,

`8
ĳ

´8

dξdη

A2
ż

A1

B2
ż

B1

dXdY FpX, Yq cos 2πξpx´ Xq cos 2πηpy´ Yq

“ Fpx,yq , if x,y lie between A1 . . .A2 and B1 . . .B2, respectively.

By analogy, we have

`8
ĳ

´8

dξdη

A2
ż

A1

B2
ż

B1

dXdY FpX, Yq sin 2πξpx´ Xq sin 2πηpy´ Yq “ 0

for all values of x,y.

By subtracting the last formula from the one before, we get, finally,

`8
ĳ

´8

dξdη

A2
ż

A1

B2
ż

B1

dXdY FpX, Yq cos 2πrξpx´ Xq ` ηpy´ Yqs

“ Fpx,yq , when x and y lie between A1 and A2

and between B1 and B2, respectively,
“ 0 for all other locations of x,y.

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-
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It can easily be shown in an analogous fashion that we have,
additionally,

`8
ĳ

´8

dξdη

A2
ż

A1

B2
ż

B1

dXdY GpX, Yq sin 2πrξpx´ Xq ` ηpy´ Yqs

“ 0 for all locations of x,y.

,

/

/

/

.

/

/

/

-

(76)

This proves what was already anticipated above that
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1.

S˚
1 “ Fpx1,y1

q “ Kϕ1px1,y1
q sin 2π

„

t

T
´ Ψ1px1,y1

q



“ Kϕpx,yq sin 2π
„

t

T
´ Ψpx,yq



,

/

/

.

/

/

-

(77)

if the point x,y lies within the object.

2. S˚
1 “ 0 for all points x,y outside the object.

Therefore, S˚
1 represents the light distribution present on that side of the

object pX, Yq to be imaged, facing the intermediate surface.

§26. Pointwise and similar imaging of the object
Referring to the previous paragraph, a pointwise and similar imaging
takes place when S can be completely replaced by S˚

1 . This is always
the case if all the diffraction maxima down to negligible intensity
contribute to image formation, i.e., if the aperture of the imaging
system (the “effective part” of the intermediate surface) collects all
the rays diffracted from the object down to negligible intensity. Thus,
there is always an absolute similarity between image and object if
the entire image of the function fpξ1,η1q can be expanded within the
aperture, but there is dissimilarity if the aperture does not collect all
diffraction maxima of fpξ1,η1q, i.e., if only parts of the image of the
function lie within the aperture.

We shall discuss on which physical quantities the capacity of the
system and thus its performance depends. For this, we consider the
imaging of a grating. For a given wavelength λ0 of the incident light,
the position of the hth peak is given by the relation

sinuh “ λ0
h

nγ
,

where uh denotes the diffraction angle of the hth maximum, n the
index of refraction of the front medium that contains the intermediate
surface (immersion fluid), and γ the grating constant.
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The number of maxima within the aperture angleU of our system
is therefore

h “ n sinU γ
λ0

. (78)

As we know, the larger the h, the greater the similarity of the
image, and we reach ideal similarity for h “ 8. For a given grating
(γ) and wavelength (λ0) of the incident light, the number (h) of the
image-contributing diffraction maxima that are accepted within the
aperture angle is proportional to the product: index of refraction times
sine of the aperture angle. This productA “ n¨sinUhas been designated
by Abbe as the numerical aperture of the system.

Thus, the important theorem follows: If two systems have the same
numerical aperture,

n1 sinU1 “ n2 sinU2 ,

they image the same object grating with the same degree of similarity. Only
in this way does one actually recognize the meaning of the term
numerical aperture introduced by Abbe, that only the product A “

n ¨sinU determines the similarity of the image, not the aperture angle
U of the system. As is well known, for the imaging of self-luminous
objects, the numerical aperture is the quantity that alone determines
the luminous intensity of the system.

If the aperture angle U of the system for a given λ0 and γ, as with
a dry system (n “ 1), does not include all the diffraction maxima to
vanishing intensity, then the image is a dissimilar one; it can then be
transformed into a more similar one if one uses the same system as
an immersion system (n ą 1). As the equation

h “ n ¨ sinU ¨ γ{λ0

shows, the similarity of the image can be increased even more by
reducing λ0.

For a given numerical aperture A “ n sinU of a system with a
given wavelength λ0, the similarity of the grating image is solely due
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to the grating constant γ. The larger γ becomes, the more diffrac-
tion maxima can contribute to image formation, and the greater the
similarity. The maximum numerical aperture of a system is reached
when U “ 90o and is then

A “ n .
Therefore, in this case of maximum possible performance,

h “ n
γ

λ0
. (79)

If we denote with hl the last diffraction spectrum of intensity
or brightness to be considered in the overall image of the function
fpξ1,η1q, the system with A “ nwill image all gratings with absolute
similarity, if

γ ě
hl ¨ λ0

n
.

§27. Dissimilar imaging of the object
We shall base this investigation on a system with maximum aperture
A “ n, which still images a grating with constant γ with absolute
similarity, meaning the satisfaction of the inequality

γ ě hlλ0{n ,
where hl is the last diffraction spectrum of intensity still to be con-
sidered in the overall image of the function fpξ1,η1q. A grating with a
smaller grating constant (γ1 ă γ) is therefore no longer imaged by the
system similarly. If λ0 has the smallest possible value (photographic
waves) and n has the highest possible value (homogeneous immer-
sion), then the grating γ “ hlλ0{n is imaged in an absolutely similar
way (a fortiori all gratings with larger grating constants), whereas it
is physically impossible to image gratings with smaller grating con-
stants (γ1 ă γ) similarly.

As an example, let us suppose that λ0 “ 350 nm, n “ 1.65, and
hl “ 10, assuming that maxima with an intensity less than 1 % of the
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mean do not contribute to the image. Then the constant of the grating
that can still be imaged with absolute similarity (“limit grating”) is
γ » 2µm.

If we let γ decrease continuously from this limit, more and more
maxima of the function fpξ1,η1q move from the physical region (ξ1,η1 “

´1 to `1) into the imaginary region (ξ1,η1 ă ´1 and ą `1); i.e., the
number of maxima contributing to the image becomes ever smaller
and the image becomes more dissimilar. If the grating constant has
become so small that only the very center diffraction maximum (prin-
cipal maximum) lies in the physical region, the dissimilarity reaches
its highest degree. We shall denote this maximum dissimilarity as
“absolute dissimilarity.” It is evidenced by the fact that the image
of the structure of the object grating does not show anything, but
appears as an almost uniformly luminous area. Only if, in addition
to the principal maximum, one of the two adjacent maxima comes
into action does the lowest degree of similarity occur; i.e., the im-
age shows interference maxima and minima (structure), and indeed
possesses the same number of strokes as the grating.

The lowest degree of similarity is achieved with central illumina-
tion for

γ “
λ0

A
, (80)

where besides the principal maximum both adjacent maxima are con-
tributing. But the same lowest degree of similarity is attained when,
apart from the principal maximum, only one of the two adjacent
maxima contributes. This can be realized by applying oblique illumi-
nation, where the grating constant may decrease down to a value of

γm “
λ0

2A
. (81)

With this value, the limit of the resolving power of a microscope
system is reached.
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As is well known, Helmholtz2 came almost at the same time, albeit
in a different way, to the same limit of resolving power.

If one starts by using the full aperture A “ n for the grating

γ ă
λ0

2A

(absolute dissimilarity), with a continuously growing grating con-
stant, new secondary maxima appear continuously and seamlessly
in addition to the principal maximum, according to their ordinal
number. Here the image always shows just as many interference
maxima and minima as the respective grating has “strokes,” whereas
the intensity decrease from maximum to minimum becomes more
and more similar to the intensity distribution in the object grating
given by the function ϕpX, Yq. In this way, one finally reaches the
“limit grating,” which is just about imaged with absolute similarity.

However, with the series of dissimilarities just considered, the
variety of dissimilarities is not exhausted. Rather, a large number
of variations of dissimilar images of one and the same object grating
can be achieved by artificially restricting the aperture or by clipping
individual arbitrary and arbitrarily located diffraction maxima. In all
these cases, and more generally in the imaging of any microscopic
object, a theorem can be derived from our earlier observations, which
determines the kind of dissimilarity in each case.

For this, we create a fictitious object pOfq, whose natural and com-
plete diffraction pattern rψpξ1,η1qs coincides with the diffraction pat-
tern fpξ1,η1q of the real object pOrq, which was rendered artificially
incomplete by stopping down the diaphragm, etc. It is therefore

ψpξ1,η1
qcomplete “ fpξ1,η1

qincomplete

2H. Helmholtz, “The theoretical limit of the resolving power of microscopes,”
Pogg. Ann, Jubelband 1874,lxviii pp. 557–584; Wissenschaftl. Abhandl. Bd. II,
pp. 185–212, 1883.
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and thus, finally,

Srfpξ1,η1
qincompletes “ Srψpξ1,η1

qcompletes “ S˚
1rψpξ1,η1

qcompletes . (82)

Thus, the image of the given object Or in the case of artificial
clipping Srfpξ1,η1qincompletes is equal to the absolutely similar image of
the fictitious object Of of the form S˚

1rψpξ1,η1qcompletes. For this kind
of dissimilarity, we obtain the following general theorem: The image
of the given object Or is identical to the absolutely similar image of that
fictitious object Of which would just produce a complete diffraction pattern
equal to part of the diffraction pattern of Or accepted by the aperture of the
system.




