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Translators’ foreword

This work was originally published in 1910, five years after Ernst
Abbe’s death. The original book, published by Friedrich Vieweg und
Sohn, was compiled by Otto Lummer, professor of physics at the
University of Breslau, and his then-assistant Fritz Reiche. The book
is an expanded version of notes taken by Lummer, who attended
Abbe’s lectures on the subject in Jena in 1887. It is the only detailed
publication of Abbe’s theory on image formation in the microscope.
The entire book is based on classical optics; hence the arguments
made in it are still valid today. In particular, the concept of a coher-
ently illuminated image as two back-to-back diffraction processes of
the object was beautifully described in it for the first time. In the
section “Imaging of illuminated objects” in his 1933 classic textbook
Optik, Max Born stated clearly that “this theory was developed by
Abbe and was demonstrated by beautiful experiments. See E. Abbe,
Theory of Image Formation in the Microscope.” Frits Zernike began his
famous 1934 article on phase-contrast imaging by stating “On the
basis of Abbe’s diffraction theory of optical imaging,” and referred
to this book in the article whose English translation can be found
in the Journal of Micro/Nanopatterning, Materials, and Metrology (JM?),
published by SPIE.
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VIII Translators’ foreword §0

We believe the book is of more than historical value. Today, in
partnership with ASML, ZEISS enables image formation at the finest
resolution; it is the manufacturer of the imaging optics for extreme
ultraviolet (EUV) lithography that employs the 13.5-nm wavelength
radiation generated by laser-produced plasma. While these litho-
graphic systems, used in the fabrication of the most advanced inte-
grated semiconductor circuits, can resolve close to 20nm in pitch,
they are governed by the same underlying physics of image forma-
tion as microscopes of the late 19th century. The reader can therefore
learn projection imaging directly from the master himself! Also, the
book is inspirational, as it discusses several very innovative topics for
that time. One example is off-axis illumination for improving the res-
olution in the imaging of two neighboring slits. Another exampleisa
mi-phase edge in the middle of an otherwise transparent slit, resulting
in zero light intensity there in its image. And of course, there is the
description of coherent imaging as two back-to-back diffraction pro-
cesses. Abbe did not come up with the concept of partial coherence.
Yet it states in the book that for incoherent imaging, the resulting
intensity is obtained simply by summing the intensities generated by
individual luminous points. We all know that one of the popular
methods of calculating the aerial image in microlithography is done
exactly this way, which is appropriately called the Abbe method.

Ernst Abbe received his doctorate from the University of Gottin-
gen in 1861 under Wilhelm Weber. In 1866, at the invitation of Carl
Zeifs, owner of Zeiss Works in Jena, Abbe became the research direc-
tor there. He made numerous improvements to the performance of
ZEISS microscopes based on physics rather than trial and error. In
1878, he built ZEISS’ first immersion microscope. In 1873, he pub-
lished the famous resolution formula d = A/(2nsin?d) (see below).
After Carl Zeify” death in 1888, Abbe placed the company under the
Carl Zeiss Foundation that he established, with himself at the helm.
Abbe also had held an academic position at the University of Jena
since 1863. He died in 1905 at the age of 64.



§0 Translators’ foreword IX

We also want to mention the two distinguished scientists who
compiled the original book. Otto Lummer received his doctorate
under Hermann von Helmholtz at the University of Berlin in 1884
and was the latter’s assistant for three years. From 1887 to 1904, he
was a member of the scientific staff at the Imperial Physical Tech-
nical Institute [today’s Physikalisch-Technische Bundesanstalt (PTB),
similar in function to the National Institute of Standards and Technol-
ogy (NIST) in the US]. He was appointed professor at the University
of Breslau (in today’s Wroctaw, Poland) in 1905. Lummer worked
mainly in the field of optics and thermal radiation. He developed a
mercury vapor lamp and, together with Wilhelm Wien, constructed
the first blackbody radiator and used it, together with Ernst Pring-
sheim, to conduct fundamental investigations of the spectral energy
distribution of the blackbody radiation that led Max Planck to his
quantum hypothesis. He died in Breslau in 1925, aged 64. At the time
of the compilation of this book, Fritz Reiche was Lummer’s assistant
in Breslau. Reiche attended the University of Munich in 1901, but in
the following year he transferred to the University of Berlin, where he
received his doctorate under Max Planck in 1907. After a three-year
stay with Otto Lummer in Breslau, he returned to the University of
Berlin in 1911. In 1913 he became a lecturer at Berlin and worked and
taught under Planck. Succeeding Erwin Schrédinger, he became a
professor at the University of Breslau in 1921, the same year in which
his book The Quantum Theory appeared. As a Jew, he was dismissed
from his academic position by the national socialist government of
Germany in 1933. With the help of many people, but mainly Rudolf
Ladenburg, he was eventually (as late as 1941) able to leave Germany
for the United States, where he held several academic positions and
worked on supersonic flow and electromagnetic theory. He died in
1969 at the age of 85.

Annotations are given throughout this translation to make the
points clearer, to provide relevant background information, and to
correct certain errors, especially calculational errors; they are
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indexed with superscript Roman numerals throughout the text. Mar-
tin Burkhardt redrew all the figures in the text and typeset the
translation with IXTEX. Anthony Yen furnished short write-ups on
geometrical optics and on the resolution limit in the imaging of peri-
odic patterns, adapted from his two JM? articles on the subject of the
resolution formula d = A/(2nsind); these articles attempt to clarify
Abbe’s original and independent discovery of this formula, valid for
a periodic object. Alexandra MacWade of SPIE Press assisted with
the copyediting of this book.

The completion of this project took a few years, as this was an after-
hours effort by two practicing lithographers working in the semicon-
ductor industry. To give the best possible service to our readers, we
often went through multiple iterations on a particular topic, trying
to figure out the true intention of the original authors, or playing
detectives to figure out the right formula for plotting out a particular
graph. We welcome readers’ comments and suggestions.

It is our hope that this translation can serve as a self-study book
for a wider circle and younger generations of readers who wish to
learn optics and optical image formation. It is also a tribute to the
original authors for their scientific achievements and devotion to the
teaching and dissemination of precious knowledge. For practicing
lithographers who try to extend the resolution limit one nanometer
at a time, may a read through this book stimulate more innovative
ideas down the road.

We dedicate this translation to Professor Henry I. Smith of MIT,
our Ph.D. advisor (Doktorvater in German). Hank led us into the
fascinating world of nanolithography in which we pursued careers.

Anthony Yen and Martin Burkhardt, California and New York, 2023



Special foreword

It is great to see the publication of an English edition of Die Lehre
von der Bildentstehung im Mikroskop von Ernst Abbe 110 years after its
original publication. The original book was based on lectures given
by Ernst Abbe in 1887 on the theory of image formation in the micro-
scope. It was edited and published by Otto Lummer and Fritz Reiche
with contributions from Mieczystaw Wolfke. In it, Abbe’s theory was
extended with the specific intent to link it with Kirchhoff’s diffraction
theory, and the calculated results were even experimentally verified
using a ZEISS microscope fitted with a special objective prior to the
book’s publication. The book also offers many insights and was at the
time the definitive book on the physics of imaging. The description
of projection imaging as a double-diffraction process, as cited later by
both Max Born and Frits Zernike in their respective works, is clearly
presented here. It is no exaggeration to state that Abbe was the orig-
inator of Fourier optics. Today, besides its historical significance, the
book can still serve as a textbook for self-study for anyone interested
in learning the optics of projection imaging, especially for nanolithog-
raphers because imaging in lithography is closely related to imaging
in microscopy; both make inherent use of partial coherence. With the
advent of extreme ultraviolet lithography, the worldwide semicon-
ductor industry has entered the single-digit nanometer era, bringing
about never foreseen possibilities and benefits to our society. How-
ever, the imaging theory that gives all this progress its theoretical

XI



XII Special foreword §0

underpinning, derived from the principles of classical optics, remains
valid today:.

For more than 150 years, ZEISS has been at the forefront of optical
engineering. Our latest success in the manufacturing of precision op-
tics for extreme ultraviolet lithography, printing features of sub-30 nm
in pitch with light of 13.5 nm in wavelength, epitomizes the long tra-
dition of challenging the limits and accepting no second bests. This
tradition, handed down from Ernst Abbe, is carried on by everyone
working at ZEISS.

I also want to take this opportunity to thank the translators,
Dr. Anthony Yen and Dr. Martin Burkhardt, for their tireless after-
hours effort to bring this book to a new and hopefully wider audience
of today, and for their generous agreement, at the suggestion of SPIE
Press, to make this edition an Open Access item in the SPIE Digi-
tal Library so that generations to come may be inspired by Abbe’s
teaching.

Winfried Kaiser

ZEISS Fellow

Carl Zeiss SMT GmbH
Oberkochen, May 2020
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Preface!

More than 20 years ago, as a member of the Imperial Physical Tech-
nical Institute, I was sent to Prof. Ernst Abbe in Jena to attend his
lectures on theoretical optics and to familiarize myself with the cal-
culational methods of practical optics.

Abbe rarely completed his theoretical course. So it pleased him
even more this time to be able to present his theories in front of a more
educated circle. Besides myself, Prof. Winkelmann, Dr. Czapski,
Dr. Rudolph, and doctoral candidate Straubel, the present successor
of Abbe, took part in the course.

This winter season of 1887 is one of my fondest memories. We
were granted the opportunity to witness the thought process of one
of our greatest masters of theoretical and practical physics, and to
see his work taking shape right in front of our eyes. Even though
Abbe’s theory of microscopic image formation had been developed
by him long before this, and its conclusions had already brought
great success to Zeiss Works, the Abbe lectures really only came into
being at that time.

It was therefore not easy to follow Abbe, and he often corrected
himself, by discarding an existing proof and replacing it with a more
rigorous one. But it was precisely this that constituted the charm
of those lectures, which were enhanced by the discussions during
the Sunday walks in the lovely environs of Jena. Is there a back
diffraction, i.e., can the energy that falls on a very narrow slit be

XVII
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diffracted back toward the light source? Such and similar questions
were enthusiastically discussed, and the understanding was only
deepened by the process of verbal articulation during the walk.

The introduction to practical optics and experimental validation of
Abbe’s teaching on the imaging of the illuminated objects went hand
in hand with the purely theoretical lecture. Dr. Czapski introduced
us to geometrical optics, Abbe’s theory of ray limitation, and the
calculation of the objectives aided by Abbe’s approximation formulae.
Abbe himself demonstrated to us dissimilarity in the imaging of
microscopic objects by artificial clipping of diffraction orders. It was
a wonderful time!

Decades have since passed and we always hoped to be able to
read Abbe’s lectures formulated by his own hand in print, for Abbe
intended to publish his theory of microscopic imaging after that win-
ter. We waited in vain! In the long time that has since passed, death
claimed not only the life of our master, but soon afterwards also his
pupil Dr. Czapski.

Thus it appeared that Abbe’s own derivation of his theory would
lie buried forever, for what is hitherto publicly available on Abbe’s
teaching are only its drawn conclusions and its popular derivations
in Dippel’s Theory of the Microscope and in “Optics” written by me
at Abbe’s urging in the Pfaundler-edited textbook Miiller-Pouillet.
Also, publications listed in the appendix, partly of a theoretical na-
ture, contain no systematic and analytic development of the teaching
according to Abbe.

But no one who, like myself, had worked out Abbe’s theory and
knew the treasures of astute thought contained therein could rest
until they were brought to light. Since the two authorities were
prevented from doing so, I was faced with the duty of honor to make
up for what had been missing.

Only one question troubled me. Is Abbe’s theory, built on the
Fresnel-Huygens principle of interference of elementary waves, still
up to date according to the contemporary standpoint of Kirchhoft’s
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principle and Maxwell’s theory? Would Abbe’s theory have to be
rebuilt on an entirely new foundation?

For this, first, a thorough immersion once more into the decades-
long dormant course notes, which I had kept sacredly, was needed.
In addition, I needed a theoretically trained coworker who had es-
pecially worked on the subject at hand. And when I had won over
Dr. Reiche, who had worked in my institute for years, as my coworker,
I turned to Mrs. Abbe in Jena during the Easter of 1909 to ask for
permission to publish those lectures. At the same time, I asked the
management of Zeiss Works whether an intention existed to accom-
plish this.

We went to work after receiving the notification, with only the
course notes serving as the foundation. We present the result of our
joint work below.

For a better understanding of the theory, we added Chapter 1
in which these concepts are explained based on geometrical optics,
which will be needed later. For this, we leaned heavily on the presen-
tation in my “Optics.” With the derivation of the general expression
for the light disturbance in the secondary images we went beyond
Abbe, where we were guided by the desire to see to what extent
the Abbe expression is valid on account of Kirchhoft’s principle and
Maxwell’s theory.

Abbe derived this expression based on the Fresnel-Huygens prin-
ciple and attached initially undetermined functions to take into ac-
count the influence of the angle of the emitting ray, the change of the
amplitude due to passage through the optical system, and the tilt of
the interfering elemental rays with respect to the optical axis. The
sine condition, the Lambert cosine law, and the energy principle are
then used to determine these functions.

If one starts from Kirchhoff’s principle, one is bound by the func-
tion resulting from Kirchhoff’s integral expression and this must
naturally be an integral from the wave equation. The equations
of Maxwell’s light theory enter the derivation of the intensity
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expression, if one views the radiation as caused by dipoles. It can be
shown that the radiation from a rotating dipole follows the Lambert
cosine law on average, at least with the allowed restriction based on
small convergence angles in the image space, as in the present case.
It is therefore possible to find a function that depicts essentially the
electric force of the dipole that replaces the luminous surface element.
Since this function is an integral of the wave equation, Kirchhoff’s in-
tegral theorem can be applied. Under the small convergence angle
assumption in the image space, one obtains Abbe’s expression for the
light disturbance at the observation point in this rigorous way as well.

For further development of this expression and the derivation of
general laws for the imaging of illuminated objects, we essentially fol-
lowed Abbe. The phenomena treated in § 22 and § 24 were expanded,
and the example worked out in § 23 was added. These calculations
were carried out by Dr. Reiche.

In addition, the underlying mathematical problem for the “sim-
ilarity law” of microscopic imaging was more precisely grasped by
the distinction between a physical and an imaginary region of inte-
gration.

Chapter 4 was newly added. It is a hitherto not yet arithmetically
carried out determination of the microscopic image of a grating with
artificial clipping of its primary diffraction phenomenon. This cal-
culation by Mr. Wolfke at our urging provides a touchstone for the
exactness, with which the Abbe theory dipicts the experience.

We fulfill our obligation with joy to express our warmest thanks
to Mrs. Abbe for her kind willingness with which she agreed to the
publication of this book and the printing of a portrait of Ernst Abbe.

We would like to thank the publisher for the accommodation they
showed us in every respect. Special thanks are due to them for the
artistic reproduction of the portrait of Ernst Abbe that should be a
welcoming gift to all readers.

Otto Lummer
Breslau, 1910
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Introduction

Geometrical optics assigns reality to light rays and assumes that
where light rays intersect is also where light concentration actually
occurs. This arithmetic optics seeks accordingly to evaluate optical
systems in such a way that two spaces are imaged onto each other
point for point; i.e., outgoing rays from one point in one space (ob-
ject space) reunite at one point in another space (image space). If an
optical system meets this condition, it then transforms the outgoing
convex spherical wavefront from the object point to a concave spher-
ical wavefront whose center is the image point. Arithmetic optics
does not have to deliver any more than this.

In order to understand the actual light distribution in the center of
the concave spherical wavefront, i.e., the image point, image forma-
tion must be handled based on wave theory as a diffraction problem.
One usually expresses the result of this approach by overlaying on
the point of convergence of the homocentric ray bundle (image point
in geometrical optics) the diffraction phenomenon that is uniquely
determined by the type of blocking to the spherical wavefront in the
image space. In reality, the process is reversed: the diffraction phe-
nomenon is the primary image-forming process, and the image point
is secondary. In fact, the image where the imaging ray bundle is lim-
ited by a circular aperture is at best a diffraction disk with alternating
dark and bright diffraction rings of rapidly decreasing intensity. The
greater the image angle whose sine is given by the ratio of the radius
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of the circular aperture in the image space to the radius of the accom-
panying spherical wavefront, the more the diffraction phenomenon
shrinks to a point-like pattern. A true point-like concentration of
light therefore never exists in an actual imaging process.

This is already valid for the imaging of self-luminous objects,
where wave trains go out from individual elements of the object
incoherently, i.e., not capable of interference. Next, we deal with the
imaging of illuminated objects, whose individual surface elements
send out wave trains that are coherent, i.e., capable of interference.
Here, geometrical optics lets us down completely.

In the imaging of self-luminous objects, the conformation of wave
theory to geometrical optics, with respect to similarity and pointwise
convergence, becomes better and better with an increasing opening
angle of the incoming ray bundle. So the two theories lead to dif-
ferent results only with regard to clarity in imaging, while they both
preserve resemblance between the image and its object. With illu-
minated imaging, it is a different story. As Abbe first showed, quite
dissimilar images appear from the object in certain cases. Moreover,
one and the same optical system can provide images, from one and
the same object, completely different from each other and dissimi-
lar to the object, depending on the clipping of imaging ray bundles.
For these abnormal phenomena, geometrical optics obviously cannot
give any account.

However, as the following will show, wave theory can represent
all phenomena with a good approximation to reality. To present
Abbe’s “theory of the illuminated objects,” especially in microscopic
imaging, we must first start from the fundamental laws of geometrical
optics.



Chapter 1

Imaging laws of geometrical
optics™

§1. Construction of a ray refracted by a spherical surface

Let M (Fig. 1) be the center of the refracting sphere of radius r and
refractive index n’/, and the ambient medium have the refractive in-
dex n. To find the refracted ray from the incident ray LE, we insert,
according to the elegant method of construction of Weyerstraf3, two
auxiliary circles 1 and 2 with radii

/

n
T = —T
n
and
n
Ty = ?T ,

extend ray LE until it intersects auxiliary circle 1 at A, and connect
E with point A’ where line AM and auxiliary circle 2 intersect. Line
EA'L’ is the refracted ray associated with LE.

From the similarity of triangles EAM and EA’M, it follows that

/MEA = ZEA'M
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Figure 1

or
ax=290;
further,
sind EM 1’
smp A'M  n’
therefore,
sina
sinp  n

It follows immediately from this construction that all incident
rays aiming toward A go through point A’ after refraction. It follows
therefore from the law of reciprocity that all outgoing rays from point
A’ in medium n’ go through A after refraction, if they are extended
backward. We want to designate these outstanding points A and A’ as
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“aberration-free” points of a refracting spherical surface because the
spherical aberration for them is zero. This “aberration-free” pair of
points plays a major role in the construction of microscope objectives.
One employs, e.g., a semispherical glass lens as the front lens in the
apochromat (see Fig. 2).V If one uses homogeneous immersion and
brings the object to be imaged to distance A’M = It of aberration-
free point A’, the divergence of near 180° is considerably reduced,
without the occurrence of spherical aberration.

Figure 2

A/

In order to learn more about the path of a ray bundle that is not
coming from aberration-free points, we follow its path in analytical
ways.
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§2. Imaging of an arbitrary luminous axial point

Let M (Fig. 3) be the center of refracting spherical surface RSE that
separates media n and n’, onto which luminous point L sends rays.
The unrefracted ray LSM passing through the spherical surface is

Figure 3

designated as the central ray and taken as the axis of the refractive
system. If EL’ is the refracted ray associated with LE, then

nsinox =n'sinfp .
According to the figure, the following holds:

sinac LM and sinf  L'M
simu  ME simuw/  ME’

therefore,
LM n'sinu

'M  nsinu

Further, we have
sinuw/ LE

sinu L'E’
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and therefore,
IM L'E n
M LE n’
the ratio LM//L'M is in general dependent on u. We shall show that
it becomes independent of u only if u and u’ are small, that is, if we
image using paraxial pencils (null rays).
Let us drop a vertical line EN onto the axis. Then,

LN L[S+ SN or LE — LS—l—EM(l—COS(p).

cosu cosu cosu

LE =

Analogously,
'S—EM(1 —
L,E:LS M( / COS(p).
cosu

If u, v/, and therefore ¢ are so small that one can set cosu, cosu’, and
cos@ = 1,thus LE = LS and L'E = L'S; then,

M 'S
UM IS n @
Since %S is completely independent of u, one therefore obtains the fol-

lowing theorem: homocentric null rays remain homocentric after
refraction.”

§3. Imaging of luminous objects

If a second point Q (Fig. 4) is present besides the luminous axial
point L, then what is valid for L in relation to LM is also valid for
Q in relation to the neighboring axis QM. If one restricts oneself to
point Q very close to axis LM, one sees that all object points lying on
arc LQ with radius LM are imaged point-to-point onto the arc L'Q’
with radius ML’. Since one can, with the introduced restrictions, use
instead of arcs LQ and L'Q’ their projections L1 and L'l’, we have the
following theorem: small surfaces perpendicular to the axis are imaged
point-to-point as surfaces perpendicular to this axis.
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Figure 4

Since the conjugate points lie on the line going through the center
of the sphere, we have

IL LM y S—T

oM ! y -1’

where lines y and y’ are taken to be positive or negative depending
on whether they lie above or below the axis. Since it was shown that"!

S—7T

n s
ss—r n s’

therefore
y_n ¢ 2)
y n s’ (
If one designates ¥- — B as the “lateral magnification,” the following
theorem is valid: the lateral magnification is constant for conjugate planar
pairs, but varies from pair to pair.

From the figure, ' it is clear that

tanu +s/ tanu s

tan(—uw')  —s tanu’

@ |
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where u and U’ are to be evaluated as positive if the associated ray or
its extension is rotated about L and L’ in a clockwise fashion in order
to reach the axis. By combining the last equation with Eq. 2, one gets

y'n'tanu’ = yntanu. 3)
If one designates t;“T‘; = 7y as “angular magnification,” then
n
By =;- (4)

Thatis, “The product of the lateral magnification and angular magnification
is constant” (law of Lagrange).

§4. Imaging by a centered system of refracting spherical surfaces

In a centered system, the centers of the refracting spherical surfaces
all lie on a straight line, which we choose as the axis. Image L1, of
object L1 (Fig. 5) produced by the first spherical surface can itself be
interpreted as the object that generates image L3l;. Image point L,
distinguishes itself from a self-luminous object in the same location
in that its outgoing ray bundle does not fill completely the aperture
of spherical surface 2. Nevertheless, 1, will be imaged as a point that
is l3. Since this is also valid for every refracting spherical surface

Figure 5
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that follows, we have the theorem: the object space is imaged point-to-
point in the image space. Planes perpendicular to the axis in the object space
correspond point-to-point to the planes perpendicular to the axis in the image
space.

If one applies the Lagrange relation to each refracting surface in
the system successively, one obtains the Lagrange-Helmholtz relation

n
P n , (5)
or yn’tanu’ = yntanu

where 3 and vy now denote the lateral magnification and angular
magnification with respect to the entire system, and n and n’ are
refractive indices of the front (object) and back (image) media.

§5. Imaging equations according to Abbe

In Fig. 6, let there be conjugate pairs of planes L and L’ as well as Q
and Q’, and the associated lateral magnifications be given by

Figure 6
: T — ] i o w
I w | /
z . /
V g - : ?
L Q 5 T Q
a ' a
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overall imaging is thus determined. Let, e.g., a general ray I intersect
object planes at i and z; one finds then, using values v; and v,,
the conjugate points i’ and z’ and with them the conjugate ray I'."11
Construct ray II analogously. Since every point P of the object space
can be considered as an intersection of two rays that cut through
planes L and Q, one can therefore, for every object point, find its
conjugate image point P".

To derive the imaging equations, we consider the special case
(Fig. 7) of letting I run parallel to the axis while so directing II that
its conjugate ray II' runs parallel to the axis in the image space. In this
case, for ray I, we have

Figure 7

§ L N Q S
H’/
dR/’J

a
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and for ray II,
y1=Yy=y
Y2 _ V1,
Y1 vy’
therefore,
‘B/L/ B LIQI or d/ B al
QT -y
and so
d—=a—2
Vo — 'V
Analogously, we have
d= a2
Vo — Vi

These equations tell us that distance d’ is independent of y and
distance d is independent of y’. We therefore have the theorem: all
rays parallel to the axis in the object space meet at an axial point in the image
space (back focal point B'), and all outgoing rays from a definite axial point
in the object space (front focal point B) travel parallel to the axis in the image
space.

From Fig. 7, we have

tww:w—%:g(@_ﬁ)

and therefore

S - ——-F, ©)
tanuw vy — vy

where F is a constant of the optical system and is defined (after Gauf3)
as the “focal length” of the image space. Analogously,

! avivy

Y
- —F 7
tanu (vl —v2) ’ @
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which is defined as the focal length of the object space.

We determine the location of P using a coordinate system whose
z-axis coincides with the axis of the optical system and whose origin
coincides with the front focal point B. We obtain the position of P’
using B’ as the origin. Let the positive sense of coordinates z and z’
follow the direction of light propagation. Then,

/

Yy_ tanu and y—/ = tanu’ .
z z

If one combines these with the defining equations of focal lengths,
one gets, finally,

z-Z =F-F
y F oz (8)
y z F

The imaging equations in this form were first established by
Abbe X

§6. Imaging by wide-angle ray bundles (sine condition)

(a) A refracting spherical surface. Point-to-point imaging using null
rays has no meaning in microscopic imaging, since it is neces-
sary here, for reasons to be explained later, to bring wide-angle
bundles of rays to union. The question is whether and under
what conditions point-to-point imaging is possible by wide-
angle bundles of rays in general.

As we have seen, this goal can be reached by a single refract-
ing spherical surface for only a single pair of conjugate axial

points. For this aberration-free pair of points, the relationship
derived in § 2 is strictly valid:

LM  n/sinu

L'M nsinu

= const;
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i.e., the length of convergence*! L'M is independent of the open-
ing angle u of the ray bundle. !

Figure 8

As one can see from Fig. 8, this is also valid for points k and k'
with respect to the neighboring axis Mkk' for wide-angle ray
bundles in general:

kM n'sinu
KM  nsinu
where the constant has the same value as above. Therefore,
arbitrarily large arc Lk of circle 2 with radius v, = 551 can be

= const,
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imaged by general wide-angle ray bundles point-to-point and
similar in perspective with respect to M, so that Lk is associated
with the arc situated on the circle with radius v, = X r by

L'M

L'k =Lk- .
LM

If we limit ourselves to very small objects Lk, we can set

L'k LU
Ik L1

p

and get
sinu’ mn 1

-2 ©)

simu n/ B

This is the condition under which a perpendicular-to-axis sur-
face element at aberration-free point L is imaged as another
perpendicular-to-axis surface element at the conjugate point L’
point-to-point and in similarity by arbitrarily wide-angle ray
bundles. It is called the “sine condition,” and the conjugate
aberration-free pair of points, for which this condition is satis-
fied, are called the “aplanatic points” of the refracting surface.

(b) A centered system. We now ask ourselves, which condition must

be satisfied so that in a centered system of refracting spheri-
cal surfaces, a perpendicular-to-axis surface element L1 (Fig. 9)
can be imaged to form another perpendicular-to-axis surface
element L'l" point-to-point and in similarity by wide-angle ray
bundles in general. All rays coming from L should be refracted
toward L', and rays from point 1 should be refracted toward the
conjugate point l'.

The condition that all rays coming from axial point L are re-
united at L’ is identical therefore to stating that the system be
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Figure 9

free of spherical aberration. In addition, should the rays com-
ing from point 1 be reunited at the conjugate point U, a further
condition must be satisfied such that the system for conjugate
points 1 and " with respect to the neighboring axis IM1’ is free
of spherical aberration. To find this condition, we track, ac-
cording to the simple derivation by John Hockins,' two parallel
rays originating from L and 1 in the object space, whose inter-
section in the image space is at R. The parallel-to-axis ray from
| intersects the axis in the image space at N. We now draw
perpendicular lines L'C and LD. As a result of the absence of
spherical aberration for the pair of points L and L', the following
is valid for the optical lengths:

LRL = LNL".

But since
1RV = INU,

Journ. Roy. Microscop. Soc. 1884, Ser. 2, 4, 337.
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the following must be valid as well:

IRV — LRL/ = INV — LNL/ = IN + NV — LN — NI/ ;

since L1 is the wave front of the parallel-to-axis rays that meet
at N, it is moreover valid that

LN = 1IN,
and therefore
IR+ RV — LR —RL' = NV — NI/

or

(IR —LR) + (RV — RL’) = NU — NI
—Dl+ Cl = NV — NI/
Cl' = (NI = NL') + DLI.

Eimﬁzgment L'l is small to the first order, the difference
NU —NL’ is small to the second order and is therefore negligible

compared to line segment D1.XV We therefore obtain
ClU' =Dt;

or, if we transition to the equivalent line segments in vacuum,
we have

n'L'U - sin(—u') = nlLl-sinu,
for u' is negative according to the prior agreement. Now,

n_y _ 1
L'V _y/ B 4
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therefore we have, finally,

sinw’ _ n 1 (10)
sinu  Mmfp

This sine condition is identical purely dioptrically in that the
various zones of the system of the object project a magnified image of
the same ratio {3 at the same position (the point of convergence of
the null zone).

The sine condition takes on a very simple form if either the
object or the image point lies at infinity. Then the sine condition

goes from (see Fig. 10)*¥

Figure 10

hy
hy

sinu;  sinug
— = —— = const
sinu;  sinus

over to
hl hg
= = const,

4 / 3 /
sinu]  sinug
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since the quotient ' under unbounded growth of the object

distance approaches the value h, /hy in the limit. Therefore,

nw const ;

since for very small values of u’ we have

ho_ h

sin u/ tanw/

the sine condition in this special case reads

h
i F (11a)
or, if the image is at infinity,
/
.hu =F. (11b)
sin
One can see from Fig. 10 that
sinu’ = h
- EB’

therefore, the following must be valid:
EB' =F,

that is, the intersections of the extended parallel-to-axis incoming rays
with their conjugate image rays must lie on a spherical surface having
the back focal point B’ as the center and the focal length of the system
F' as the radius.






Chapter 2

Imaging of self-luminous
objects in terms of wave theory

§7. Diffraction problems solved on the basis of Maxwell’s theory
We have seen that a centered system (microscope objective) images
a surface element point-to-point and in similarity, using arbitrarily
wide-angled ray bundles, only if the sine condition

n 1

n B

is fulfilled. If the system is so designed that this condition is satisfied,
then all incoming rays to any point of the image remain perpendicular
to a spherical surface centered on this point.*"' The lens designer
cannot offer anything more than this. We wonder whether and under
what conditions this purely geometrical, pointwise concentration of
rays is also physically present. Let us for the moment remain on
the fiction of geometrical optics, that there were actually luminous
points, so only the spherical wave emanating from this point would
be a reality. Only with free, absolutely unhindered propagation, as
would be the case in an arbitrarily extended, homogeneous medium,

sinu/

sinu

XVii

21
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will the energy propagate along the radii exactly, as the ray theory
assumes. If, however, as is always the case in reality, obstacles of
any kind stand in the way of light propagation, i.e., if the medium
exhibits inhomogeneities abruptly, light propagation can no longer
be covered by ray-theoretic calculations; the wave fronts are no longer
concentric spheres, but are somewhat deformed in a way (diffraction).
The actually occurring propagation and distribution of the energy has
been calculated based on Maxwell’s electromagnetic theory of light
only for very special cases.

The diffraction phenomenon appearing at the straight edge of
an otherwise infinitely extended screen was treated by Sommerfeld.!
Schwarzschild? succeeded in calculating the diffraction phenomenon
associated with an infinitely extended slit of arbitrary width. Nat-
urally, the numerical calculation becomes more difficult the smaller
the slit width is in comparison to the wavelength. In addition, it
must be emphasized that in both cases the material of the screen
had to be assumed to have infinite conductivity. Under the same re-
striction, J. J. Thomson?® could calculate the diffraction phenomenon
of a sphere, whereas G. Mie* and P. Debye® carried out this case
for spheres of arbitrary material. W. Seitz® and W. v. Ignatowsky”’
calculated the diffraction phenomenon of an infinitely long metallic
cylinder of circular cross section and arbitrary conductivity, whereas
Cl. Schaefer® carried out this calculation on cylinders of dielectric
material and had it confirmed experimentally with the help of elec-

Mathem. Ann. 47,317 (1896).

2ibid. 55 177 (1902).

3]. J. Thomson, Recent Researches in Electricity and Magnetism, p. 361.
tAnn. d. Phys. 25,377 (1908).

5P. Debye, Dissertation. Munich 1908.

¢Ann. d. Phys. 16, 746 (1905); 19, 554 (1906).

7Ann. d. Phys. 18,495 (1905).

8Phys. Zeitschr. X, 8, 261.
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trical waves (Groffimann?®). Finally, the diffraction phenomenon on
metallic cylinders of elliptical cross section was treated (B. Sieger
and K. Aichi), if only for material of infinitely large conductivity.

§8. The Kirchhoff principle
In general, the treatment of diffraction phenomena according to the
Kirchhoff principle gives a far simpler form, allowing then the cal-
culation of cases of our interest. Applying Green’s theorems™' to a
function ¢, which satisfies the wave equation*™
2

8&T(2p = a’Ag, (12)
Kirchhoff!? obtained the value of the function ¢ at an observation
point P (Fig. 11) as a function of time t in terms of values of @, d¢p/0t,
and 0@ /v on the observation point—-enclosing surface £ with inward
normal v; here one must, for the magnitudes of ¢, d¢/dt, and d@/dv,
insert the values that they possess at position do at timet' = t —v/a,
where r denotes the radius vector P do and a the velocity of light in
space V. It is*

ijda [(p&(l/r) 1de odr 10¢

4mt ov ardt ov o1 &v]t,_tr - 1)

Pp(t) =

Kirchhoff used this theorem to derive an approximation of the
light intensity at observation point P (Fig. 12), if waves originating
from L are disturbed by some obstacles. We want to carry out the
calculation for the special case of an obstacle that is an opaque screen
with aperture X;. For this we place the surface of integration around

9Dissertation, Breslau 1909.

WAnn. d. Phys. 23, 626 (1908).

1 Proc. Tokyo Mathem. Physical Soc. (2) 4, 966 (1908).

2Kirchhoff, Lectures on Mathematical Physics, Vol. II, Optics, 1891 (in German).
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§8

Figure 11

do

)X

Figure 12

Xr=
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point P so that it is completely separated from L and let this surface
consist of two parts, Z; and Z,. Part £, wraps itself around the side
of the screen facing the observation point and is thought of as closed
at infinity. Let part £; be bordered by edges of the aperture.

The calculation of @p(t) can only be carried out if one knows
the values of ¢, d@/0t, and d@/0v at all points of the surface of
integration; if one makes the natural hypothesis, that the values on
surface L, are the same as those of the undisturbed propagation, and are
zero on all points of surface ¥, then this assumption corresponds to
the empirical knowledge that the bigger the aperture relative to the
wavelength of the light, the closer it comes to the truth. In this case,
the integral extends only over surface Z;.

The hypotheses made are strictly satisfied only for the undisturbed
propagation. Here one knows the values of ¢ at P. We want to show
that the calculation of ¢ by means of the Kirchhoff principle leads to
this known value. For this we choose a sphere of radius R centered on
P (Fig. 13) as the surface of integration and set, for points on surface
2, as

Figure 13

T v
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Then we get

o _ a—(pcos(rl,v) = cos(T1,V) {—%cos 27 (T - X)

ov  or
A 27 t
220 ginom [ - - 2
+1’1?\ sin ﬂ(t }\)},

o(1)r) 1 1
a—\/ = —ﬁ COS(T, 'V) = +T_2 ,
2 2 2
_p-rm—mn
cos(T1,V) = o

We take, as element do (Fig. 14) of the surface of integration, the
piece of surface that is sliced from the spherical surface by two planes

Figure 14

dz
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perpendicular to PL and separated from each other by a distance dz.
We then have

do = 2ntRdz .

Since according to Fig. 14 we have

1= (p—2)°+h
R* = 22 + h?,

it follows then
7 =R*+p*—2pz.
Differentiating this equation gives

dz — _Tl dT'l )
P

where the limits of integration with respect to v, are p — Rand p + R.
Inserting all these values, we have

pP—R
1 21Rry dry A A2 |
t)=— — - 3
or(t) 47 P {rlRQ cos aRr, T S
p+R
AP —R2—12) [ cosd 27 .
_ _ 2 gind ,
RTl : 2RT1 T * A St

where

t R+T‘1
O=2m(=— ;
"(i-57)
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or recast,

pP—R
A
@p(t) = — » dr, {
pP+R

(cosﬁ 21 )}
X — —sin?d
T1 A
PR 9 2 2 .2
A cos p°— R —1]
= — — 1 - =
2der1{R (+ 213 )
pP+R
_ 2msind 1+p2—R2—r%
A 2RT1

P—R cosd 2_R2-1?
AR J dr d[T <1+p 211 R 1)]
A 1

cos® 2msind  p? —R? —1?
- +
R A 2Rr

- 2p dry
p+R
=B cosd 1+p—2_R2_T% piR:écosQn e
2p | R 2r R bR P T A7

i.e.,, the light disturbance taking place at P for the undisturbed
propagation.

We now want to calculate the diffraction phenomenon caused by
an arbitrary aperture in a planar screen for the case in which the point
of light L is situated infinitely far from the diffraction aperture, thatis,
a plane wave is perpendicularly incident on the screen. The xy-plane
(Fig. 15) is to lie in the plane of the screen, and the piece let go from
the screen (diffracting aperture) is chosen as the surface of integration
2. As the expression of the light disturbance ¢, we set

t z
=A 2 —— =] .
© CcoS H(T 7\)
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Figure 15
AY
dob——m=  P(xy.2)
3 T
. I

We then have
10 2mA t z
i non | = - =2
a ot Ao T[<T 7\>’
o Jdp 2mMA t z
oY _YY o = — =2
ov oz A ow 7t(T 7\)’
or (rz) = —
5, = €08 T,Z) = —CoS¢E,
and therefore
1 A 2mA cose . 2mMA .
(pp(t)=EJdG{T—QCOSSCOSS—TsmS— Y sm%} ,
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If the distance r from the aperture to point P is large compared to the
wavelength A, the first term in the braces is negligible compared to
the other two terms, and we obtain

A [dol+cose . t r

§9. Discussion of expression for the intensity at the
observation point

Xxi

From here, if one forms the average value @3 (t), it is then a direct
measure of the observed intensity at observation point P; this is a
consequence of the fact that we have used the ansatz of ¢ being a
plane wave. For clarification, we note the following: according to
the electromagnetic theory of light, the intensity of the field at every
position is given by &2, where € is simply the electric vector at the
place of observation. For illustration, the following useful solution
of Maxwell’s equations is well known for spherical waves as well as

XXii

for plane waves:

e 1 ¢
S e T wa 9 =0,
(32(p 1 62(‘)
¢, = , _ 4o
Y dyx My a0zt
B 82(p S/j B _l 62([)
T ozox * aoyot’
where @ must satisfy the equation™
P )
W =a A(p

Here, ¢ and $) designate electric and magnetic vectors of the field.
Let us start with a plane wave

t z
=A 2 ——=1,
© CcoS H(T 7\)
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and get
42 A t
¢, = 7;2 cos27r(f—;\), Hy =0,
A2 A t z
¢, =0, Hy = 2 COS27‘E(T—X>,
QEZ =0 s sz =0.
Therefore, ,
— — 1 /47A 8t
2 _ o2 _ = - 2
¢ 2 5 ( 2 ) N A”.

On the other hand, F = %AZ, which illustrates that, in the case of
plane waves, @2 differs from &2, which is relevant for the intensity, by
only a constant factor, and that @2 may be seen as a measure of the
intensity.

The case of spherical waves is different, for which we have to start

Withxxiv
A o t T
= — COS -——=,
?=75 T A

where 1 = /%% +y? + z2. If r is large compared to A, then we get

47 A sin 9 t T
|€| = TCOS 27 (T — X) ’ (15)

where ¥ is the angle formed by the radial vector r with the x-axis.*"
From this it follows then
@ A sin® 9

Adr2 4

whereas
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one therefore sees that, with spherical waves, one may not regard the
last expression of F as a measure of the intensity, because the true
intensity €2 still varies with the direction 9 at a constant .

We may add that the field determined by Eq. 15 can be viewed as
originating from an electric dipole or Hertzian oscillator whose axis
of oscillation coincides with the x-axis.

In reality, one deals with the radiation of spatial objects that can
be thought of as filled with radiating dipoles. In order to give a
concept of the number of such dipoles, we must know the ratio of the
number of radiating to the number of overall available molecules per
unit volume. If we take luminous hydrogen as a basis and make the
assumption that every molecule possesses one electron, then in every
cubic centimeter, according to Ladenburg-Loria, 3 only 4 x 10'? are so-
called radiating “dispersion electrons,” compared to 2 x 10'7 overall
available electrons (molecules). In a cube of luminous hydrogen with
an edge length of 0.001 mm =1 pm, there would then still be about
four dispersion electrons present. In luminous vapors, however, even
more dispersion electrons are present in such a volume element; in
sodium vapor, e.g., there are about 1000. In reality, in radiating
gases or vapors, we are not even dealing with individual undisturbed
oscillating dipoles. On the other hand, we know that in radiating
black bodies every surface element radiates according to Lambert’s
cosine law, ' so that in free radiation the intensity at observation point
P (Fig. 16) has the value

A2

=) cosu ;
here, too, the intensity depends on the direction of radiation r. There-
fore, @2 is a measure of intensity in neither free nor disturbed light
propagation. Only when the luminous surface element is situated

BPhys. Zeitschr. (9) 24, 875.
Q. Lummer and F. Reiche, Dependence of radiation from a “Bunsen plate” (Bec
Meéker) on the radiating angle, Verh. d. Schles. Ges. f. V. K. (1910) (in German).
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Figure 16

so far from the diffracting aperture that we can consider the incident
waves as planar, may we regard 3% (t) as a measure of intensity.

§10. Comparison of the Kirchhoff principle with the
Fresnel-Huygens principle

We return to our expression (Eq. 14) for the light disturbance occur-

ring at observation point P behind the diffraction aperture. It is

(t) A [dol+cose . o E_I
erlU="3N) 7 2 T T A/

In this version, we can interpret our formula as an expression
of the Fresnel-Huygens principle, according to which one obtains
the resulting light disturbance at observation point P due to the in-
terference of imaginary coherent elemental waves leaving from all
elements of the diffraction aperture. In our experience, the formula
leading to correct results shows which factors to use when one takes
into account the contribution of individual elemental waves; we can
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Figure 17

Y

write the contribution of each surface element do (Fig. 17) of the
diffracting aperture as

_A’,QT[ t T _A’ - t T +7’[
rsm T }\_TCOS T A 217

A Ado <1+cose)

where

A 2

Therefore, it is as if every element do sends out a spherical wave
whose amplitude is A" at the unit distance, and whose phase with
respect to that of the incident wave has been shifted by m/2. The
amplitude, which one must enclose in the elemental waves in the
direction of T, is to be set proportional to 1<% where ¢ is the an-

2
gle between r and the incident direction of the impinging radiation.
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In other words, it means that every surface element do should not
radiate according to Lambert’s cosine law, according to which the
amplitude would be proportional to \/cos ¢; instead, the amplitude
should vary proportional to 15 One may easily see that both laws

agree with each other up to the terms of order ¢2. Vi However, there
is absolutely no reason for assuming that these so defined elemental
waves represent any kind of reality.

Fresnel made qualitatively similar assumptions in order to calcu-
late the diffraction effect of an aperture. According to him, different
surface elements contribute to the light disturbance at the observa-
tion point (1) proportional to its size; (2) inversely proportional to the
distance from the observation point; and (3) proportional to a fac-
tor dependent on the direction with respect to the normal, with the
normal direction being the maximum. Except for the phase of the os-
cillation, the Fresnel-Huygens principle also describes correctly the
intensity distribution at least at a relatively large distance from the
diffraction screen.

§11. Fraunhofer diffraction

One becomes independent of this proportionality factor, which is
(<=2} according to the Kirchhoff principle, if one lets the observa-
tion point go to infinity. To find the form that the phase takes in this

case, we start from the relationship

= x=E +y-n)+2,

where x, y, z are the coordinates of the observation point and &, 11, 0
are those of element do. If we set

X +y*+z =13,

it follows then

2 2_2
rzro\/1+£ +1 (xE+yn);

2
To
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if we let vy grow without restraint, £ and 1 will always be small
compared to 1y and one can expand the square root in the following
manner:>v1

T =

+1n? x&E+yn  (x&+yn)?
To 1+ — — .
2r3 T2 2rg

If we set for the moment x/ry = &, y/ro = 3, we get

E+n?— (Ecx+n[5)2> .

2T0

T=1)— <(<Eoc+n[5)+

And so for infinitely large T,

x& +
r— 19— (B +mB) =1 — oI
To
Therefore,
t x&+yn
- 2| Zsin2 iUy 16
J sin 7T< + oA (16)

where we sett' =t — 1y/c.

The phenomenon given by this expression is called Fraunhofer
diffraction; it is exceptional in both formal and physical respects.
Whereas with finite distance, be it of the luminous point or the obser-
vation point (Fresnel diffraction), quadratic terms in & and 1 appear in
the expression for the phase, they disappear in Fraunhofer diffraction
in which the luminous point and the observation point lie at infinity. This
is realized if one brings the luminous point to the focal plane of a con-
vex lens and observes the phenomenon in the focal plane of a second
convex lens. Light source and observation point therefore lie in the
planes that are, with respect to the imaging system (the two convex
lenses), conjugate to each other. We want to show that we always get
Fraunhofer diffraction; i.e., we always retain only linear terms in &
and 1 in the expression for the phase if we make the luminous point
and the observation point an arbitrary conjugate pair of points with
respect to the imaging system. For this we investigate an auxiliary
consideration.
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§12. Auxiliary consideration

Let the diaphragm BB (Fig. 18) cut out, from the spherical wave
coming from L, a piece of surface BOB that we choose as the surface
of integration. If d is an element of that surface and r is the distance
between this element and observation point P;, then we can depict
the light disturbance at P; using the expression

Apl t e+r
= | == n2r | = —
s fe)\rd(psm (T A )'

Figure 18
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where A/e is the amplitude of the light disturbance at d¢ and the
factor u takes into account the inclination of the elemental ray r with
respect to de.

We choose O as the origin of a rectangular Cartesian coordinate
system, LOP as the z-axis, the line through O pointing upward and
perpendicular to LOP as the y-axis, and the line perpendicular to the
drawing going into the paper as the x-axis.

If &n¢ are the coordinates of d¢, xyz are those of P;, and we
designate line segment P d¢ as 1, then

P (- 8 (- (2 O
= (X +y%) —2(xE+yn) + 75

The equation of the sphere is valid for the coordinates of d:
E+n’+(e+0)?=e*or&?+n’=—-C—2eC.

Therefore,

=4+ (z-0?=(z-0* - —2el(=2"-2((z+e).

12 takes on a particularly simple value if

z=—e.
Then (Fig. 19),
ro=e’and 1’ -1 = (r+e)(r—e) =x*+y*—2(x& +yn) .
If we set

r — e = p and thereforer + e = p + 2e,
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Figure 19
T de
L
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then the following equation is valid:
p” +2ep + [2(xE + yn) — (X" +y*)] = 0.

It follows that

p=—e+/e2—[2(x&+yn) - (x* +1?)]

or

P=—e+e\/1—2£ yne2 2

If x and y are small compared to e, i.e., if one limits oneself to
observation points close to the line LOP, then

x£+yn)

p——e+e<1— oz
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or finally,
__xttyn, (17)
e
This simplification of the value p for z = —e, i.e., for the observa-
tion points that lie in the object plane itself, acquires a physical meaning

with the introduction of imaging systems.

§13. Diffraction phenomena occurring in pairs of conjugate planes
of optical systems

In Fig. 20, let the surface element df lying at L glow and its image

df’, projected by system Q, lie at P. Let diaphragm BB act as the

entrance pupil that cuts an effective piece of the surface out of a

Figure 20
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sphere centered at L with radius e. Let dg be an element of the
surface; then the “amplitude” of the outgoing wave from df at de is
% = «, where the designation “amplitude” is so understood that the

intensity at the location of de is given by the expression

If we designate the rectilinear distance (dotted) from d¢ to P as
1, then according to the Huygens principle, the without-the-lens light
disturbance at P due to d¢ would have the amplitude

1 1.,

yoade Zbw),

where 1 (w’) should take into account, with the interference of ele-
mental waves, the influence of the inclination of the various elemental
rays ' with respect to the direction of the axis LP and the inclination
of the element d¢ to the associated elemental ray 1’.

In the presence of the lens, from each element d¢ come the el-
emental rays that run in the immediate vicinity of chief ray R’ as-
sociated with d¢, where R’ also denotes the path length from de¢
toward P. With the lens we can therefore set the amplitude of the
light disturbance at P originating from d¢ as

S dp f(R)b(),
where P (u’) takes into account the various inclinations of the inter-
fering elemental waves with respect to the axis and f(R’) their various
geometrical lengths. The inclination of d¢ with respect to the effec-
tive elemental waves going out from d¢ is the same for all d¢. Since
the geometrical length R” depends only on the accompanying angle

of divergence u,”* we can then set

f(R") = o(u),
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and the resulting disturbance at P becomes

s = %focd(p o(uw)p(u') sin 27 (% — Sp) ,

if 0p designates the equal optical path length for all elemental rays
between L and P.
The intensity at P is then given by

Jp = s2df .

Toward a point P; (Fig. 21) in the image plane come elemental
pencils from d¢ that are seemingly coming from L,, which is the

Figure 21

Py
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conjugate point of P;. If the observation points are limited to be very
close to the axis, one can express the resulting disturbance at P, as

¢ — %J‘Xd@ G(u)ﬂ)(u/) sin 27t (% — 5p1) p

where 0p, is the sum of the optical path length Ld¢ and the optical
path length dgpaP;. Now

d(paP1 = LlApl — le([) ,

where L, AP; is a constant for the fixed location of P, and varies with
the location of P;.
Therefore, >

Ld@P; = const — (L;de — Lde)
and with that

e, —e P
Op, = — + const = —— + const,
F A A

if one designates the segment L, dg by e;. If P; moves toward P,
e; = e and the above constant becomes equal to ép. The phase
difference between P and P; is exactly the same as that between their
conjugate points L and L;. If we designate the coordinates of L, by x,

Y, z and those of dg by &, 1, ¢, then, as described earlier,**

yn +x§&
exn

With this, we obtain the resulting disturbance at P;:

dp, = const — ; = const +

s = % focd(p o(u)p(u') sin 27 (% — Xﬁe%) , (18)

where the constant phase difference is lumped into t.
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It should be pointed out here once and for all that in the expression
for the light disturbance at observation point P; in the image plane
found according to rules of geometrical optics, the coordinates of the
observation point itself do not appear. Rather, the coordinates xy of
the Py-conjugate point L, in the object plane appear. Actually, we
would have to substitute x and y with the expression

x=x/B, y=y/B,

where x'y’ designate the coordinates of P; and (3 designates the lateral
magnification. We do not, however, want to carry out this substitu-
tion because it only complicates the discussion of the expression of
s and does not change the essence of the matter. The intensities cal-
culated using pairs x'y’ and xy are exactly the same. If one depicts
the diffraction phenomenon calculated in the image plane according
to the rules of geometrical optics in the object plane, this depicted
phenomenon is identical with the phenomenon calculated using the
object points xy according to Eq. 18. One would see this phenomenon
by replacing the optical system Q with the eye and accommodating on
the object plane. In this respect, we are entitled to designate the phe-
nomenon depicted by the expression s the “diffraction phenomenon
in the object plane.”

§14. Determination of factors «, o(u), and P (u’) based on energy
considerations
To determine o(u), we presuppose that the sine condition is fulfilled.
The energy principle says that in this case, the entire energy striking
the system from object element df (Fig. 22) must flow through the
point-to-point conjugate and similar image element df’. Since the
same amount of energy must flow into conjugate elemental cones,
we have
df-de A% = df do’ A",

if dgp and d¢’ denote those surface elements that the elemental cones
cut out of unit spheres about df and df’, and A and A’ denote
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Figure 22

amplitudes present at de and d¢’. If B denotes the lateral mag-
nification of the system, then

AZdo
T A2dy’

If one introduces polar coordinates in a known manner,** then

[52

dep =sinududv
de’ =sinu/ du' dv .

Therefore,
do sinu du

de’ sinw/ du
One obtains a relationship between u and 1’ using the sine con-
dition*i

., N1
sinu' = — - —sinu,
A

P
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where (3 denotes lateral magnification. Differentiation of the above
expression yields

!/
cosu du’ = 38 cosu du

p

A\ 2 1\? cosu
do’ =de- (X) ' (E) cosu’

If one inserts this value of d¢’ into the energy equation, it follows
then

and therefore

A”?  Alcosu nZcosu

(19)

A2 AMcosu n2cosu
If u' = 0, i.e., the image moves to infinity, then
2
n“cosu

A2 _ = . A12 )
n

Only when A% is a constant for all elemental cones, i.e., when the
plane wave front has the same intensity everywhere in the image space, does
the above relationship transition to the law

A? = const n? - cosu, (20)

which represents the combination of the Lambert cosine law with the
Kirchhoff-Clausius law of radiation.

We now construct the resulting light disturbance at P; while we
consider, as boundary surfaces, one surface I situated at the distance
e (Fig. 23) with elements d¢ and the other surface II located in the
image space with elements d¢’. Let us denote the light disturbance
at P; based on the boundary surface I as s;; then, as before, we get

$1 = %focd(p o(w)p(u') sin 27t (% — Xie%) ,

I
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Figure 23
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where x, y, —e are the coordinates of P;’s conjugate point L, and &,
n are the coordinates of d¢. On the basis of boundary surface II,

1 ! t /¢t I
= [ aor ) sinzn (_+M) ;

>2 T en
1T

here, o(u) is replaced by 1/e’ since our surface of integration, in the
sense of light propagation, is located after the system Q; x’, y’ are the
coordinates of P; and &/, " are those of d¢’.

If we introduce polar coordinates by making the substitution

& = esinucosv
TN = esinusinv

de = e?sinududv ,
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we get

>‘|>—*

t
Jdv du oo (w)P(u')e? sin usin 27t <T —sinu }\

X COSV +ysinv
4
0

where U denotes the half angle of the aperture in the object space.
Let us also introduce polar coordinates in s, and set in addition

X' =xB, y=yp.

If one bears in mind that for < 0, £ and &' as well as n and 1/
have the same sign, but x and x’ as well as y and y’ have opposite
signs, whereas the reverse occurs for 3 > 0; by considering the sine
il ope obtains

] 27 u N 9 1 9
So = y dVJdLL o'e (X) (E) §§§$¢<u/) sinu-
0 0
XCOsSV +ysinv
3 .

condition,

t
sin27t| = —sinu
<T

By equating s; and s,, we obtain the relation

or

By using the value of &~ (= ££) obtained from the energy prin-
ciple, ¥ we finally obtain
1 Jcosu

eo = — .
B2\ cosw

(21)
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To determine 1 (u’), we construct for one time the resulting light
disturbance at P under the premise that L glows and using surface
IT as the boundary surface. For another time, the resulting light
disturbance is at L under the premise that P, the image of L, glows and
using surface I as the intermediate surface. One can think of realizing
this assumption by setting up a perfect mirror perpendicular to the
axis at the location of P. The resulting light disturbance is given by
the expression s, in the first case, if one sets x = y = 0 in it; for
the case that P, the image of L, glows and I is used as the boundary
surface, we obtain, for the light disturbance at L,

1 t
] = 3 J de %w(u) sin QT[T

or, in polar coordinates,
27 u

t
J dv J du e sinu(u) sin 27TT .
o0

The amplitudes of the light disturbance at P (if L glows) and at L (if
P glows) follow a known relationship. To determine this relationship,
let us consider the following.

The contribution that the element d¢’ provides to the light dis-
turbance is

t
dSQ = B’sin ZT[T ,

where

1 A\ 1
B'= —dvdud'e <—) Es;sitl)(u’) sinu .

N A
We ask ourselves how large the resulting intensity caused by this
contribution at P is. It is just as large as if df’ itself radiated. That is,

— 1
Jo = ds3df’ = SB”df’,
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and therefore the energy that flows through df’ in time dt is
1
Ep =Jpdf dt = §B’2(df’)2 dt .

Analogously, if df’ radiates, the energy flowing through df that
comes from de is

1
Ep = 5132(c‘lf)2 dt ,

where we define

1
B=_—-dvduaxep(u)sinu.

A
According to the energy principle we must have
Ep =Er,
and it follows that
B’ df' = B df
or

1 A\? 1 1
5 v duo'e (X) @CCSSSE/tI)(u’) sinu- B2 = 5 v duccep(u)sinu;

or if one inserts here the previously obtained value of o’e’/xe,
')  Jcosw
Pu)  V cosu
V) P
\/ cosuw/ \/ cosu
Indeed, u and u’ are dependent on each other in this special case;

however, one can assign, by varying 3 (changing the system), every
arbitrary value of u to the same 1/, so it is valid that

V) b))  b(w)

Veosw  4Jcosuy 4 /cosi

or
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therefore, we must have

P(u') = Veosw . (22)

§15. Expression of light disturbance at the observation point
If the radiating surface element radiates according to Lambert’s law,

const

o= yecosu,

e

considering the derived relationships (Egs. 21 and 22)

const /cosu

o(u
(W e cosu’

(W) = Veos/,
Eq. 18 for the light disturbance at P; finally takes the form

s = ]ifcos;i d sin 27 (E — —x£+yn>
e T

A eA
i

or, since do cosu = d& dn,

_ k (d&dn . t x&+yn
S—)\J = sin 27t (T = >, (23)
I

in which the integration extends over the projection of the boundary
surface on the &n-plane.

x and y are the coordinates of L,, the point, with respect to the
system, conjugate to the observation point P;. The intensity at P is
given by

Jp, = s2df . (23a)

One can of course, in the calculation of the light disturbance at P,
also use integral s’, which extends over surface II behind the system.
Then,

S (24)

/ / / t ¢t )
p_ R [agdn oo (Lo XE YY)
)\/ e/2 e/A/
II
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x’ and y’ are the coordinates of the observation point P;. The intensity
at P, is then

Jp, = s2df = ps2df . (24a)

Whereas one reaches the final expression of s or s’ via a somewhat
laborious determination of factors o and {, which of course allows a
deeper insight into the energy relationships, one obtains an expres-
sion in a shorter way by means of the Kirchhoff principle, which, for
u’ not too large, agrees with s’ found above.

§16. Determination of light disturbance at the observation point
using the Kirchhoff principle
Again let the intensity at d of the radiation originating from element
df (Fig. 23) be
oo — cosu - df
do = const—e2
According to the electromagnetic theory of light, up to a constant,
this intensity must be identical with the time average of the governing
electric field at the location of dg; that is,
Jap = €2 = const%;df . (25)
One can replace this unpolarized radiation of the surface element
df with the radiation of a dipole whose axis stands perpendicularly
to the axis of the system and rotates in the plane of element df about
the system axis.

Proof: it is generally known that the electric field at d¢ generated
by a stationary dipole at df i

A t e
= —sindcos2n | =— = |,
¢ esm COS 7'((_'_ }\>

provided that e is large compared to A. 9 is the angle that the radius
vector e (Fig. 24) forms with the axis OY of the dipole at O. If one
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Figure 24
AY
- 4de
/ N
e/t
: II / X
L
9 v,
w7 Z
5 -

introduces polar coordinates e, u, v around the system axis OZ, then
cost = sinu - cosv

or

sin® = V1 — sin ucos?v,

in which v, as the dipole rotates, varies between 0 and 27t. The average

XXXV

value of the electric field is therefore

A
z—Jedv—zcos%t(———) f\/l—sm ucos?vdv

1\? u 1\’ u
1 - t 4 t 8 .xxxvii
x{ +(2) an2+<2.4> an2—|— }
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If u is not too large, we can restrict ourselves to the first term in
the series, because even for u = 20°, the value of the second term is
only 0.00024. We therefore obtain

T A 2
B o t e 1+ cosu
T T A 2

For not-too-large u we can replace the factor =% by /cosu;

even with uw = 20° these two values agree to the third decimal place "
Therefore, we finally obtain

t
¢ = —cos2m t_ ¢ -4/cosu,
e T A
1 A2
@2—§gcosu

Therefore, if we set according to Eq. 25
A% =2.const-df ,

we have proved that one can replace the radiating surface element df
according to the cosine law with the radiation of a rotating dipole.

If the convergence angle 1’ in the image space is not too large, as
we assume, then we are justified to set at the location of d¢’,

A’ t €
= gind 2 — 4+ —
¢ o sinv cos 27 (T + 7\’)

or

/ t e/
¢/ = —4/1—sin?wcos?vecos2m | = + — | ,
o V1 sin T N
where ¥ for the image space has the analogous meaning as 9 for the

object space, and denotes the angle between e’ and the axis of the
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dipole perpendicular to QP. To obtain unpolarized surface radiation,
we must subsequently still form the average value of this expression
over all v, from 0 to 2.

To apply the Kirchhoff principle to a vector, we must insert, as sur-
tace values, the values of those vector components and their derivatives
with respect to the normal of the integration surface that are parallel to
the resulting vector at the observation point. If we assume the bounding
aperture to be symmetrical with respect to axis QP, the resulting vector
¢’ of the field at P (Fig. 25) and at paraxial point P,, generated by the

Figure 25
II
do)
v T
e P,
u/
Q P
II

stationary dipole, has necessarily the direction parallel to the dipole
axis and perpendicular to axis QP. At d¢’, however, ¢’ is tangential
to spherical surface IT and therefore forms the angle 7 — 9’ with the
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direction of the resulting vector at P;.
Thus, as surface values, we take

Tt . ;
¢/ cos <§ — 8') = ¢/sind = e’\/l —sin® W cos? v

and their derivatives with respect to v.
If the dipole rotates, we form the average value of these magnitudes
with respect to v and obtain

27
1
¢ = %Je’\/l — sin® W cos?v dv
0

1A t ¢
= 5o Cos 21 (T + W) J(l —sin? U cos?v) dv
0

A’ t ! 1
= ?COSQT[ <T + %) (1 - §sin2u/) ;

and since U’ is assumed to be small,
A’ t !
¢ = cosom =+ S cosu (26)
e/ T N

To apply Kirchhoff’s law on ¢’, we still have to show that ¢’ is
a solution of the wave equation (Eq. 12), which takes on, with the
introduction of polar coordinates and especially for the present case,

the following form: >

1 1) 1 0(sinw'%)
a? Jot2 e Qe? e?sinw/  ouw '
Here, a’is the velocity of propagation of the waves in the image space.
A solution of this equation is*

t t e hY t e
¢ = COSS cosu’ {cos 27 (T + W) " sin 27t (T + %>} ,
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which, since e’ is large compared to A’, reduces to the expression
identical to Eq. 26,

const t e
¢ = cosu -cos2m | —+ — | .

e’ (T N
With this it has been shown that &' is a solution of the wave equation
for the case treated here and therefore can be inserted in place of ¢

in Eq. 13 of the Kirchhoff principle.
If one introduces once again s’ via Eq. 24a,

Jp, = €2 =52.4f,

xli

after easy calculation,™ if one replaces r with e’ in the amplitude and

st with 1, one obtains

kK (de’cosu . t XE+yn
s':x Tsm27[<T+T
11
k/ da/ dn/ . t X/E', + y/.r]/
=x o2 sin 27t T+T ,

IT

which is exactly the above derived expression (Eq. 24).

It should be pointed out once more that one obtains the “effective
piece of boundary surface I” as one draws from the luminous point or
surface element all possible rays toward the boundary points on the
entrance pupil. The entirety of the intersections of these rays with
the spherical surface I form the boundary of the “effective piece.”
Integration in the expression of s is extended over the projection of
this “effective piece” onto the &n-plane.

§17. Calculation of diffraction on an aperture of specific form for
points in the plane conjugate to the object plane in the presence
of a luminous surface element

We choose the form of the diffracting aperture in such a way that the

projection of the effective piece of the boundary surface onto the En-plane is
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a rectangle. The diffracting aperture in this case, as easily calculated,
is bordered by four hyperbolae and approximates better the form of
a rectangle the smaller the dimensions of the aperture.

Let OO’ (Fig. 26) be the optical axis of the imaging system Q, and
O be the origin of the rectangular coordinate system whose z-axis
coincides with the optical axis; let the y-axis be pointed toward the
top, and the x-axis toward the back. Let the xy-plane be the object
plane containing a luminous surface element df at L with coordinates
XY. Let the plane perpendicular to OO’ and containing O’ be the
image plane conjugate to the object plane, and the observation point
lie at P;. Let the ray-limiting aperture be represented by the physical

Figure 26
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and perpendicular-to-the-z-axis standing diaphragm BB in front of
the imaging system Q. Let the radius of the L-centered sphere that
we choose as the boundary surface be e; let the luminous element be
always so close to the axis that the quadratic terms in x and X, and
y and Y can be neglected. Let d¢ be an element of the boundary
surface and its projection on the plane of the diaphragm have the
coordinates &n. Then the light disturbance at point P, situated close
to the z-axis is given by the expression

T ded t o XE+Y
_x n . t_xerym
s = }\ff = sin 27t (T e?\ ) , (27)
&1m
where
X =x—-X (27a)
y=y-Y

are the coordinates of point L;, which is conjugate to the observation
point Py, if one refers to them® using the luminous element at L as the
starting point, and the integration is extended over the rectangular
projection of the effective pieces of the boundary surface. One sets

r_
i @
and Eq. 27 becomes
k o S t X +yn
SZXJJdE dn stﬂ(T—T) . (29)
&1 m

15Tt should be emphasized that these relative coordinates x’y’ are not identical
with the absolute coordinates x'y’ of P, used in previous paragraphs.
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If one decomposes the sine function into its components,

t ¢/ ) t rc/
sin 27t <T — X}\a ) CcoSs 2719}11 — COS 27t <T — X}\E > y;

one can carry out the integrations with respect to &’ and 1’ separately

and obtain*!i
k sin 27tx’ =2 =1 £2 E’l _sin 2711_4'“2 i
T nx 719)\—/
sin 2 (1 - X(&+ Ei);\y’(né + n’l)) _

The two integrations will no longer be independent of each other
if the projection of the effective boundary surface deviates from the
shape of the rectangle.

A simplification occurs if the aperture lies symmetrically with
respect to the z-axis. In this case,

=0.

E’+E,’ dn1+n2
2 2

If one further sets
& — & =20candmy — My =23,

where oc and 3 denote the half width and height of the projection of
the boundary surface, we have
& _ nemm_ B _
2 e and =5 2 e B
where «’ and {3’ are the sines of the aperture angle of the half width

and height of the projection of the symmetrical diaphragm. We then

have .
k sin 2T%% t

= —4o'p’ A A Sin 27— . 30

s =5 B e o )\B sin 2 (30)
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The amplitude of the oscillation s, whose phase is given by sin 27+,
consists of, apart from a constant, the product of two factors of the
form F(w) = 2% The graph of this function of w is indicated in
Fig. 27. Forw = tam (a = 1,2,3...), F(w) = 0; for w = 0, F(w) takes
on the undetermined expression 0/0, whose true value is one.

Figure 27

—

1

Without further ado, one can see from the form of the function
that the amplitude has its maximum at w = 0 and decreases gradu-
ally from there toward both sides symmetrically with increasing |w/|.
Whereas the first factor

sin 271%

x !

25

depicts the amplitude in directions parallel to the x-axis, the second
factor,

/ !
sin 271%B
A
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independent from the first, reproduces the course of the amplitude in
directions parallel to the y-axis. One thus sees that the amplitude
of the oscillation is arranged in a checkered way and symmetrically
with respect to the lines X’ = 0 and y’ = 0 (or x = X and y = Y). The
amplitude is zero (minimum) on lines

and

These lines form a system of rectangles in which the amplitude
increases gradually from the sides to the middle and has its maximum
there (the cross point of the diagonals). The closer the rectangle is
situated to the center of the pattern, the greater the maximum. In
the central rectangle, the amplitude reaches its absolute maximum
(Fig. 28) at the position of the luminous element (x’ = 0, y’ = 0).

Figure 29

One can see from the equations for the lines of minima that the
smaller the dimension of &', defined for the angular “width” of the
diffracting aperture, the farther the lines parallel to the y-axis move
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Figure 28

away from each other, and the distance of the lines parallel to the
x-axis depends on 3’ (angular “height”) in the same way.

If, for example, the width («) is negligible compared to the height
(B), i-e., the diffracting aperture is formed by a vertical narrow
slit, the distribution of the amplitude then takes on the appearance
sketched in Fig. 29X The intensity distribution of the actually ob-
served diffraction phenomenon emerges from the obtained ampli-
tude distribution if one squares the amplitude at every location, for
in general, ] = s2 df.






Chapter 3

Imaging of illuminated objects

§18. Presence of several luminous points

In the presence of one luminous surface element, the diffraction pat-
tern is symmetrical with respect to the location of that element. This
applies to an arbitrarily located surface element, as long as one limits
oneself to points close to the axis of the system. The diffraction pattern
always remains stationary and moves with the luminous surface element.

With the simultaneous presence of several luminous elements, the
observed diffraction pattern depends on whether the individual ele-
ments emit independent incoherent waves from each other, or whether
the waves emitted from individual elements are coherent, i.e., capable
of interference.

The following laws hold, assuming that we are dealing with sev-
eral luminous “points”: If different wave trains are incoherent, one obtains
the resulting intensity at each location by simply summing the squares of the
amplitudes, i.e., the intensities, that are generated by individual luminous
points.

If n luminous “points” contribute to the light disturbance at the
observation point, and if the disturbance generated by their wave
trains are represented by the value of the electric field (of the light
vector),

65
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t
61 = a1 COS (27TT + 61)

¢y = ay cos (27[% + 62)

t
an: n 2_ 61’1 7
acos(ﬂ_l_+ >

then the resulting intensity in the case of incoherent wave trains is
Jine = €1 + €+ + €2,
and is within an insignificant proportionality factor 1/2 given b
& prop Y & y
Jine =@l + a5+ -+ a2 .

On the other hand, if the wave trains are coherent and their electric
field vectors € have almost the same direction, which we assume for
the sake of simplicity, then one has to first add the individual fields
at the observation point to yield

E=¢ +&+ -+ C,.
The intensity is then given by
Jcoh = @ .

If we bring € after summation into the form

t t
¢ = ACOSQTCT + Bsin27tT ,

the intensity is therefore, to within a factor of 1/ 2, IV

Jeoh = A% + B%.
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The difference in intensity calculation for both cases is most strik-
ing for the observation point that is reached by all wave trains with
the same phase. Then we have

Jine =@+ a3+ - +a’ (31)

in contrast to
Icoh = (Cl1 +ag + -+ (ln)2 . (32)

If additionally the amplitudes of the individual waves are of equal
magnitude (a), we have

Jinc:n'a2/

Icoh = Tl2(12 =7n- ]inc .

If Jcoh > Jinc for one observation point, then there must necessarily
be another point for which the wave trains do not arrive with the same
phase, and we have J.on < Jinc. This, however, is simply the nature of
interference.

§19. Presence of several luminous surface elements

In reality, we do not deal with luminous points but surface elements.
We want to represent the disturbance caused by a luminous surface
element df at observation point P by the previously used auxiliary
vector s thatis proportional to the electric field, giving us the intensity
via form s2 df. Let

t
Sp = A COS <27TT + 6) ,

where we assume that all wave trains originating from the surface
element have combined physically at the location of the observation
point to a single wave train with amplitude a and phase (2% + §).
An extended luminous surface consists of many surface elements.
The calculation of intensity at the observation point must therefore
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also be executed differently in the presence of a luminous surface,
depending on whether the constituent surface elements emit coherent
or incoherent wave trains. In the case of incoherence, the intensity is

simply
Jine = J s2df
or to within a factor
Jinc = JVGQ df ’ (33)

where the integration extends over the luminous surface. If a is equal
for all surface elements, then we have

Jine = a? f df = a’F, (33a)

where F is the size of the surface. In the case of coherence, on the
other hand, one has to first calculate according to Huygens’ princi-
ple the induced disturbance over the entire luminous surface at the
observation point, that is, to form

S = JCOS (27(% + 6) daf , (34)

where again the integration extends over the luminous surface. Here-
upon, one has to bring S into the canonical form

t t
S = Acos 27‘[T + Bsin 27‘[T . (35)
The intensity at the observation point is then
Jeoh = A + B2 (36)

If there exists an observation point at which all wave trains arrive
with equal phase and amplitude, then we get

t t
S = acos <2WT + 6) fdf = acos <27TT + 6) F,
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where 6 = const. If we bring S to the form of Eq. 35, we have

A = aFcosb
B = aFsind
and the intensity is
Jooh = a®-F*. (36a)

§20. Single luminous slit

Let the slit run parallel to the y-axis (vertically) and extend from
Y = —btoY = +Db; let its width be small compared to its height and
therefore be designated as dX.

I. If the slit is covered with self-luminous surface elements, we
are dealing with incoherent wave trains. The intensity at the
location of the resulting diffraction pattern is to be calculated
according to Eq. 33 and becomes, if one substitutes x’ with x — X
and y’ with y — Y, according to Eq. 30,

N 2Y=+Db N 2
B k4 . 2dX sin2ﬂ¢ 1y SiDQﬂw
Jne = (4B') X | = i) ) av( e )

A

(37)
If we set ) g/
My -F_
A
then the integral appearing in Eq. 37 becomes
2m(y—b) & ) 2m(y+b) B )
A J sinw dw — + A J sinw dw
omp w o 2mp w '
2ar(y+b) & 27 (y—b) &

The graph of the function (%)2 is shown schematically in
Fig. 30. The function becomes zero at the same locations as
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Figure 30
—3n —on —n 0 m om 3

the function 2% that was previously discussed in more detail;
the greatest maximum of w, having a value of one, also lies at
w = 0, whereas the secondary maxima are consistently smaller
than those of the function Si“TW, and the entire curve lies above
the w-axis because of its quadratic character.

The integral is represented by the areal content between the
w-axis and the segment of the curve that is cut out by lines

wy = 27t(y — b)B’/A

and

The limits of the integral are different depending on the loca-
tion of the observation point xy relative to the luminous slit. If
we define as “slit zone” the areal strip formed by moving the
slit parallel to itself in both directions of the x-axis, we can dis-
tinguish three cases: the observation point lies outside the slit
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zone, in the immediate vicinity of its borders, or within the slit
zone.

1.y > +bory < —b and |y — b| is large compared to \' =
A/B’; i.e., the observation point lies a considerable number
of wavelengths away from the edges to the outside. Then
we can set both limits of the integral to infinity, in fact both
positive if y > b and both negative if y < b. The integral
here becomes negligibly small.

2. y = =£b: In this case, the limits of the integral become 0
and o or o and 0, and the integral itself takes on the value

xlv

71/2 since we know

(Smw) dw = 71/2 . (38)

w

0%8

3.y < band y > —b and further |b — y| large compared
to N = A/P’; ie., the observation point lies within the
slit zone, but a considerable number of wavelengths away
from the edges. In this case we can replace the limits of
the integral by —cc and +00, and the integral takes on the
value of 7.

For the intensity in Eq. 37, the integral under consideration is
multiplied by a function of x; accordingly, the intensity of light
is zero for all points outside the slit zone (case 1). For points in
the slit zone and near the borders (cases 3 and 2), the intensity
depends only on x and drops suddenly to half the value if the
observation point moves for constant x into one of the edges of
the slit zone.
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II.

The intensity in the direction along the x-axis is given by the
expression

k. ,, 2 A sinQWO‘_TX)“/ ?
Jine =C - X4(XB dX , (39)

2np’ 271—("7;\()“/

where C = 0 for case 1, C = 7/2 for case 2, and C = 7 for case
3. This functional dependence is, apart from a constant factor,
the one schematically drawn in Fig. 30.

If the slit is covered with illuminated (i.e., not self-luminous) sur-
face elements, then we are dealing with coherent wave trains. We
therefore have to calculate the intensity according to Egs. 34, 35,
and 36, so that we obtain

; +b ’
k4 '8 dX sin27t(xf}>\<)“ 4y sin 271% . (40
Jeoh = by xf 27t("—_;\<w i W ; (40)

m(y-Y)p’

if we set 2 ~ = w, the integral becomes

+b
QWHT

N A J sinw dw
27’ w )

b
27117\%

The function ®2* has the graph drawn in Fig. 27. Since the
curve lies partly below the w-axis, the sign of the areal patches
represented by the integral changes, and the value of the in-
tegral therefore approaches a finite limit as w increases, faster
than the integral in case I, all else being equal.

To find the intensity versus position, we have to consider as
well the three cases separately, where the observation point is
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inside, outside, and on the edges of the slit zone. Since this
integral is

+oo

f iaid dw=m (41)
w

—0

again, the resulting diffraction pattern has exactly the same ap-
pearance as in the case of the self-luminous slit. For homologous
points the intensity differs only by a constant factor, and at the
edges of the slit zone it goes to zero via the half-value even faster
for the illuminated slit than in the case of the self-luminous
slit.

§21. Two parallel and neighboring slits

Each of the two slits shall again be assumed to be infinitely narrow. Let
their distance A be finite but of arbitrary value. As before, we would
like to treat the case of two self-luminous slits separately from the
case in which the slits receive their light from an external source. In
the latter case, we also need to discuss the influence on the diffraction
pattern exerted by the position of the light source on the illuminated
slits. This is because only with oblique illumination do noticeable
differences between diffraction patterns of self-luminous and illumi-
nated double slits become evident.

L. Self-luminous slits. Each slit generates the diffraction pattern

that was discussed in § 20 under I, whose appearance is com-
pletely identical for both slits. The center of each individual
diffraction pattern coincides with the center of the slit that gen-
erates it. Thus, we are dealing with the superposition of two
identical diffraction patterns whose principal maxima are sep-
arated from each other in the direction of the x-axis by the
distance A of the two light slits. Since we are dealing with a
self-luminous double slit, the resulting intensity at each location
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is therefore the sum of the intensities caused by each luminous
slit.

This expression is given by the formula

772 ’72
. sin 271—(’“);1)“ sin 27t—[x7(xl>\+A)](x
Jinc = const. W + const. 27_[[x7(X1+A)]cx’ ’

A A

(42)

where X, is the abscissa of the first luminous slit and X; + A is
the abscissa of the second luminous slit.

We want to carry out the discussion of this expression only for
the two special cases A = A/«’ and A = A/2c(.

1. A = A/o«’. Then the expression for the resulting intensity

becomes
2 2
sin 2= sin (220 — 271)
Jine = const. X, +const. P o )

We recognize easily that the two intensity curves are sim-
ply shifted along the x-axis by a distance 27t (Fig. 31). Each
of the principal maxima coincides with the second mini-
mum of the other curve, while the first minima coincide
and bisect the distance A = A/«’. By summing the or-
dinates we obtain the resulting intensity curve, which is
shown as the solid line in the figure. This curve exhibits
two principal maxima separated by the distance of the two
luminous slits (A = A/«), and a steady and symmetrical
decrease in brightness that reaches the value zero in the
middle between the principal maxima. Going outward on
both sides there is a series of secondary maxima that are
separated from each other by complete minima.
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§21 Two slits
Figure 31
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A = A/2&. In this case, an analogous observation shows
that by superposing the two intensity curves, both prin-
cipal maxima merge into a single, correspondingly wider
central strip that exhibits a small intensity attenuation in
the center. The first secondary maxima are still clearly

noticeable (Fig. 32).

II. Illuminated slits. In this case, we are dealing with two infinitely
narrow slits of finite separation that receive their light from
an external source. As such, we would like to consider the
intensely bright filament of a light bulb that is located in the
focal plane of an objective lens, so that plane waves are emitted.
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Figure 32

A '
Intensity __ . right component

----- left component
— resulting intensity

Let the filament be parallel to the direction of the slits. If the axis
of this collimator is perpendicular to the plane of the slits, then
coherent wave trains are emitted from there with zero phase
difference. Their phase difference deviates from zero, however,
if the axis of the collimator is tilted with respect to the plane of
the slits.

We first consider the case of normal incidence. If we designate
the angle of incidence of the light rays by u, then this case is
characterized by u = 0.

A. u = 0. The resulting intensity in the case of coherent wave
trains is given by the expression
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[x—(X1+A)] o T2
A
(X1 +A)]o ’
A

omrlx=
(43)

(X—Xl)O(,

A
(x—X1)o
A

sin 27t sin 27t

Jeoh = | const. + const.

27

where the previous designations are kept. For this case,
too, we would like to discuss in more detail this expression
for the two special cases A = A/’ and A = /2.

1. A = A/&/. In this case, both amplitude curves are
shifted from each other by 27t in the direction of the
x-axis and drawn in Fig. 33.

Figure 33

---right amplitude component
---- left amplitude component
— resulting amplitude
== resulting intensity £\
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By summing the ordinates algebraically one obtains
the resulting amplitude, and by squaring it one ob-
tains the intensity of the resulting diffraction pattern.
One can easily see that the two principal maxima are
separated by a perfect minimum. The decrease of in-
tensity toward this minimum is happening here more
rapidly than in the analogous case of self-luminous
slits. Going outward, the principal maxima are fol-
lowed once again by secondary maxima, which in turn
are separated from each other by perfect minima. The
intensities of the corresponding secondary maxima
are of greater magnitude than in the former case.

2. A = N\/2«'. For this case, Fig. 34 shows the respective
position of the two amplitude curves. A consideration
analogous to the above teaches us that the two prin-
cipal maxima again merge into a single bright central
strip that, in contrast to the analogous case of self-
luminous slits, is brighter and drops faster, whereas,
conversely, the secondary maxima are evidently much
weaker than the former.

B. Angle of incidence u > 0. In Fig. 35, let Sl; and SI, be the
locations of the two slits of separation A, which are met by
light at an angle u. Asbefore, let the slits be so narrow that
the phase can be considered constant even under oblique
incidence of light. The path difference for them is therefore

Asinu,

so that the coherent disturbances emanating from SI; and
Sl; can be represented by

o si0L 9T t N 1 Asinu
sin R
T 2 A
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Figure 34

- -- right amplitude component
---- left amplitude component
— resulting amplitude

=ee= resulting intensity

and

o sin 27 i_lAsinu
T 2 A )

If only slit SI; is present, then, according to earlier expla-
nations, the disturbance at the observation point is

s constsm wy . o t N 1Asinu
= S1in - — .
! Wy T 2 A
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Figure 35

If only the slit Sl, is present, then the light disturbance at
the same observation point is

sinwy | t 1Asinu
S9 = const sin2m | = — — .

Wo

The values of w; and wy are the same as those in the
previously treated case of perpendicular incident light,
into which our present case transitions when u = 0. Thus

27t(x—X1) o
{le (=)

27t[x—(X1+A)] o

Wo = X
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If both slits act simultaneously, the light disturbance at the
observation point is then given by

sinw;  sinwsy Asinu | t
S = s; + s, = const + COS TT sin 27—
W1 Wy T
sinw; sinwsy\ . Asinu t
+ const — sin 7t COS 27—
%1 Wo A T
A si 27tJt +B 27‘[t
= Asin2m= cos 2m—,
T T
so that the intensity becomes
sinw; \? sinwy \ 2
Jeoh = A% + B? = const? (—1) + ( 2)
w1 Wo
sinwj; sinw Asinu
+2 ! 2 cos 27 ] (44)
W1 Wo

It is readily apparent that this expression becomes identi-
cal with that for two self-luminous slits of equal separation
A (see § 21, I) in case the cosine disappears. This is the

case for
2ntA sinu 7T
e 4 (2a+1)—,
> +(2a + )2
a=0,1,2,
i.e., for
_ (2a 4+ 1)A
=4
Sinu - 4A

We further see that the expression assumes likewise a very
simple form if the cosine becomes +1 or —1. The former
occurs for
2mtAsinu
T = +2am ,

a=0,1,2,
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i.e., for

sinu =+—.

We then have

sin wy N sinwgr 45)

Jeon = const?
14%! Wo

This intensity distribution, occurring periodically with
variation of only u, is thus identical to that for two illumi-
nated slits of the same separation A for normal incidence
(uw=0).

The cosine becomes —1 for

2TA si
w — (et D, a=0,1,2,
i.e., for
2 DA
Sinu: iw.
2A

In this case, we have

sin w sinwgr (46)

Jeon = const? —
w1 Wo

Whereas in the previous cases of coherent waves the result-
ing disturbance was obtained by adding the amplitudes,
here the interesting case arises that the amplitudes of the
individual fields are to be subtracted in order to obtain the
resulting disturbance.

One consequence of this is the particularly noticeable dif-
ference, at these angles of incidence of light, between the
diffraction pattern of self-luminous and illuminated slits
of equal separation. This difference appears particularly
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striking for the special case A = 7 in which the angle of
incidence must be

sinu = (2a + 1)o .

For this case, Fig. 36 shows the respective position of the
two amplitude curves. The resulting amplitude of the
diffraction pattern is represented by the solidly drawn
curve. ™ It can be seen that the two principal maxima
are separated by a perfect minimum, whereas in the self-
luminous slits and also in the illuminated slit with normal
incidence, the principal maxima are merged into a single
and correspondingly broader bright central strip.

Figure 36
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§22. An illuminated slit of finite width

If the slit is self-luminous, the result is easy to assess. The slit of finite
width can be thought of as the result of shifting an infinitely narrow
slit parallel to the x-axis. One therefore only needs to construct the
diffraction pattern corresponding to the infinitely narrow slit situated
at different positions and then add the individual intensities at each
location. With the broadening of the self-luminous slit, the diffraction
pattern of an infinitely narrow slit must become more and more
unclear.!

Much more diverse are the phenomena of an illuminated slit of
tinite width. The term that gives the light disturbance at the obser-
vation point, in the case of an illuminated slit, is

k s sin 2o XX gin 27/ Y=Y t
=_ 4/ dX dY — A .sin2n—, (47
S }\JJ '3 mel% 271[5’%\( sin 27— (47)
—a—b

where 2b and 2a denote the height and width of the illuminated
slit. If the slit is infinitely narrow, the integration over dX becomes
unnecessary and the integrand moves as a constant to the front of
the integral, a case that has already been dealt with in § 20. For an
infinitely narrow slit, the position of the light source, i.e., the direction
of the angle of incidence of light, is of no influence on the diffraction
pattern. In the case of a finite width of the slit, on the other hand, the

1This is the typical difference between a diffraction phenomenon and a pure in-
terference phenomenon with a self-luminous slit (Lummer-Haidinger interference
curves of equal inclination), in which only the angular magnitude of the visual
field grows with the broadening of the light source (slit).
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oblique incidence of the rays brings about phase differences along
dX, so that in this more general case the light disturbance becomes

+a+b I x—X )
n 2o *
/

k si ==
=— 4o/ B’ dX dY A
s ?\JJ P 2T
—a—-b

x=X
A .- (48)
sin 271[3’};LY _ t  Xsinu
. m -sin 2w | = —
A J

T A

where u is the angle of incidence of the incoming plane wave.
This expression can be written in the following form:

+b ) -y )
sz‘ffdvzfs’—sm%ﬁ X

A QWGIHX_Y

—b

. 49

ta in?2 rx—X . ( )

: J dXQOL'—Sm mx_XT - sin 27t t_Xsinu
27TOC/XT T A

This form reflects the formation of the resulting disturbance at the
observation point. Consider the slit as a checkered pattern consisting
of individual surface elements of size dX dY; the above form, when
calculating the disturbance at the observation point, initially takes
into account only the influence of surface elements located on a strip
parallel to the y-axis with width dX and height 2b, so that the first
integral in itself represents the already treated case of an infinitely
narrow illuminated slit. As we know, the value of this integral is, to
within a constant, equal to 7t for observation points within the “slit
zone” (see § 20).

The slit of finite width may be assembled purely from such strips
whose effect at the observation point is a function of the location of
the single strip and the prevailing phase there; i.e., it is a function of
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X. This influence of the width is taken into account by the second
integral.

In the calculation of s, we first restrict ourselves to the case in
which the phase is the same for all individual strips, i.e., we assume
normal incidence of light (u = 0). Then we have to consider the
following integral:

+a (x X)

_ X sin 27t 5
J= 2710(’—(X;X) ‘

—a

To solve this integral, we employ an artifice. It is known that

/ +0(,

in 27t
ST J cos(2mtpv) dv

gt

— !

So if we set
X = X
}'L - )\ 7

the integral becomes

+a

] = dX f oS (27rv—x> dv ,

—!

and by switching the order of integration,

1 T - X
= Yor f J dX cos (27{\)%) .
(X —Qa
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Now we can carry out the integration over X and get

A
v
27TX

1 J sin 2rv e gin 2myxe
Y

cos 2rtve - sin 27tve
_ dv A A
27(% o

If we set
2mv— =w,

then we obtain

+27'[a"‘7,

A d CoS (%w) sinw 50

J= 21! J W w ' (50)
727ra°‘Tl

We can see that this integral is a function of x; we would like to
compare it with the integral

+0
Jo = l J dw cos (%w) sin w - 51)
T w
—o0

To find the value of the integral in Eq. 51, we start with the task
of determining a function of x such that it takes on the value of 1
between x = —a and x = +a, and the value 0 everywhere else.

xlvii

In general, according to the Fourier integral theorem,

+00

sz J f(u) cosz(u —x) du . (52)
0

—00

f(x) = Tlt
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§22

The function that we seek is therefore
+a

dzfcosz u—x)du
—a

dz — sin(az) cos(zx) ,

NN

or, if we set additionally az = w,

sinw cos (2w)

f(x) = %wa

w
0
+o0 .
1 sinw cos (2w)
=— | dw =Jo-
T w
—00

The value of ], as a function of x is therefore

N

] 0f x> —ooand < —a
= 0 for
0 X > +a
x > —a and
=1 for -

Jo {x<+a

1 =+
]()——for{X ¢

2 X =—a )

(53)

Its graph is represented by solid lines in Fig. 37. If ao’ is much
greater than A, then ] = % Jo and the light distribution in the resulting
diffraction pattern is a uniformly bright strip of width 2a, outside of
which there is complete darkness. This light distribution in the image
becomes all the more congruent to that of the object (the illuminated
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Figure 37

1

slit), the greater the width a for a given opening angle o’ of the
diffracting aperture or the larger the opening angle for a given slit
width.

To gain an overview as to what values of the limits permit the use
of the integral ], instead of the integral ], we consider the following;:

+
! p— p—
— 2 e ﬂ%

A

Since the function to be integrated is an even function, the last
two integrals on the right are the same and we can write

oo X x
A A W sSin W cos (EW)

J

— 4
20/ o w ’ (54)

2mac/

so that the amplitude of the resulting disturbance becomes

Q0
2 sinw X
const{ Jo — — dw oS (—w)
T w a

2mac/
A
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The integrand of the residual integral differs from the previously

sin w

discussed (52*) only by a factor cos (Xw), which takes on the maxi-
mum value one. The residual integral is therefore, for all values of x,
less than the integral

}\ +00
L= por f dw

2mao/

sinw

w

If, for certain values of 2%, this integral is negligible with re-
spect to the same integral between —o and +oo, then we have a
stronger reason to neglect our residual integral in comparison to Jo.
The following table shows the values of the integral as a function of
its lower limit 272

ao/

27’[)\

P om0
1.5708 20 0.0226
0.6247 50 0.0192

—0.0346 100 0.0086
) 0.0209 200 0.0024
10 || —0.0875 500 || —0.0018

N — O

It can be seen from the table that B decreases very rapidly and is
practically zero for a value of 27taT°‘/ = 2.

If, for example, half the opening angle is equal to 3°, so that o
becomes approximately equal to 1/20, then the lower limit of i} equals
nta/10A; further, if a = 666A, or equal to 4 mm for a wavelength of
A = 0.6 um, then P = 0.0024 - 2= and therefore | = 25{Jo — 0.0016}
according to Eq. 54.

We can also write the amplitude of the resulting disturbance as

2 sin w X
A(x) zconst; f dw oS <aw> . (55)
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For x = 0, i.e., in the middle of the slit, the value of the amplitude
is then

2ﬂaa

A(0) —const— f
0

sinw

which transitions to “const” for large 2”‘“" . At the edge of the slit,
for x = a, we get

2mac’
A A

2 sin w cos w
Aa) = constT—[ J dw —— = const

w
0

if we set 2w = w'. For large values of Z&% this value = 1/2 const,
or half the value at the center. In general, this simple relationship
between A(0) and A(a) does not exist, and the values of A(0) and
2 - A(a), respectively, are apparent from Figs. 38a and b (hatched).

It is easy to see that in the general case, for which we cannot set

—2”;\“’" = oo, theamplitude A for x inside and outside the slit fluctuates.

To recognize this, we set Vi

dA(x) d 2 [ sinw X
e ol f dw " cos<aw>

2
= —— J dw sin w sin <w§>

Tt a
0
sinu  sinv
= +Const{ — } ,
v
where
2no (a + x) 21t (a — x)
u= ,V =

A A
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Figure 38

(b)

Let us fix, for given values of a and o/, the point 22&¢ on the abscissa
(Fig. 39), which corresponds to the point x = 0 (the middle of the
slit), and let us go from this point to the right and left of the axis a
distance % Then we have in the ordinates the values of 2 and

sinv

-+, whose difference is to be formed.
To fix this idea, let us choose, for example

2max’
A

so it is easy to see that if we let x grow from zero, first

= 27,

sinuw  sinv . dA(x)
u v 7T dx

is positive until it grows to a maximum value, then decays, and
foru = 3m, v = m, ie., for x = a/2, it is again zero. From there,
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Figure 39
“ sin w
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v A u

%ff) becomes negative and reaches its largest negative value for

u = 4m, v = 0, i.e, for x = a at the edge of the slit. If x is allowed

to grow beyond the edge of the slit, d’;g‘) increases again from its

minimum value and reaches the value O for u = 57, v = —m, i.e., x =
3/2a; in this way, the fluctuations of %ff) continue and gradually die
down.

Accordingly, the amplitude distribution will look somewhat like
what is shown in Fig. 40.

If we choose 2%8% — 7, the graph of the amplitude A(x) in the
interior of the slit is somewhat different; the maximum is then at
x = 0 (see Fig. 41).

If 278 5 very small compared to 7, then we can place in the
expression for A(x) the nearly constant factor 2% = 1 in front of the

integral and get b
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Figure 40
A AKX)
ac/ = A
_3a 3a X
—2 + t 3 -
B IR B
Figure 41
A
A(x)
aod = I\
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Ax) = 2 f dw cos (%)

Uy
0

2a ( 2mod x)

= — - Sl
X
dao/  sin (2

- A . Q(ﬂoc’?)\c ) : (56)

A
A(x) has in this case the already discussed form S2¥_ [f 219 g yery

large compared to 71, then, as can be seen from the consideration of
the form of dA ), the fluctuations of the amplitude inside the slit are
very small, and the value of the amplitude is therefore almost con-
stant; only at the edges of the slit do fluctuations take place; namely (if
we consider only positive values of x, since the phenomenon is sym-
metrical with respect to the J-axis), since /2% was already assumed
to be large, u is a fortiori large and therefore

dA(x) sinv
= —const- —— .
dx v

Therefore, asv gets closer and closer to the value v = 0 (as x increases),
ie., x = a (edge of the slit), the fluctuations of *2* begin to become
more and more noticeable. We therefore obtain the image of the
amplitude indicated in Fig. 421 the larger & becomes, the more
the Variations at the edges converge, so that in the limit, for infinitely
large -, we obtain the amplitude graph already shown in Fig. 37
above.

§23. Finite slit whose two halves possess a constant difference in
phase

Let the slit have width 2a and height 2b; let the phase in the half slit

of height 2b and width a (x = —a to x = 0) be equal to 27+, while
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Figure 42
—a 0 +a

in the other half slit (x = 0 to x = +a) let it be 27t + 6. Then the
resulting light disturbance at the observation point is

k v sin 2mp’ Y=Y ) sin 2mro/ XX t
=— | dy2p—2— JdXQ X g§in2m—
* AJ P oy DTS S|
~b —a
+a
sin 2ol X=X t
x

If the observation point lies within the slit zone, then, as was shown
previously (§ 20), the integral stretched out over dY becomes equal to

Al if we split up sin (271% + §), we get

t t
= Asin2n—= + B 2n—,
S sin T coS T
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where A and B are given by

0 +a
,sin 27 X532 ,sin 2710(’%
A=k- JdX x +cos§JdX2o¢ —
210l 5= 210l 55
“a 0
ta ; 1x=X
B =ksin§ J dX 2o/ ———
27TOC/XT
0
To obtain the intensity, we have to form
[=A%+B )
orl =]} +J§ + 2]1J2cos 9,
sin 27od 2=
where J; = 20’k | AX ——— X x - (58)
, £ sin 270l 5= X
Jo = 2a'k | AX ————— X x
0

We want to treat more special cases.

1. If 8 = 0, 27, 4, etc., i.e., the phase difference 0, A, 2A, etc., then
we have [ = (J; + J»)? = J?, where

+a

]:2oc’kde

—a

sin 2o X=X

1x—X
2T ==

i.e., the intensity is of the same value as if the slit had no phase
difference.

2. If 8 = m, 3m, 5. ., Le, the phase difference is = 2, 33, 52, etc,,
then we obtain

I=(J1—J2)?. (59)
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If we set
ool X X
T - = w,
then J; and |, take on the following values:
27‘(06/X+Ta )
Ak i
= MK J sinw dw
7T w
D - (60)
A
Ak i
, = Ak J sinw dw
T w
2o X4 )

We see immediately that for x = 0, i.e., the center of the slit,
J1 = J» and therefore I = 0; in the middle of the slit there is a
minimum, independent of the size of a.

To discuss further, we distinguish the two cases for which %
is small or large compared to 7.

L If % is small, then we can expand according to Taylor’s
theorem as follows:!

<92 /
Ak | sin # 27ada
=2 = T
2o x 27od x s 2ol x 2ma’ a2
0% con Ing's _ iy 2ng'x (1ngl)
(27roc’x)2 21
A
. 2 /
Ak | sin S 2n’a
I e N
’ ’ . ’ ’ 2
27'[;3( X 608 271)(\xx — gin 271;( X (_27‘[;( a)
+ .
(27roc’x)2 21 !
A
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and get

I - J _ & 271;:(7( coS 27t}¢zc’x — ¢in 27r;\x’x ‘ ool a 2

S (22)’ \

Ak (2mx’a)2 .
Ifweset { ™ A
21 x
A = Evl
then we get
£ cos & —sin &
Ji—J2= C—E,Q = cf(§) .

To discuss the curve represented by the odd function

& cos & —sin &
:T,

we first determine its zeros. It turns out that

f(&)

f(§) =0for & =tané& ;

i.e., the zeros of the curve (&) lie at the intersections of the
curves
n=¢ and n=tanéf.

The locations indicated by x in Fig. 43 are the zeros of the
function f(§); with growing ||, the zeros thus approach
the values +(2a + 1)5 more and more closely.

We now determine the positions of the maxima and min-
ima of f(&). Its derivative is
—&2sin & — 28 cos & + 2sin &

&3 '

(&) =
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100

Figure 43

The maxima and minima of f() are therefore at the loca-

tions for which

2&
2 g’

tan &
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i.e., at the intersections of the curves

2§
T]:tan((_, andn:2_—g‘2

Curve n = 2322 has the form that is represented by the

dashed lines in Fig. 43. The points marked by o are there-
fore the locations of the maxima and minima of f(§), and
f(&) itself is approximately represented by the bold curve.
(&) has for negative & opposite but equal values as for
positive &.

If the intensity I = ¢?[f(&)]? is formed, the intensity distri-
bution shown in Fig. 44 is obtained. As we can see, two
principal maxima appear, separated by a complete mini-
mum and followed by secondary maxima and minima.

By assumption, 2°¢¢ is small compared to 7. Itis therefore

a fortiori for points of the object slit that

2mod
&= }c\x ~ is small compared to 7t

Figure 44

AT

slit
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IL.

and one obtains the surprising result that the slit itself appears
almost completely dark, and that the maxima and minima lie
symmetrically on both sides of it.

If % is large, we need to consider only positive x be-
cause the quantity J; — J» changes only its sign for the
corresponding negative x, and I thus takes on the same
value.

First, suppose

2 /
& = X is small.
Then we can set'
£+ 20 3
R L
Tt w T | 2 w
£ 0
Ak Ak Ak
S L))
5 o7 ax
Likewise,
Ak
Jo = — + 2ko'x ;
2
therefore,
Jl — IQ = —4k(X,X
and

[ = 16k%a?x? .

Therefore, the lowest minimum is found at x = 0; on both
sides the intensity grows in a steep, parabolic rise. Since
we can put

27mtaod

A

+£:OO/
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we can in general write'l!

£ £-2nga
2Ak i Ak i
11 — ]2 = —7 S W dw +— f S w dw . (61)
0 —0

Therefore, if & is large compared to 7t and the observation
point is so far from the edge (x = a) of the slit that

2!

- T px

2nx’ a
A

e

is still large compared to 71, then we can set

21t a B
=

—Q0

and get
2Nk 7
—Jo=——-=-Ak.
=) T 2
We have therefore inside the slit, except in the immedi-
ate vicinity of its center and its edges, a nearly constant
brightness.'’

At the edge (x = a) we have

2A\ k7t Ak Ak
h-Jo=—2=0+ 20 =2

T2 m2 2
At the edge, therefore, there is only 1/4 of the intensity that
prevails in the slit. If one is outside the slit and far enough
from its edges, then

2’ a
A

&
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Figure 45

&

J N

is large compared to 7t and can be set to +o0. We then get
J1 —J2 = 0 and therefore also I = 0 .

The graph of the intensity is therefore largely represented

by Fig. 45. This is not entirely correct. In fact, fluctuations

of I still appear near the center of the slit x = 0 and the

edges x = a. This can easily be recognized as follows.

For the sake of simplicity, we base the consideration on the

following numerical example:

( 2n’a

N 507,

) o =1 minute = L
602’

A=6-10""mm,

| therefore a = 54 mm .

Since the graph of

a .
0(5) :Jsmw dw
0
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Figure 46
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is the one sketched in Fig. 46, we see that

@ (&) has a maximum for &=m3m5m- -
has a minimum for & = 27, 4m, 67, etc.

Now, even for & = 7tor & = 2,

£

A or —487

_ 2noda {equal to —49n

is still deeply negative, so that in J; — J, the second integral
is small. The first, on the other hand, is = ¢(§), and
therefore we have, according to Eq. 61,

Ji—J2= —Q}\Tk@(&) .

I therefore exhibits fluctuations of functional form [ (&)]?,

so that I assumes a maximum for & = 7t and a minimum
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for § = 2m. The values & = 7 and & = 27, however,
correspond to the values

A
X =—=1mm
20/
d A ivel
an X = & = 2mm, respectively.

Thus, these “diffraction fringes” close to the center of the
slit are still clearly visible. Something quite analogous also
occurs at the edges of the slit (x = +a), as we saw in the
previous section. The exact intensity curve will therefore

have the form shown in Fig. 47.Y

Figure 47

Al

\_}
N
N

When the phase difference $ of the two halves of the gap
increases from 0 to 7, the deep minimum in the center only
gradually forms (see Figs. 48a, b, and c).
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Figure 48

Al \‘/

—a] 0 +a] —a

O]
(@) 5 =0, 2m, 47 ... (b)s =72, 3¢, & .

—al 0] +al
(¢)d=m, 3m, 57 ...

§24. Slit of finite width with oblique incidence of light

If uis the angle of incidence of the light rays, then the light disturbance
at the observation point is

+o : jy-y T Ix— X )
k 4Y2 ,sin 273’ 45~ X2 sm 2o =2
_X B 27_(6,]!_Y 27T OC/X X
b A > (62)

9 t Xsinu
S [ —
1n T A )

Therefore, for points within the slit zone, we have!V!

sin 2mo 25X t  xsinu (x—X)sinu
2ol X T A A

SZdeXQO(/

—a
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+a
sin 27to¢ X% —X t -
=k J dX 20(’—_>? cos 27tsinuX sin27 | = — xsmu
2mx”‘T A T A
—a
i sin 27t X=X X t '
in X=X _
+ k J dX QOC/WX;)? sin (QT(SiIl‘LLX X ) cos 27t (T — XSI}\nu) .

—a

Because the last factors in both integrals do not contain X, we can
write

t/ .tl A
s = Asin27TT + BCOSZTET ,
wheret’' =t — xsmu
c
+a . 2 , X
sin 27t 5= —X
A= kf dX 20(/74? COs (27Tsinux 7\ > > . (63)
A 2T ~
+a
sin 27l XX —X
B=k J dX 2&'—_;‘ sin 27tsinuX
27toc”‘T A
Za )
If we set
X=X
2ntx =w,
then we have
2o/ 2t )
kA sin w sinu
A= — dw - .
- J w v coS < " w)
27 254
27'[0(”‘+T‘1 ( (64)
B kA J dw-SmW sin (smuw>
Tt w lodd
27 254 )
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and the intensity is I = A? + B2 We need to consider only positive
values of x since for a switch of x with —x, the value of A is unchanged
and the sign of B changes, and therefore I remains the same.

To discuss the expression for B, we consider the integral

1 sinw | (sinu
By =— | dw sin w
T J w o
—Q0
0 +o0 ' _
1 sinw . [sinu 1 sinw . (sinu
=— | dw sin wl|+— | dw sin —w | .
T J w o T w o
- 0

It can readily be seen that the curve represented by the integrand
of the first integral is the symmetrical mirror image of the curve
represented by the integrand of the second integral with respect to
the w-axis. Therefore, B,, = 0.IVil

To discuss A, we consider the integral

1 inw inu
Ay =~ f aw 22 cos (Sm, w) . (65)
Uy w o
—o0
According to earlier developments,"il we have

A, = 0for sinu < —«’ and sinu > +«’,

A, = 1for sinu > —«’ and simultaneously sinu < +of (66)

A, = % for sinu = +«’.

To compare our integrals A and B with A, and B,,, we set
x=a+39d,

where 3 is the distance of the observation point from the edge of the
slit and is to be taken as positive if the observation point varies from
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Figure 49

the edge with growing x (Fig. 49). Therefore, $ varies, for positive x,
between —a and +o0. Then we have

2 d
o 2o 280 '
sinw sinu
A= — dw - COS —w
T w x
27wc’§
27,[“/ 2a)\+b .
kA sinw sinu
B=— dw - sin w
T w lodd
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For a slit of finite width (a somewhat >1 mm) and a not too small
opening angle of the diffracting aperture (&’ somewhat >1°), 2rmac’ /A
is so large compared to 7 that the upper limit in A and B can be set to
0. With respect to the lower limit, we again differentiate four cases.

1. The observation point is outside the slit and so far from the
edge that one can replace 27t’5/A by +c0: A = 0and B = 0;i.e,,
the light disturbance is zero regardless of the angle of incidence
u. For points far away from the edge, therefore, there is no
difference between the phenomena of normal incidence of light
and those of oblique incidence of light.

2. The observation point lies within the slit and so far from the
edge that 27’5 /A can be replaced by —oo; then we get

B=B, =0
A =KAA, .

The value of A still depends on the angle of incidence; in fact,
A = kA if sinu lies between —«’ and +«/, i.e., if the incident
light rays extend through the slit into the diffracting aperture.
The total intensity here is then equal to k*A%. On the other hand,
we have A = 0if sinu < —o/ orsinu > +o/, i.e., if the extended
light rays no longer hit the diffracing aperture. In this case, the
total intensity is therefore equal to zero for all points within the
slit but sufficiently far away from the edge.

If the marginal ray of the incident light beam just hits the edges
of the diffracting aperture, then sinu = +o’ and A = 1kA; e,
the total intensity is equal to k*A?/4.

3. The observation point lies on the edge of the slit. In this case,
we have 2rto’0/A = 0, and for each incidence angle the values
of A and B are half of what they take on in case 2, i.e., when the

observation point is located within the slit.!™
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4. If the observation point lies in the immediate vicinity of the slit
edge, we must decompose the integrals A and B in the following

way:
0 27t 5 /A 27t 5 /A
kA [ kA kA k
oo ey e
7T Tt 2 T
0 0 0
o0 27tod §/A 27tod §/A
B KA J K f
- T T B T

O
(=)

0

Of interest is the case where A, = 0, i.e., when the extended
light rays do not hit the diffracting aperture, or when

sinu < —«’

or sinu > 4+« .

While, as we have seen, in this case the inside of the slit and
the slit edges become completely dark, the intensity for points
infinitely close to the slit edges retains finite values.

To calculate the intensity distribution close to the edges for
various u, we consider the following;:

If the value of p = 52} is ]arge, e.g., the magnitude of & has the
value sin 1° ~ &, while u, e.g., = 30°, so that sinu = 1, then the

graphs of the functions

f(w) = Smww cos(pw)
and gw) = smww sin(pw)

are the ones plotted approximately in Figs. 50a and b.
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Figure 50
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We observe that the curves f(w) and g(w) intersect the axis
p — 1 times between w = 0 and w = 7 at dlstances . The first
mtersectlon after the point w = 0 happens for the f ( ) curve at
w = 3%, and for the g(w) curve at w = 7. Now the intensity is
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I=A”+B?,
2no’s
)\ .
sinw
where A = const J dw cos(pw)
w
0
2na’ 8
?\ .
sinw
B = const J dw sin(pw) .
0
21’ s

If one then moves the boundary 5> along the axis of the
curves f(w) and g(w) and forms the corresponding areal content
represented by A or B, one can easily recognize the
following;:

With growing [8|, I executes a series of fluctuations with de-
creasing amplitude. The minima of the fluctuations lie at
locations

ie., 0=+

They maintain a distance —2— from each other. The intensity of
the maxima is extremely low.

If, on the other hand, sinu is only slightly different from o/,
that is to say sinu = o + ¢, where ¢ is small, then, according to

simple calculation,™
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where (¢) denotes quantities of the order of . Since the curve
# always runs above the abscissa, B grows everywhere with
increasing 0, whereas A simultaneously experiences the known

fluctuations. The minima of the intensity thus occur at intervals
A

T2
The maxima of intensity here have finite values (Fig. 51).
So far, we have always assumed that the slit is so wide that Q”T‘w"
is large compared to 7.

We now proceed to the consideration of a finite but very narrow
slit by assuming that "¢ is small compared to 7, thereby gain-
ing a supplement and extension of the already discussed theory of
the infinitely narrow slit. In practice, in order to make 22% small
compared to 7, one must duly reduce «/, since, e.g., even for

o =1°
a=—mm
A=6-10""mm,

—2“;“"' is about 7 and still not small compared to 7. If we set

2 !
”}‘\1“ — ¢ (small)
27X
= Ev ’

A
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Figure 51
b1
—-a 0 i

then the expression for the intensity is

[=A”+B

sin u
0(/

If #2% js not too large, so that ¢

is small compared to 1, i.e., if we

have almost normal incidence, we can expand A and B according to
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Ixii

the Taylor series and obtain in a first approximation

[ 4£2k2)\2 (sin&)2

T2 &

The same value applies to normal incidence, uw = 0. Thus, in the
slit itself (§ ~ 0) there is an almost constant, strongest brightness;
maxima and minima line up symmetrically on both sides of the slit
(see Fig. 52).

Figure 52
I

o

—27 —7t —€ 6
V
slit

If the incidence is tilted, i.e., if sin u has a finite value, then, since
ol is very small, the magnitude
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is very large. The graphs of the integrands A and B, i.e., the functions

sinw

f —

(w) v cos(pw)
sinw |

glw) = - sin(pw) ,

are in this case already represented in Figs. 50a and b.
The graphs of A and B as functions of & therefore depend on the
ratio of the small interval of integration

4mac’
2 fr—
£

to the likewise small quantity 7t/p, which represents the distance
between two successive zero points of the curves f(w) and g(w). We
want to distinguish two main cases.

1. Let -
2£=2a6 (a=1,2,3...).

Then we have
2asinu=aA (a =1,2,3...);

i.e., the path difference of the rays striking the edges of the
object slit is an integer multiple of the wavelength. It is then
for all &, as can be easily seen, A and B almost = 0, since in
the formation of the integrals the adjacent pieces always cancel
each other out. The entire field of vision is therefore dark. This is
natural: the incident light experiences diffraction at the object
slit. The principal maximum lies in the extension of the incident
rays, that is, below the “diffraction angle” u. The minima lie in
the directions

aA
i = — =1,2,3...),
sinu 2a(a ,2, )
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and the secondary maxima lie in the directions

. (2a + 1A
=—(a=0,1,2,3...).
sinu 5 9a (a=0,1,2,3...)
In the considered case, sinu = % ; therefore, a minimum gen-
erated by the object slit falls on the diffracting slit («, 3), and

the field of view is therefore dark, as deduced above.

Let -
2e = (2a+1)5(a20,1,2,3...);

then we have
(2a+1)
2

2asinu = A(@a=0,1,2,3...).
In this case, one of the secondary maxima of the diffraction im-
age generated by the object slit falls on the diffracting aperture.

One sees immediately that for & = 0, that is, in the middle of the
slit, A has a value different from zero, which becomes smaller
the larger the 2¢, i.e., the more oblique the incidence of light
and therefore the higher the order of the maximum that falls
on the diffracting aperture. B, on the other hand, is always 0
for & = 0.

If & now grows, A and B periodically assume maxima and
minima in rapid succession in such a way that whenever A
becomesnear 0, B reaches its maximum value and vice versa. At
the same time, however, these maximum values decrease from
& = 0to & = m, and then increase again, thus causing periodic
fluctuations in the “wide” intervals of 7t. Therefore, similar to
normal incidence of light, the well-known diffraction pattern
will appear, with the principal maximum at the place of the
object slit and its secondary maxima and minima symmetrically
on both sides, as shown in Fig. 52.
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§25. Switching of the order of integration in the calculation of the
resulting light disturbance

In what follows, we deal with the general problem: A point source

Q (Fig. 53) illuminates the object whose center L, lies on the axis

of the imaging system. An arbitrary point L of the object has the

Figure 53

97 (&)

coordinates X,Y. The image of the small object is sought using an
arbitrary aperture of the imaging system. As before, we introduce as
an “intermediate surface” a spherical surface whose points &, 1 have
the nearly constant distance e from the individual object points X, Y.
Then the light disturbance at a point X,Y of the object on the side
facing the intermediate surface can be represented by

Ko(X, Y) sin 27 H - W(X,Y)] , 67)

where @(X,Y) is the transmission coefficient of the object element
dX dyY, and Ke(X,Y) is the amplitude of the disturbance at the loca-
tion of the element dX dY. ¥(X,Y) can be divided into two parts:

T—Tp

Y(X,Y) = +P(X,Y).
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In this case, the factor ~5™ takes into account the oblique incidence
of the light and (X, Y) the delay of the waves as a result of passing
through the object element.

According to earlier results,™ the sought resulting disturbance
at the observation point x, y is then

K L t Ex—-X))
5= H axXdY o(X,Y) ﬂda dn Sm27—[[f -
object
ny-Y) \y(X,Y)] , (9
A
where we set &' = & = n
e e J

The integration with respect to X, Y extends over the illuminated
object, the integration with respect to &', over the projection of the
“effective patch” of the intermediate surface.

In carrying out the integration, one can proceed as before. One
integrates first over the intermediate surface (£',11') and then over the
object (X, Y). The first integration provides, in the object plane,™" the
effect of diffraction of the extent-limiting aperture due to the presence
of one object element; the second integration takes into account the
extent of the object.

The formation of the image becomes physically clearer if one
reverses the order of the integrations and carries out the integration
with respect to X,Y first. This immediately provides the effect of
diffraction of the illuminated object at the location of the intermediate
surface. If the objectis, e.g., a grating, then the well-known diffraction
spectra occur on the intermediate surface, the positions of which
depend on the grating constant and the angle of incidence of the light.
After performing the first integration, one can therefore abstract both
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the light source and the object since both have been replaced by the
diffraction spectra appearing on the intermediate surface.

The second integration over &',1" has therefore only the role of
calculating the interference effect of these diffraction spectra at a
point x,y in the object plane.

The resulting phenomenon (“image”) is thus the interference ef-
fect of a diffraction phenomenon: the primary one being the diffrac-
tion phenomenon on the intermediate surface created by the light
source and the object, and the secondary one being the effect of inter-
ference in the object plane. Only then can one recognize clearly the
difference between the image of a self-luminous and an illuminated
object.

In the presence of an object of a complicated structure, the eval-
uation of S is hardly feasible. On the other hand, general rules can
be derived that specify under what conditions an “image” similar to
the existing object appears, or to which fictitious object instead of the
existing one the appearing phenomenon is similar.

To derive these rules, we decompose the expression S into two
parts, S; and S,. The first part, S;, emerges from S if the integration
is extended over the entire intermediate surface (hemisphere), i.e., if
& and 1’ take on all values from —1 to +1. S,, however, extends over
the entire intermediate surface with the exclusion of the “effective
part.”

For simplification, we set

X Y X y

R Xl_ _ Y/' PR /. 2 _ /

AT AT T AT TY . (69)
P AY) = (X, Y);  WAXLAY) = W, (X, Y)
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We then get

+1
S, = KH &/ dn’ U axX’ dY’ @1 (X, Y') sin 27 H — W (X,Y)
—1

object

_E,(X, _ Xl) _ T]/(]::’/ _ Yl)]

S9=S5,-S.
(70)
The variables &' = % and ' = % are sines of the angles, and
therefore the following relations are valid:
—1<{5, < +1. (71)
n

If we represent &' and 1’ as orthogonal coordinates in the &n'-
plane (Fig. 54), then &' ,n’ have physical meaning only in the unit

Figure 54

/

imaginary
region
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circle around the origin. Outside this circle, the angles to which &
and 1’ belong as sines become imaginary.

Only in the interior of this unit circle does the function contained
in S 1,

t
f(&m) =K H dX’ dY’ (X, Y') sin 27 [T
object , (72)
_Wl(X/,Y/) + élxl +n/Y/]

which represents the light disturbance in points &,1 of the interme-
diate surface, have physical significance. Therefore, we want to call the
unit circle in the &'m’-plane the physical region and the exterior of the
unit circle the imaginary region.

Only in the physical region does f(&',n’) have a physical, real
meaning. On the other hand, in purely mathematical terms, of course,
one can continue the function f(&',1') into the imaginary region. It
is as if one were unaware of the meaning of the variables &', 1" and
treated them as infinitely variable.

For example, if the object is a grating, then part of the function
f(&',m’) would be the known grating-generated diffraction image that
extends across the hemisphere (intermediate surface) and breaks off
at its boundaries &' = +1 and ' = +1. Mathematically, on the other
hand, we can continue the diffraction image with its sharp, gradually
extinguishing maxima up to & = +o and ' = +00. The number
of maxima that are in the physical region depends on the grating
constant and is greater, the larger the grating constant. (See Fig. 55,

in which the amplitudes of the diffraction maxima are plotted.)™
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Figure 55
imaginary region physical I\ region imaginary region
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If we form the integral

+00
t
St = KH g dn’ H dX’ dY’ @y (X, Y') sin 27 [f — W (X,Y)
—00

object F oy

€O X) (Y|

" (73)

which extends over all real and imaginary maxima, we shall be able
to identify this integral more closely with S;, the smaller the contri-
bution of f(¢',1) in the imaginary region, and in the example of a
grating, the smaller the number of maxima lying in the imaginary
region, i.e., the larger the grating constant. Strictly speaking, S} is
never equal to S;. However, if the diffration effect of the object rep-
resented by (&', 1) in the imaginary region is vanishingly small, so that
almost the entire image of the function f(&',n’) has expanded in the
physical region, the equation

S, =St

represents in praxis a well usable approximation.
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We now prove that the expression S transitions into the expres-
sion

Ko (x,y) sin 27 H — ‘{’(x,y)] p

if the observation point x, y coincides with the object point X, Y, i.e.,
that S} represents the light disturbance present at the object points

x,y on the side of the object that faces the intermediate surface.>"!
For this purpose, we decompose the sine in the integral and write

St _KH d&’ dn' H dX’ dY’ @1 (X, Y') sin 27 {T —\yl}

object

-cos2r[E (X' = X) +1n'(y' = Y)]

_KH d&’ dn’ H dX’ dY’ @1 (X, Y') cos 271[? —wl]

object
ssin 278 (X = X)) +1'(y = Y)].

K1 (X, Y)sin2m [+ — ¥, ] = F(X',Y')

If we set
{K(pl(X 7Y ) Cos 271 I:T — Wl] = G(X/, Y/) ’

we get

ST = Jf d&’ dan/’ JJ F(X',Y") dX' dY’ cos2n[&/ (x' — X') +1n'(y' = Y')]

object

JJ d&’ dan/’ J G(X,Y)dX dY'sin2n[&' (x' — X)) +1'(y' = Y')]

object

(74)
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We can easily show that

+00
Jf d&’ dn/’ JJ F(X',Y") dX' dY’ cos2n[&/ (x' — X') +1'(y' = Y')]
~o object

= F(x',y’), if point X', y’ lies inside the object,

= 0, if point X', y' lies outside the object,

+00
and Jf d&’ dan/’ JJ G(X',Y")dX dY'sin2n[& (x" — X') + n'(y" = Y')]
—© object

= 0 for all locations of point x',y’ .

This is because the two Fourier theorems apply:*Vi

+00 Ao
F(x),if x isinside A; ... A,
d dX F(X 2 —X) =

f EJ (X) cos 2m&(x ) { 0,if xisoutside A; ... A,
—0 Al
and

+00 Ao

J dé J dXF(X)sin2mE(x — A) = 0, for all values of x.
—00 Al

From this, it follows that

+00 Ao

Jd& JdX F(X,y) cos 2mé(x — X) = F(x,y) , if x is between A; and A,
o Ay

and

+00 Bo

Jdn deF(X, Y)cos2m(y —Y) = F(X,y) , if y is between B; and B,.

—00 B,
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Therefore, by substitution,

Az Bo

ff d& dn J f dX dY F(X,Y) cos 27 (x — X) cos 2mm(y — Y)
—00 A1 By
= F(x,y) ,if x,y lie between A; ... Ay and B, ... By, respectively.

By analogy, we have

Az B2

JJ dé& dn f J dX dY F(X,Y)sin2mE(x — X) sin2m(y —Y) =0
A1 By
for all values of x, y.

By subtracting the last formula from the one before, we get, finally,

Az Bs A
JJ d& dn f J dX dYF(X,Y) cos2m[&(x — X) +n(y —Y)]

o 75
= F(x,y) , when x and y lie between A; and A, 7

and between B, and B,, respectively,

= 0 for all other locations of x, y. )

It can easily be shown in an analogous fashion that we have,
additionally,

Az B
ff dé dnAfo dXdY G(X,Y)sin2n[&(x — X) +n(y = Y)] 76)

= 0 for all locations of x, y.

This proves what was already anticipated above that
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o (A W t U’
s;:F(x,y)=chl(x,y)mn?ﬂ[f—‘lfl(x,y)]
. (77)

- Kp(xy)sinem| 1~ vx.y)|

if the point x, y lies within the object.

2. S§ = 0 for all points x, y outside the object.

Therefore, S} represents the light distribution present on that side of the
object (X,Y) to be imaged, facing the intermediate surface.

§26. Pointwise and similar imaging of the object

Referring to the previous paragraph, a pointwise and similar imaging
takes place when S can be completely replaced by Si. This is always
the case if all the diffraction maxima down to negligible intensity
contribute to image formation, i.e., if the aperture of the imaging
system (the “effective part” of the intermediate surface) collects all
the rays diffracted from the object down to negligible intensity. Thus,
there is always an absolute similarity between image and object if
the entire image of the function f(&',1’) can be expanded within the
aperture, but there is dissimilarity if the aperture does not collect all
diffraction maxima of f(&',1’), i.e., if only parts of the image of the
function lie within the aperture.

We shall discuss on which physical quantities the capacity of the
system and thus its performance depends. For this, we consider the
imaging of a grating. For a given wavelength A, of the incident light,
the position of the hth peak is given by the relation

h
sin Up = }\0— P
ny
where uy, denotes the diffraction angle of the hth maximum, n the
index of refraction of the front medium that contains the intermediate

surface (immersion fluid), and vy the grating constant.
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The number of maxima within the aperture angle U of our system

is therefore
h = nsin Ul . (78)
Ao

As we know, the larger the h, the greater the similarity of the
image, and we reach ideal similarity for h = co. For a given grating
(v) and wavelength (A;) of the incident light, the number (h) of the
image-contributing diffraction maxima that are accepted within the
aperture angle is proportional to the product: index of refraction times
sine of the aperture angle. This product A = n-sin Uhasbeen designated
by Abbe as the numerical aperture of the system.

Thus, the important theorem follows: If two systems have the same
numerical aperture,

ny sin U1 = Ty sin ug P

they image the same object grating with the same degree of similarity. Only
in this way does one actually recognize the meaning of the term
numerical aperture introduced by Abbe, that only the product A =
n-sin U determines the similarity of the image, not the aperture angle
U of the system. As is well known, for the imaging of self-luminous
objects, the numerical aperture is the quantity that alone determines
the luminous intensity of the system.

If the aperture angle U of the system for a given A, and v, as with
a dry system (n = 1), does not include all the diffraction maxima to
vanishing intensity, then the image is a dissimilar one; it can then be
transformed into a more similar one if one uses the same system as
an immersion system (n > 1). As the equation

h=n-sinU-vy/Ag

shows, the similarity of the image can be increased even more by
reducing A.

For a given numerical aperture A = nsin U of a system with a
given wavelength A, the similarity of the grating image is solely due
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to the grating constant y. The larger vy becomes, the more diffrac-
tion maxima can contribute to image formation, and the greater the
similarity. The maximum numerical aperture of a system is reached
when U = 90° and is then

A=n.

Therefore, in this case of maximum possible performance,

v
h=n A (79)

If we denote with h; the last diffraction spectrum of intensity

or brightness to be considered in the overall image of the function
f(&/,m’), the system with A = n will image all gratings with absolute

similarity, if

>hl-7\0.
n

§27. Dissimilar imaging of the object

We shall base this investigation on a system with maximum aperture
A = n, which still images a grating with constant y with absolute
similarity, meaning the satisfaction of the inequality

Y = h17\0/n,

where h, is the last diffraction spectrum of intensity still to be con-
sidered in the overall image of the function f(&',1"). A grating with a
smaller grating constant (y’ < v) is therefore no longer imaged by the
system similarly. If Ay has the smallest possible value (photographic
waves) and n has the highest possible value (homogeneous immer-
sion), then the grating v = hiAg/n is imaged in an absolutely similar
way (a fortiori all gratings with larger grating constants), whereas it
is physically impossible to image gratings with smaller grating con-
stants (Y’ < y) similarly.

As an example, let us suppose that Ay = 350nm, n = 1.65, and
h, = 10, assuming that maxima with an intensity less than 1 % of the
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mean do not contribute to the image. Then the constant of the grating
that can still be imaged with absolute similarity (“limit grating”) is
Y ~ 2 um.

If we let vy decrease continuously from this limit, more and more
maxima of the function f(&', ") move from the physical region (¢, 11" =
—1 to +1) into the imaginary region (£'," < —1 and > +1); i.e., the
number of maxima contributing to the image becomes ever smaller
and the image becomes more dissimilar. If the grating constant has
become so small that only the very center diffraction maximum (prin-
cipal maximum) lies in the physical region, the dissimilarity reaches
its highest degree. We shall denote this maximum dissimilarity as
“absolute dissimilarity.” It is evidenced by the fact that the image
of the structure of the object grating does not show anything, but
appears as an almost uniformly luminous area. Only if, in addition
to the principal maximum, one of the two adjacent maxima comes
into action does the lowest degree of similarity occur; i.e., the im-
age shows interference maxima and minima (structure), and indeed
possesses the same number of strokes as the grating.

The lowest degree of similarity is achieved with central illumina-
tion for

Ao
-
where besides the principal maximum both adjacent maxima are con-
tributing. But the same lowest degree of similarity is attained when,
apart from the principal maximum, only one of the two adjacent
maxima contributes. This can be realized by applying obligue illumi-
nation, where the grating constant may decrease down to a value of

Y (80)

Ao

= ox- (81)

Ym

With this value, the limit of the resolving power of a microscope
system is reached.
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Asis well known, Helmholtz? came almost at the same time, albeit
in a different way, to the same limit of resolving power.
If one starts by using the full aperture A = n for the grating

Ao
Y <5y

2A
(absolute dissimilarity), with a continuously growing grating con-
stant, new secondary maxima appear continuously and seamlessly
in addition to the principal maximum, according to their ordinal
number. Here the image always shows just as many interference
maxima and minima as the respective grating has “strokes,” whereas
the intensity decrease from maximum to minimum becomes more
and more similar to the intensity distribution in the object grating
given by the function @(X,Y). In this way, one finally reaches the
“limit grating,” which is just about imaged with absolute similarity.

However, with the series of dissimilarities just considered, the
variety of dissimilarities is not exhausted. Rather, a large number
of variations of dissimilar images of one and the same object grating
can be achieved by artificially restricting the aperture or by clipping
individual arbitrary and arbitrarily located diffraction maxima. In all
these cases, and more generally in the imaging of any microscopic
object, a theorem can be derived from our earlier observations, which
determines the kind of dissimilarity in each case.

For this, we create a fictitious object (O¢), whose natural and com-
plete diffraction pattern [\{(&',n’)]| coincides with the diffraction pat-
tern f(&',n’) of the real object (O;), which was rendered artificially
incomplete by stopping down the diaphragm, etc. It is therefore

1~I)(E»/7r|,)complete = f(alan,)incomplete

2H. Helmholtz, “The theoretical limit of the resolving power of microscopes,”

Pogg. Ann, Jubelband 1874,Viil pp. 557-584; Wissenschaftl. Abhandl. Bd. II,
pp. 185-212, 1883.
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and thus, finally,

S[f(&/>n/)inc0mplete] = S[lb(a/;n/)complete] = ST[Ib(Ev/an/>complete] . (82)

Thus, the image of the given object O, in the case of artificial
clipping S[f(&',1')incomplete| is equal to the absolutely similar image of
the fictitious object O¢ of the form S{[W(&',1)complete]. For this kind
of dissimilarity, we obtain the following general theorem: The image
of the given object O, is identical to the absolutely similar image of that
fictitious object O¢ which would just produce a complete diffraction pattern
equal to part of the diffraction pattern of O, accepted by the aperture of the
system.



Chapter 4

Imaging of a grating with
artificial clipping of diffraction
orders!

§28. General intensity equation

Finally, as a typical example, we want to treat the imaging of a grating.
Let the grating extend along the X-axis from X = —A to X = +A, and
along the Y-axis from Y = —B to Y = +B, so that it lies symmetrically
with respect to the X-and Y-axis and let it consist of N slits of width 2a,
which are separated by “bars” of width 2A. Therefore, vy = 2(a + A)
is the grating constant. Let N be a large number. Let o and 3’ be
the angular height and width of the diffracting aperture (boundary),
which lies as a whole or in its parts symmetrically to the X- and Y-axis.

1The results given in this chapter are taken, at our urging, from the doctoral
dissertation of M. Wolfke (Breslau 1910), which will soon appear in Annalen der
Physik.

135
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Then, with normal light incidence, the resulting disturbance is given

+o +p’ +B N TG A

K / / K . t E’,<X_X)
SQ:F f Jdﬁ dn JdY;l fdxstT[[T_T

—o —p/ -B —pi ¢
1y -Y)
A

(83)

according to Eq. 68, where p; and q; are the X-coordinates of the ith
slit, so that q; — p; = 2a. If one carries out the integration on Y and n/
and defines a “grating zone” analogously to that in § 20, the resulting
intensity within this zone is represented by the expression

2

+o’ =N +qi 2 a/( X)
mé (x —
I= t d&’ dX _—
cons J & ; J coS 7\
—o T pi

Performing the integration and summation gives, after an easy
calculation,

+ 2mac’ 2
2 . s Nyw
Ssin’w  Sin Sa
I = const dw N g cos —W
sin =~ a
_ 2mad! 2a >’ (84)
A
2mtag/
where we set w = .
Y )
The function
. s Nyw
sinw sin
f(w) = L (85)
w S111 Sa

has at positions
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B 2ama
Y

(a=0,1,2...) (86)
principal extrema, of which two successive ones are separated by
N — 1 zeros lying at positions

W 2ama
= Ny

(a=1,2,3...).

Between two successive zeros lies a secondary extremum of the
function, so that between two principal extrema there are (N — 2)
secondary extrema. In addition, the function f(w) has zeros at w =
tam (a=1,2,3...).

Thus, the function [f(w)]? represents the known intensity distri-
bution in the diffraction image of the grating.

In the following, we consider several special cases that are pro-
duced by varying the integration limits; i.e., we exclude certain parts
(spectra) from the diffraction pattern of the grating and allow only
the remaining parts to interfere.

§29. Case I: Only the central image (the Oth order) goes through
In this case, the expression for the intensity becomes

2ma
+ Ny

. . Nyw
sin w sin =~ XW
I = const dw —2% cos— | . (87)
w  sin 47 a
_ 2ma a
Ny
If we set
2ma
Ny
. . N
sinw  sin =% XW
0= | dw C 1 COS — (88)
w Sin Sa a
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then we get
[ =4const-J2. (89)

We now discuss the graph of .
Since the integration interval of the integral ], is small compared

to 7t and, if 2y—“ is not too small, also against 2“7”, we can write

2 sin Nyw
Jo = G aw e o XY (90)
2% w a
0
It follows then™*
To _ _jan_ 2y Ny 91
F N2y2 — 4x2 O1)

As we can see, ]y has a maximum for x = 0. If one lets x vary
from the value x = 0 to the value x = NY, then 42 always remains
negative, i.e., | steadily decreases from the maximum.

For x = %, we have

% _ _2a71
ox  Ny2’

Atx = BY + A, ie., at the very edge of the grating, we have

sin <7t + m)
% = —4aN al
ox N2y2 — 4 (NY 4 A)

2
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. A .
or, since g is very small,

Jo_ v (1A
ox NyA Ny
2a7t A
=N U ny

and is therefore negative.

Only outside the grating, for x = +all¥ (a = 2,3,4,...), do we
have

Jo
9,
ox
and indeed J, has minima at the positions x = +aNy (a = 1,2,3,...),

whereas the maxima of ], lie at the positions

2 + 1
—+ a; Ny (a=1,2,3,4,...) .

For large x, %% will get closer and closer to zero, i.e., ], itself is
increasingly approaching a constant, which is actually zero.
Some special values of ], are as follows:

NL Nyw
Jo(x = 0) = 2 Of S

v

-1.85 = 3.7— .
Y

2a
e SIHW
Y
2a
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§29

Further, with good approximation,

Jo(x=%+A)=Jo<x=¥)

2a sin Nyw
Jox =Ny)==— | dw 20 o )
Y w a
0
2na 2ma
Ny N
a J dw . 3Nyw J‘ dw Nyw
= — — sin — — sin
8% w 2a w 2a
0 0
37 7T
{ J dw' dw' .,
= sinw' — sinw
w/ w
0 0

<le e

~—

1.66 — 1.85} = —0.19= .
%
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Hence,
N 4
I() (X = TY +A> = %]O(X = 0) = 04]0(7( = O)
Jo 0 = Ny) = =22 Jofx = 0) = ~0.05 Jo(x = 0)

The graph of the integral ], as a function of x is therefore the one
shown in Fig. 56 by the dashed curve. The curve J3 gives the intensity I

Figure 56

L rd \\ J

C--- ~=-_
_ =Ny _ Ny

Ny 5 x =0 3 Ny

- o
— I (intensity)

apart from a constant. Its graph is shown in the figure by the solid
line.

We therefore obtain the following result:

If one blocks out all maxima in the primary diffraction pattern of the
grating and allows only the undeflected central image (zeroth maximumy) to
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be used for image formation, then the secondary image of the grating shows
a somewhat broadened structureless area whose brightness decreases from
the center to the edges. On the two sides of the structureless area, secondary
maxima of very low brightness (1/25) occur.

§30. Case II: Besides the central image, the left and right first
maxima go through
In this case, the intensity is given by the expression

+3e )
sin w sin N;’—aw
I = const dw yw COS —w
w  sin 4> a
_ 27a a
Ny
2ma(N+1)
Ny
. . N
N d sin w sin =52 X
w —=% _cos —w
w  sin g—w a (- (92)
a
2rta(N—1)
Ny
_ 2ma(N-1) 2
Ny
sinw sin N;a pid X
+ dw —yw COs —WwW
W sin - a
_ 2ma(N+1)
Ny Y,
We can write this as
I = 4const[]o + J1]?, (93)

where ] is the integral discussed in detail above (case I), whereas J,
is defined by

2ma(N+1)
Ny
. . N
sinwsin 5% x
]1 = dw —yw COS —WwW.. (94)
w Sin Sa a
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Since the integration interval of integral J; is very small compared
to the period of sinw, we can write

2ma(N+1)
i 27a NY :
] sin =% 4 sin NZ% X
1= W ————5— COS —W .
2ra sin L
Y 2mta(N—1)
Ny

If we introduce a new integration variable w; via the relationship

w
W, =T — Y— ,
2a
then we get
+R
(-)N-1  27a sinNw;  2x
Ji = sin d _ cos — (11— wy)
us Y sin wy Y
N
N
(=N 27a 27x sinNw;  2xwy
= sin cos — Wy — cos
us Y Y sin wy Y
N
N
o 271x sin Nw; . 2xwy
+sin — dw; — sin
S Wy Y
N

Since the function under the integral is odd and the limits are
symmetrical with respect to the origin, the second integral is identi-
cally equal to zero. If we set sin w; = wj, since the integration interval

is small compared to 7, and if we introduce the variable w, = 2aw;
we get
2]\?7(1
<
N
2 N_1 . 2ma 27X sin =2 x
Ji=—=(-1) sin —— cos —— Wy COS —Wsy
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or
8% N_1 . 2Ta 27X
== -_— —1 — N —_— .
J1 7ta( )~ sin cos Jo
Therefore, the intensity becomes
sin 20 o
I=4const|1+ (-1)N" 2. —Xcos zx T2 (95)
Y

To discuss this expression, we consider the factor

i, 27ta
sin =°¢ 27X
A=1+ (DN 2. —2 cos
2 Y

If N is even, the maxima of A lie at locations

20 +1
-+
XTET

Y(a=0,1,2,...),

i.e., in the middle of the slits (since the grating is symmetrical with
respect to the Y-axis), and the minima lie at locations x = +ay. If N
is odd, the maxima of A lie at locations x = +ay (a = 0,1,2,...), so
again in the middle of the slits, and the minima of A lie at x + 2%y,
But since the intensity is given by the square of A, we have to consider
that if the minima of A are negative, they give rise to secondary maxima

in intensity. This happens when

sin 2”7“
1-2 3ma <0
Y
or
. 21ma
SIHT - 1
2ma 27
Y
or if the condition
2a
0<—<0.6
Y

1s met.
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However, if 27“ > 0.6, then the minima of A are positive and yield,
after squaring, minima in intensity.

The decrease in intensity from the maximum to the minimum is
in the form of a cosine, for it follows the law I = (1 + C cosu)?, where
u = 2%*; maxima and minima have equal width (see Figs. 57a and b).
We therefore obtain the following result:

If, in addition to the central order, the first two side maxima also con-
tribute to the secondary image, the image shows a structure. The number
of grating lines is reproduced correctly in the image, but the intensity drop
from the maximum to the minimum is gradual, and the maxima and minima
appear equally wide. In addition, under certain circumstances, secondary
maxima still occur in the middle of the minima.

§31. Case III: Only the ith maxima on both sides contribute to
imaging; the central image is blocked
The expression for intensity now becomes

2ma(Ni+1) 2
Ny
. . N
sinwsin 2% x
[ = const-4 dw ——hw COS —W
w  sin 57 a > . (96)
. a
2ma(Ni—1)
Ny
_ 2
= const - J§

If we introduce a new variable,

W
Wy = i — L ,
2a
for the transformation of J;, the integration limits will become sym-
metrical with respect to the origin; we can then again omit, as in case
IT above, the integral over the odd function and finally obtain, after

introducing

2a
Wy = — W,
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Figure 57
(a)

— [ (intensity) 2a < 06
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for the intensity,

. sin 224 9y
Ji = (1) 2 ——Fcos = o . 97)
v Y
Therefore,
sin 2zai \ ? 27Tix
I = const ( — cos? 2. (98)
E Y

The maxima of intensity lie obviously at locations

x =+ (a=0123..). (99)
The distance between two maxima is ;, and the number of grating
lines is 2Ni. In addition, the location of the maxima is independent
of whether N is even or odd.

We obtain therefore the following result:

If the two ith maxima contribute to image formation without the central
image, we get a dissimilar image of the object because 2N1i grating lines
appear instead of the N actually existing ones. The intensity decrease from
the maximum to the minimum follows the law cos?® w.
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of the theory of imaging of illuminated objects and a full analytical
development of Abbe’s theory.



Translators’ notes

i

ii.

1ii.

iv.

The language used in this preface is in early 20th century style and is some-
times pompous and awkward compared to today’s German. To render this
old style in English is difficult and not the aim of the translators.

Chapter 1 of this book is more briefly written for two main reasons. First,
geometrical optics is not the main focus of the book; it is included in order
to provide the background material needed for certain topics discussed
in Chapter 2. Second, as Lummer stated in the Preface, material for this
chapter came mainly out of his “Optics,” which was part of Miiller-Pouillet
(a standard German textbook on physics consisting of several volumes,
originally written by Johann Heinrich Jakob Miiller, based on a successful
French textbook written by Claude Pouillet; the edition mentioned by
Lummer in the Preface should be either the 9th or 10th edition, edited by
Leopold Pfaundler). In the Appendix, we provide a brief introduction to
geometrical optics starting from Fermat’s principle.

Triangles EAM and EA’M are similar because angle ¢ is common to both
of them and AM/EM = EM/A'M =n//n.

To better convey the meaning in the text, we have rotated the original sketch
90 deg counterclockwise.

. Equation 1 intends to show that, once the positions of L, S, and M are

fixed, the position of L’ does not change with u (and v’), and this is what
“homocentric null rays (i.e., paraxial ray pencils originating from the object)
remain homocentric after refraction” means. This is because LM and LS
are fixed. So is therefore the ratio L'S/L'M, according to Eq. 1. Now let
L'S/UM = n. Since L'S = I'M + MS, I'M = MS/(n — 1). Since MS is
fixed, so is L’M. That is, L’ does not move with u.
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Vi.

Vii.

viii

iX.

X1.

Xii.

Xiii.

Xiv.

The equation below is simply a recast of Eq. 1, with s = LS, s’ = L'S,
s—r=LM,and s’ —r = L'M.

Figure 3.

. I’ has to be the conjugate ray of I. That is, I is the continuation of I in the

image space. Because 1’ is the image of i, any ray that starts at i must
pass through i’. Likewise, any ray that starts at z must pass through z’. I
possesses both of these properties. Therefore, I’ must pass through both i’
and z'.

Since P lies on both rays I and II, P’ must also lie on both rays I’ and II".
Hence, it must lie at the intersection of I’ and ITI.

. zz/ = FF is commonly known as Newton’s equation.

That is, points A’ and A in Fig. 1 and points L and L’ in Fig. 8.

The original German word is Vereinigungsweite. We have not found the
corresponding technical term in English.

The above equation is incorrect. The ratio %/ should be 7, for the situation
here is different from that associated with Fig. 3; here, the object point L
lies inside the refracting sphere whereas the (virtual) image point L’ lies in
the ambient medium outside the sphere. The same mistake was made in
the equation immediately below, and the ratio in Eq. 9 should be %’

If we let NI’ = a and LU = b, then NI — NI/ = v/a2+b2 —a =
a(y/1+ (b/a)2 — 1) and (NU — NL')/NL' = 4/1+ (b/a)2 — 1 = (b/a)? —
(b/a)* + ---. But LU/NL’ = b/a. This is what is meant by “Ll is small to
the first order and N1” — NL’ is small to the second order.” They are both
compared against NL’.
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XV.

XVI.

XVil.

XViil.

Xix.

XX.

Figure 10 is drawn incorrectly. The straight line leading to B’ at the bottom
of the figure ought to go through the center of the lens.

The literal translation of this sentence is “If the system is so calculated that
this condition is satisfied.” However, per Bernd Geh (formerly of ZEISS),
there is sometimes no differentiation between calculating and designing in
German, since the person designing the lens is also the one calculating it,
or at least telling their (human) calculators what to calculate.

The original German word is Dioptriker. Dioptrics is the branch of optics
that deals with refractive systems. So a Dioptriker is someone who is an
expert in this field, per Bernd Geh. Today we call such a person a lens
designer.

The text mentions Green’s theorems, but the only one obvious to us for
solving the wave equation with boundary conditions is

0G op
2+ ~o2 _ _ g%
Jv((pv G —GV7g) dv L((p P G (3\/) do,

where v is the inward unit normal vector of surface X that encloses volume
V.

The Laplace operator is defined as A = V2.

Equation (13) may be obtained as follows. Tackle the problem first in the
frequency domain. That is, solve first ¢(P,w). From Green’s theorem,
aided by the so-called free-space Green’s function G(r,w) = eH®@/d)7/r,
the following expression results (see ]. W. Goodman, Introduction to Fourier
Optics, 4th ed., W. H. Freeman and Company, New York, 2017, Section 3.3):

i(w/a)r i(w/a)r ’
oP.w) = - [aoforw (S5 ) - S e

ov T T ov

where P’ is on X. To get ¢(P,t), perform the inverse Fourier transform:
9(P.1) = & S (P, w)e 1 dow.
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1 1 Pl ei(w/a)r ot
(p(P,t)fE dG[an(pﬁv< . )e dw
z

XXi.

XXii.

XX1il.

XXiv.

XXV.

XXVI.

7% ei(‘:/“)r %eqwt dw]

1 1 . ei(w/a)r —iwt or
= do [mfl(w/a)@ e Edw

5

L0/ iwayr —iwt J 09 Li(w/a)r g—iwt
+gf@aTe ¢ Ao ) v do
_ 1 Jdg /) 1 de(PLt) o 10e(PLt)
= ® (P ov ar ot ov. ot ov v=t—I

b3
— T
@%:%SO @% dt

Although not directly mentioned here, such expressions for € and §j indi-
cate to us that the authors meant for ¢ to be a component (perpendicular
to the direction of wave propagation) of the electric Hertz vector [T, which
is defined by the relationships ¢ = =V - TTe and A = a”“ , where ¢ and
A are scalar and vector potentials, respectively. Smce QE = —=5 -V,
we have € = V(V -TT,) — L Z0e. Also, §§ = V x A = L 0VxTe) " Thjg
identification is confirmed later.

L2d _  _4mp = 0and V2A — L 24 _

? otz a? ot?
— 47” j = 0in free space. Hence, it is also true that V1T, — (112 rage = 0. That
is, T, satisfies the wave equation. So does any of its components ¢.

In the Lorentz gauge, V¢ —

To be mentioned a few lines down in the text, the ¢ below can be viewed
as the x-component of the electric Hertz vector TT. = X of an x-oscillating
electric dipole A cos(27/T)tx situated at the origin of the coordinate system.
See, e.g., M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge
University Press, Cambridge, 1999, Section 2.2.3.

Although the absolute-value sign appears in Eq. 15, the expression is ac-
tually the far-field component (1/r dependence only) of the electric field
produced by the electric dipole used in this case. This far field points in

the 9-direction. See M. Born and E. Wolf, op. cit.

The value for both cases is 1 — ¢2/4.
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XXVil.

XXVIii.

XX1X.

XXX.

XXXI.

XXX11.

XXXiii.

XXX1V.

XXXV,

XXXVi.

In the expression of r below, terms inside the braces come from Taylor
expanding v/1+ X as 1 + 41X — 1X2, where X = w and dis-

regarding terms containing higher than the second power of (§/r9) and
(n/7o). Such an expression of r leads to the formula for Fresnel diffraction.

Unlike the optical path length, the geometrical path length R’ is not the
same for all rays from L to P.

LdeP; = deaP;+Lde = (L;AP;—L;de)+Lde = const.— (L1de —Lde).
See Eq. 17.

Here v is the polar angle in the xy-plane, with the x-axis pointing into the
paper and e = 1. The same expression for d¢ with an arbitrary e is given
a few lines down.

The refractive index n of a material is the ratio between the speed of light
in vacuum c and that in the material v, i.e.,, n = ¢/v. Hence, n is inversely
proportional to the wavelength of light in that material A, as v = Af, where
f is the frequency of vibration of the light source. Therefore, n is inversely
proportional to A. For two different media, we then have n/n’ = A'/A.

The task here is to change the integration over d¢’ to that over d¢ so that
the integrands of s; and s, can be equated. The relationship between d¢’
and d¢ is given by the equation directly above Eq. 19.

The value of the ratio A’/A can be obtained by taking the square root of
Eq. 19.

The expression for the electric field here is the same as the one given by
Eq. 15, with e and A replacing r and 47t2A /A? in that equation, except that
the field here is y-oscillating instead of x-oscillating.

It is difficult to understand why the authors carried out the steps below, as
the calculation is logically flawed because the vector of the radiation field,
which is orthogonal to the vector ¢, also rotates and cannot be summed
algebraically. A more logical way may be to go after the average intensity.
Since the source is incoherent, the average intensity of the unpolarized
radiation from the surface element perpendicular to the axis of the optical
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system is simply given by

27 27

27
1 2 1 .2 1 .2 2
I _— 5 - 1—g .
27IJ2 dvoc27tfsm 9dv o J( sin”wcos” v) dv
0 0 0

sinu 1+ cos?u

~-1
2 2

2 . . 4 2 2
For small u, cosu = 1 — %-. Disregarding the term &-, 1teost — 221
2 27T . .
1—% = cosu. Therefore, 5 §;” ¢? dv o cos u, in agreement with Lambert’s

cosine law.

xxxvil, I = o2& gﬂ v/1 —sin®ucos?v dv is related to the complete elliptic integral
of the second kind and can be evaluated as follows. Let sinu = k and
expand 1/1 — sin? ucos? v in Taylor’s series as

1 1
V1 —sin?ucos?v=1-— ikzcoszvf §k4cos4vf~~

27
J- 1-dv=2m
0
27 27
fcoszvdv = de\z =T
0 0 2
27 27 27
Jcos4 vdv = Jcoszv(l —sin?v) dv = JCOSQV dv
0 0 0

27T
f1—|—cos2v 1—cos2vd 3
0

2 2 V=T
Hence,
1 1 1. ,3n 1 3
T— — (2m——im— =22 ) o2 2
271(” 2 TR ) 15 64
1 3
=1-—sinu— —sin*u—---

4 64
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XXXViii.

XXXIX.

x1.

The above result differs, however, from the series expansion for I given in
the text, which is
o u 1 su 1 g U
{1+ —tan? = + —tan® — + .- .
cos 2{ +4 an 2+64 an 2+
The reason the authors sought such a form was the subsequent approxi-

mation: if u is small, then only the term cos? ¥ = 1355 has to be kept.
However, with our expansion using the sine function, if u is small, then

1 ., 3+cos?u 24+ 1+cos?u
I~1—-sin“u= =
4 4
2+ 2cosu+ (1 —cosu)?
B 4
_ l+cosu 1 —cosu 2~1+cosu
T2 2 T2

Therefore, the conclusions are the same. We could not figure out how the
authors arrived at their series expansion. They could have looked up the
result from a published book of mathematical tables available at the time.

Again, both expressions approximate to 1 — u?/4 for u « 1.

In spherical coordinates,

1 52(6/@/) 1 0 (sin u’ SS:) 1 (']\2 @/

Vi = : + )
e/ Qe e’2 gin u/ ouw e2sin?u ov'?

The last term is absent in the text because, after averaging, ¢’ is no longer
a function of v'.

This solution may be checked in the following way. Let § = €'¢ and
rewrite the above equation as follows:

1 0%§  0*F 1 a(sinu’%)

a? otz 0e?  e?sinw ouw

Plugging the proposed solution

_ / LI W SN S
§ = const - cosu {005271 (T + Y e’ sin 27t T + N

—A+ DB
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into the right-hand side (RHS) of the equation returns —2F/e’?. When
plugged into the left-hand side (LHS) of the equation, the first term, des-
ignated as 2, which is a solution to the wave equation ﬁ ‘21‘237 - gz,‘z =0,
returns zero. The second term 5 is also a solution to the wave equation, but
an equation for spherical waves. That is, ﬁ %2,? — é azéz? ) — . Hence,
we only have to check whether 1 azég? ) _ gzﬁ is equal to —2§/e’?. For
this we proceed as follows:
l&Z(e’iB) *B 0 (10(e"B) 0B N 1 9(e"B)
e’ oe? oe2  oe' \e de oe’ e oe
2 (1 o (1 1 0(e'®B)
= 2e7 <efe’% - %> e (we'%> T o0
0 (B, Laen)
~oe! \ e e? e
_ 203,
e o’
if we plug in
N t /
B = —const - u’ - e’ sin 27 <T + ;\,) ,
then
208 23
o0 e
Hence, LHS = RHS and § is indeed a solution.
xli. For obtaining the subsequent result, one essentially makes use of the result
obtained in § 12.
xlii. The expression below benefitted from the use of the following trigonomet-
ric identities:
A+B . A—-B
cos A —cos B = —2sin i sin 3
A—B
sin A —sin B = 2cos sin 5
xliii. The original book contained an image page for Fig. 28 that was likely copied

from a photographic plate. To produce the plots for Figs. 28 and 29, we
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calculated the diffraction pattern and produced a gray level image with a
contrast function of v/I. Without this contrast function, only the central
maximum would be visible.

xliv. Following the authors, the intensity is defined as the time average, over N
cycles (N being large), of the square of the electric field. That is,

1 NT 1 9
t t
= 2dt= — A cos 2= + Bsin 2=
NT J ¢ d NT Cos T[T+ sin 7T_I_
0 0
NT

1 t t t
= NT J (/—\2 cos? QTET + ABsin 47tf + B2 sin? 27t_|_) dt

NT
1 1+cos47r t 1 — cosdmt
0

A2
=T

xlv. The integral in Eq. 38 below can be obtained by contour integration, using
the contour in the following diagram:

AY
F
R C
3
8 -
A B D E X

Let us first evaluate the integral in Eq. 41 since it is the simpler one. Since
there are no singularities in the closed contour ABCDEFA, we have by
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Cauchy’s integral theorem,

eiz
%—dz:f—k J —I—J-&-J:O
z
AB BCD DE EFA

AB DE - £ £ £
0 . 0
else‘B o
f =J 5 d(ee'?) =1Je”e dd
£e
BCD 7 (e
7T 7T
J _ if@iRew ad = iJ‘efRsinSefiRcosf) a9
EFA 0 0

Now let R — o0 and ¢ — 0. We then have

iz 0 . 0 7T
%%d:/.:Qif?deriJ1~d8+if0«eiRC°SSd8=0.
0

s

Therefore,

w .
sin x T
dx = —.
X 2
0

For the integral in Eq. 38, we evaluate the following contour integral:

Ziz_l
fﬁeQﬂ dz:J+J+J+J:O
AB BCD DE EFA

EFA

|
)
A~

2x2 2x2
—R € € €

R R
eQiX_l e2ix_1 e2ix+e—21x_2 5% — 1
[ g [ [t e

dx
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Because R — w and ¢ — 0, Sﬁ can again be shown to be zero. Using
e'* ~ 1 + iz for small |z|, we have

(14 2iee'?) — 1
28262119

s

(=)

£ei‘9i dd=rm.

2€2 219

:‘%o

Therefore,

o0

e?iz _ 1 sin?x

3@ = dz=—2f S dx 0 =0
0

and
[¢¢]
f sinx - m
x2 2
0
xlvi. The solidly drawn curve in Fig. 36 is actually the absolute value of the
amplitude.

xlvii. The (more familiar) Fourier integral theorem in complex form is

0

o8]
1 . )
= % J dze * J duf(u)elzu .
—®

—00

It basically says that the inverse Fourier transform of a Fourier transform
gives us the original function back. The above integral can be re-expressed

as
1 0 [e¢]
f(x) b J dz J du f(u)et# (v
— 00 —ao0
1 0 o0 . 0 o0
=5 J dz f duf(u)cosz(u —x) + i J dz f duf(u) sinz(u — x)
oo —wo o0 ©
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0 0 0 0
1 .
=5 J duf(u) J dzcosz(u —x) + i J duf(u) J dzsinz(u — x)
—0o0 —o0 —00 —0o0
0
1 J duf(u Jd osz(u )—I—i O—EszJ duf(u)cosz(u —x)
n e 2 0w '
“o0 0 0 —w

The last form above is Eq. 52.
xlviii. The coefficient in front of the last integral below should be — 2.

xlix. Wiggles in the center of the slit are absent in the original hand-drawn
graph.

1. If we let v = 2nB’ ¥, then

o8]
,sin 27 45~ Yoo sinv
deQ[S e :;J v =2,
—00

li. Taylor’s expansion of J; goes as follows. First, let J; = 2k SZ siLw gy,

’ 2 / . .
where zy = 27‘% and z = w Since z is very close to Zp, We have

z
Ak sinw

d sinw
~ — dw + — dw z—Zz
Ji T w d w ( )
0 Z=Zo Zg z=zg
a |
1 SinW 2
to—= | ——dw zZ—z
2' dZ2 w ( O)
Z0 z=2zg
Ak sinz 1 zcosz—sinz
=— |0+ (z—zo)—i——i2 (z—z0)2 .
U 2 P 2! z 2=z,

Inserting the values for z and zy gives us the expression for J; shown

in the book. For ], first reverse the limits of integration and then let
2nta (x—a)

z= X
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lii. Note that for large apertures a/A,

Erimpe © g ©
sinw simw sinw sinw
J dw ~ J dwff dw ~ J dw
w w w w

S 0 0 S

3

T w
o W

0

o0

where { 32% dw = Z, and the final approximation is due to sinw ~ w for
0
small w.

liii. Derivation of Eq. 61:

- g 2mela I3 Ak © 0 &
I N B e N
& £_2n§c/a & _2no’a 0

[}

&— )\/ﬂ — a_27to(/a
E, 2‘727[;)\(/0
Ak
2]
T
0 —0

liv. Please note that, for this figure, we did an approximate curve fit to the
graph in the original book using constant values of 0 and 1, and cos? in the
transition regions. We could not find information in the text that would
allow us to reproduce the original graph exactly. The text itself mentions
that this graph is not entirely correct.

lv. Wiggles in the centers of the two halves of the slit are absent in the original
hand-drawn graph.

Ivi. As before, the integration over Y gives A.

lvii. The integral is zero because the integrand is simply an odd function.
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Iviii. Cf. Eq. 53.

lix. Note that it is not clear how the authors arrived at the conclusion that B,
which in this case is effectively equal to

is equal to 1B, = 0. In fact, By approaches zero only gradually as sin(u)
becomes greater and greater than «’ and the authors’ claim of B = 0 is
incorrect. For A, their claim that the integral is half the value of A is true,
because its integrand is an even function with respect to w. The graphs
below show the plots of both A’ and B’ using numerical integration.

m
Semi-infinite integral for A: §
0
Q _ | |
o it
.
< |
o
. o
B
< 9
(@]
T T T T T T T
-30 -20 -10 0 10 20 30
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Q0
Semi-infinite integral for B: §
0
© | |
< |
< | |
o |
I geo
- ik
o [t
o ik
o B
¢ |
M N : :
SEN ik
<+ | |
< |
© | |
< l
I I I I I I
-30 -20 -10 () 0 10 20 30
‘x/

Ix. Ifsinu = o + ¢, then p = 8% — 1 + £ and A and B become

o '’

2t d 2ma’ s
A . A .
sinw sinw €
A= dw cos(pw) = dw cos(w + —w)
w w o
S £
2na’d
A

sinw € . . €
= dw coswcos | —w) —sinwsin [ —w
w o o
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1%

sinw . €
dw cosw-1—sinw- —w
w o

I3
27‘[0( 5 2 a’s 4mta’s
sin w cos w I3 . 1 sinw
= —dw—— sin?wdw = dw +(e)
o 2 w
S g g
2 a’s 2710( d
)\ .
sinw €
B = dw sin(pw) dw sm(w +—=w)
w o
£
2na’s
sinw [ . € . I3
= dw sinwcos [ —w]) + coswsin | —w
w [0 o
£
2na’s 2na’s
A . A . 2
sinw / . € sin“ w
A dw sinw-1+cosw- —w) = dw +(e) .
w o w
& &

Ixi. The plot in Fig. 51 requires an explanation. First, since the intensity is
plotted, the ordinate should be marked I instead of ] used in the original
text. Now, I = A% + B2, Starting from Eq. 63, which has not been simplified
with various approximations, we have

+a

sin 27ro XX - X
A =k J dX 20 ———2 cos omsinur—
27 5% A

—a

" sin 27o/ X=X x — X
B =k f dX 20(’7;‘ sin [ 2mwsinu——— | .
27l X5 A

. - X
Following the authors by setting 27to’ *5=

=w, we get

/x+a /x+a

271 21

kA i kA i
A=— J dw Smw cos (K sinu) and B = — j dw SIw sin (& sinu).
T w o/ T w o

;x—a ;x—a
2o X 2mod =3
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Following the authors again by setting x = a + 6, then

/2a+56 /2a+56
2mo’ = 2o =5

A= @ J dw Slmwcos (Ksinu> and B = @ f dw SImw sin (K sinu).
w o T w o/

A

Tt
78 '3
PUL 2mto 3

Let us now take A = 0.6 um. a and o' are suggested by the authors to
be somewhat larger than 1mm and 1deg, respectively. So let us take
a = 1000 pm and &’ = 7/180 ~ 5. Therefore,

2000+ 2000+9%

6
kA 5i kA Si
— J dw SImw cos (B, sinu) and B = — J dw Smw sin (K/ sinu) .
s w e T w o

olon
olon

Since the upper limit is so large, we set it to infinity, following the authors.
We can then approximate the integrals as

6
w 5
kA sinw w sm w w o
A=—|dw cos | — smu cos | —sinu
T w o o
0 0
and
b
w© 5
kA sinw . /w smw w .
B=—|dw sin ( — smu sin (—sinu) .
I w o o

We now letsinu > o’ orsinu < —o. The first integral in A is equal to zero
(half the value of A;; see Eq. 66). Hence,

b
kj sinw (w_ )
= —— cos [ —sinu) .
T o
0

The first integral in B is not zero for sinu > «’ or sinu < —o/, as we have
already remarked in a previous translators’ note. From the graph in that
note, we can see that if sinu » o or sinu « o, then the value of the first
integral is small and is negligible. Then,

g
smw w .
sin ( —sinu) .
(X/
0
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The numerical example mentioned in the book uses sinu = sin30° = 1.

Then, 2% = 30 and

= const J W cos (30w) and B = const J
0 0

W sin (30w) .

But it appears that Fig. 51 plots only the intensity associated with A. That
is, the plot is of

5
6 .
Ssinw
const | dw
w
0

cos(30w)

The book also mentions situations for which sinu = o« + ¢, where ¢ is
small. Such cases will not result in the intensity of A as shown in Fig. 51.
For example, if #2% — 10, then A? will look like

fl

In fact, if “2—,“ = 1, then the integral becomes

olon

2
f SlnWcosw— JdQ Smw:f,aséﬁoo.
2w 4

0 0
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Ixdi.

Ixiii.

Ixiv.

Ixv.

Ixvi.

That is, A2 does not die out.

To obtain the expression shown below in the text, we Taylor expand A and
retain only the first two terms of the series:

E+e g
A(£)=A(£=O)% 6:0+k>\lim<££ I )g
de |, _, e—0 €
kA sin & sinu
= cos< o E,) (2¢) .
Similarly,

B(e) = 2 i () (20).

Then,

k2)\2 . 2 . .
[= A2+ B2 = de2 <SH£E’) |:COSQ (Slz,ua> + sin2 (Sli,uaﬂ
n

K2A2 /sin&\?
_ 2
= 4¢ = ( 3 ) .

2

See Eq. 29.

Physically, the effect of diffraction occurs, of course, in the image plane. But
it can just as well be described by the conjugate points in the object plane.
See § 13. This sentence in the text simply means that the first integration
gives the point-spread function of the system.

One can see from Fig. 53 that all orders of diffraction from the grating
(corresponding to those in the physical region in Fig. 55 below) are captured
by the intermediate surface, which is the entire hemisphere, corresponding
to the boundaries & = +1 and ' = +1. The diffraction orders in the
imaginary regions in Fig. 55 can only appear on the intermediate surface
if one increases the pitch of the grating or reduces the wavelength of the
illuminating light.

This statement simply means that the final image is the same as the object
(i.e. 100% similarity), because the expression above is the same as Expres-
sion 67. This has to be the case because S§ (or S;) includes all the diffracted
orders in its expression.



170

Translators’ notes

Ixvii.

Since the transmission coefficient of the object @ (X,Y) # 0 only for A; <
X < Ajzand By <Y < By, F(X) # 0 also only for A; < X < A,. This means
that

0 Ao 0 0

J dé, f dXF(X) cos 2mE(x — X) = f dég f dX F(X) cos 27é(x — X) ,

—0 Al -0 —0
which is equal to F(x). Analogously,

0 Ao 0 0

f de, j AX F(X) sin 2 (x — X) = f dé, f AXF(X) sin 2m(x — X) = 0,

—0 Al —0 —0

Ixviii.

Ixix.

Jo

ox

which can be shown by integrating the variable & first, since sin 27&(x — X)
is an odd function.

This citation refers to a particular volume of the journal “Annalen der Physik
und Chemie,” the citation of which includes the name of the editor-in-chief
of that volume, Johann Christian Poggendorff, who held that position
from 1824 to 1876. Such a citation scheme was useful because for each new
editor-in-chief, the volume number was reset to 1. “Jubelband” refers to
the fact that this was published as a jubilee volume for the editor-in-chief’s
50th year of editing the journal, as a celebration. In a postscript of his
paper, Helmholtz acknowledged the fact that Abbe’s work had preceded
Helmholtz’s, but also pointed out that Abbe had not yet published the
proofs of his findings. Abbe’s paper on this subject is “Beitrage zur Theorie
des Mikrosops und der mikroskopischen Wahrnehmung,” in Archiv fiir
mikroskopische Anatomie 9, pp. 413468 (1873).

Eq. 91 is obtained from Eq. 90 as follows:

N
2a f bln
Y
0
a

X5
f [ (Ny + 2x)w (Ny — ZX)W]
cos — cos
2 2
0

<\»—
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2ma

_1 [ Ny +2x)w  2a sin (Ny — QX)W] Ny
v | Ny + 2x 2a Ny — 2x 2a o
1 C(NY+29F%F 20 (Nv=29%5
- ; lNy+2x 2a Ny—2x i 2a 1
1 27x 2a . 27tx
(e B) -tz )
1 s 27X 2a . 21X 4aN . 2mx
zy( Ny+2x Ny_Ny2xsmNy)=_N2y24x28mNy'

which is Eq. 91.

Ixx. The final answer in the original text is erroneously stated as —0.792.

Ixxi. The original text has Jo(x = Ny) = —0.2Jo(x = 0), a consequence of taking
Jo(x = Ny) = —0.795 above.






A brief introduction to
geometrical optics

Fermat’s Principle: Geometrical optics deals with the (artificial)
concept of light rays. A light ray from point P to point P’ is a P- and
P’-containing path s that is always perpendicular to the successive
wavefronts of the light as it propagates from P and P’. The optical
length, which is the cumulative phase, is then equal to SE "n ds, where
n is the index of refraction along the path. Being perpendicular to
the two neighboring wavefronts, ds is the shortest distance between
them. Therefore, if 1 is any other path connecting points P and P/, it

must be that
P/ P/
Jn ds < Jn dl .
P P

This is the same as stating that the optical length SEI n ds from points
P to P’ is a stationary one. This is called Fermat’s principle. To find
the actual ray path, we start by considering an arbitrary path from P
to P/, vary it while holding the two ends fixed, and set the variation

§ (SE/ n dl) to zero.
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Snell’slaw: As a simple demonstration of Fermat’s principle, let us
derive from it Snell’s law of refraction as light travels from a medium
with an index of refraction n to one with an index of refraction n’, as

follows:




A brief introduction to geometrical optics 175

P/
Jndl — PO + W'OP = n\/PA> + AO" + n'y/PB” + (AB — AD)?.
P

Since the only variable in the above expression is AO, differentiation
with respect to AO gives

9RO | _2(AB - AO)

n +n 5 .
0 /PA + AO°  2\/PB’ + (AB — AD)?

Setting it equal to zero results in Snell’s law: nsin o« = n'sin 3.

Paraxial imaging of a point by a refracting sphere:

n

A

Consider a sphere with an index of refraction n’ surrounded by a
medium with an index of refraction n. Light from point P is imaged
at point P’. The optical length from P to P’ is

L = nPM +n'MP/,

where

PM = /12 4 (s +1)2 — 2r(s + 1) cos D
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and

— /12 + 24 2r(s’ — 1) cos?d.

In order for P’ tobe a stlgmatlc image of P, all optical paths from P to
P’ must have the same optical length. That is, it must be that

/_
d_I_:( str n’s_r)rsinf}z().
dd PM MP’

This leads to
S+ R
Ne =N"'—=.
PM MP’
Without approximation, this is equivalent to stating Snell’s law at M.
However, if M is close enough to axis PP/, then we can let cos ¥ ~
and the above condition becomes ¥ independent. We then have

n(s+r) n(s"—r)

§ s’
or
n n n-n
J— + _/ — .
s s T
If s is situated at infinity, then s’ = - = f, where ' is called

the back focal length. If s’ is at infinity (within an infinitely large
refracting sphere), then s = —*— = f, where f is called the front focal
length. In terms of f and f’, the above equation becomes

This is called Gaufs” equation. If weletz = s —fand 2/ = s’ — ', we
then have, from Gaufy’ equation, zz' = ff’, which is called Newton’s
equation.
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Lagrange-Helmholtz invariant:

n

We now consider an object of finite size h and its image h'. If the
tips of h and h’ lie close to the optical axis, i.e., h « s and h' « ¢/,
our previous analysis applies to these tips as well. In fact, the whole
lengths of h and h' are imaged point by point. We now apply Snell’s

law at point N and get
() =~()
s S

In paraxial imaging, N and N’ nearly coincide. Further, MN’ =
stanu = s'tanu’ = su = s'u’. Replacing s in the above equation
with s'u’/u leads to the so-called Lagrange-Helmholtz invariant:

nuh = nu'h’ .

Thin-lens formula: If, immediately after entering the first spherical
surface of radius 1, and index n from air, light rays encounter a second
spherical surface of radius 1, and exit back to air, the imaging process
can be regarded as two back-to-back imaging processes by a single
spherical surface, with the image of the first process serving as the
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(imaginary) object of the second process. Then,

1 n n-1 1 1 1—m
-+ == and — + — = .
s s T, s’ s” )

Combining, we get

L1 (o)t
s s’ o oTy)
This is the thin-lens formula, and f is the (front or back) focal length.

General relationships between an object and its image: Practical
imaging! in microscopy or microlithography goes beyond paraxial
imaging to include wide angles. Hence we need to introduce the
following more general approach. Let us start by assuming that the
object lies in plane

Ax+By+Cz+D =0
and its image in plane
AX +BY +C2Z+D' =0,

with

f(x,y,z)
g(x,y,2)
h(x7 y? Z) *

X/
/

Y

ZI

The reason that this is possible can be found in Born and Wolf’s
Principles of Optics (7th ed., Cambridge University Press, p. 159,
1999). The equation for the image plane can then be written as

Y(x,y,z) = A'f(x,y,z) + B'g(x,y,z) + C'h(x,y,z) + D' = 0.

1S. Czapski and O. Eppenstein, Grundziige der Theorie der optischen Instrumente
nach Abbe, Leipzig, Verlag von Johann Ambrosius Barth (1904).
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Since Y(x,y, z) vanishes for all points in the object plane that satisfy
Ax + By + Cz + D = 0, it must be of the form

Y(x,y,z) = (Ax+By+Cz+D)D(x,y,z) .
We then have
f g h 1
' +B24+C—+D~=Ax+B D.
A®+B®+C®+D(D x+ By + Cz +
Since LHS = RHS, terms on the LHS have to be of the form
= X + bly +ciz+ d;
= A9X + bzy + CoZ + d2

= asX + bgy + c3z + ds

=ax+by+cz+d.

S| = e el

Hence,

ax+by+ciz+dy
ax +by+cz+d

, (12X—|-b2y + CoZ + dg

g ax+by+cz+d

asx + bsy + c3z + ds
ax+by+cz+d

X =f=

<
I

Z=h

Above is the general relationship between (x’,y’,z') and (x, y, z).

In a centered optical system, without loss of generality, we can
always let x = x’ = 0. Further, if we lety — —y, theny’ — —y’, and
the value of z’ should not change. All these restrictions mean that the
above relationships have to assume the forms

, boy ,  C3z+d3

= and z .
cz+d cz+d
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Now, if z' lies at infinity, then z = —d/c. If z is at (negative) infinity,
then z’ = c3/c. These are the coordinates of foci (indicated by F and
F'in the diagram below) in the object and image spaces, respectively.

If we define Z = —d/c — zand Z' = 2’ — ¢3/c, then we have
by —c3d + cds
"= dzZ=—0——.
vyoTz M —c2Z
If we define f = —by/c and f' = %ﬁc‘i“ then we have the formula

Z7' = ff'. Also, y'/y = f/Z = Z'/f". This also means that if Z = f,
then Z' = f'. We draw planes perpendicular to the optical axis at
Z = —fand Z' = —f’ and call them the principal planes for the object
and image spaces.

With the two principal planes and foci defined, the above rela-
tionships can be easily constructed geometrically as shown in the

following diagram.

/
P n | n

‘F/

/

f’ 'Y
| | P/

N
-—h

It is possible that Newton’s formula in this context was first written
down by Abbe, as stated in the text.

Sine condition: This is a requirement for obtaining aplanatic? im-
ages in any optical system. The only restriction is for the object and
its image to lie very close to the optical axis. In paraxial optics, the
sine condition is always satisfied. In fact, there it reduces to the
Lagrange-Helmholtz invariant.

2Aplanatic means free of spherical aberration and coma. The Greek root of this
word seems to mean not wandering around. That is, the image is point-like.
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AY AY
M\
\ A
" (y,z
< 3 P
P 2z 1% z/
n nl A/

Here is a proof. Let L(P; P’) be the optical length from P to P’ and
L(A;A’) be the optical length from A to A’. For aplanatic imaging,
the lengths of all optical paths from P to P’ are equal, as are those
from A to A’. Lis therefore a function of only the locations of the end
points. Let F = L(A;A’) — L(P; P’). Assume that A lies very close to
P, A’ lies very close to P/, and L is a continuous function (forget for a
moment its physical meaning). Then, to the first order,

oL oL
Clhe &
e oy
If the chosen optical path from P to P’ includes PM and M’P/, then

h/
P’

F=L(A;A))—L(P;P’) = L(0, h; 0, h)—L(0,0; 0, 0) =

oL 0 (
—| == n\/y2+z2) =nsind.
ylp 0y
Likewise, £ ,, = —1sin®. However, we may also choose the op-

tical path to coincide with the optical axis; then, ¥ = ¥ = 0, which
implies F = 0. Thatis: if A lies very close to P and A’ to P/, the optical
lengths from A to A’ and from P to P’ to the first order are the same!
The sine condition then follows:

nsindh —n'sin¥h =0 or nhsind = n'h/sind’ .
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Sine condition when objectis atinfinity: If the objectlies atinfinity,
then we have sind = hy/Z. Further, we have, in general, h/h’ = Z/f.
Therefore, we have

/

f
hy = TLTsinf}’ = f'sin?d’,

where f' = n'f/n is the definition of the back focal length.

This is the form we see in Chapter 1. To satisfy the sine condition,
principal planes are actually not planes but spherical surfaces.

A brief introduction to geometrical theory of aberrations: No one
optical system is entirely free of aberrations. Those for which the
sine condition is satisfied are well corrected for spherical and coma
aberrations. Here we illustrate the essence of the aberration theory
via a very simple example.> We consider again a single sphere with
refractive index n’, surrounded by a medium with refractive index n,
as shown below. The object point is at P and its paraxial image at P’.
We further assume that a circular aperture, centered on the optical
axis, is placed over the sphere so that length | indicated in the figure
has a maximum value.

3See also M. V. Klein, T. E. Furtak, Optics, 2nd ed., John Wiley & Sons, Sec. 4.3
(1986).
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A
Y
[

The optical length from P to P’ via M is nPM + n’/MP’. That of an
axial ray is simply ns + n's’. Their difference is W = nPM + n/MP’ —
(ns +mn's’). For small x, we have /1 + x ~ 1+ x/2 + x?/4. In addition,
we have cos « = 1/(2r). Therefore,

S 22
PM = /52 + 12+ 2sl cosx = s I+ 5+ =
S TS
1/1 1 1/1 1\
~s|l+-(s+— |- (5+—) 1
S[+2<32+rs> 4<s2+rs> ]
1212

PM/ =52 +12 - 2s'l cosox = sA /1 4+ — — —
1/1 1 1/1 1)
~s|l+-(——|P—-(5——) 1
S[ +2(32 rs) 4(32 rs) ]
W =nPM + n'MP’ — (ns + n’s’)
n+n’+n—n’ 12 s 1+1 2+n” 1 1\
= —— — + — sl ——) |-
s s T 2 s2 718 s2 s 4

W being non-zero means that wavefronts converging on P’ are
not spherical, or all optical paths from P to P’ would have the same
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optical length. In fact, W is simply the lumped-together wavefront
errot, called the wave aberration. As a good approximation, we may
replace 1 with p, the distance from M to the optical axis. The quantity
inside the parentheses in front of 1? in the above equation is equal
to zero because P’ is the paraxial image point. More generally, the 1°
term is called defocus because it contributes to an additional circular
curvature in the wavefront.* Excluding this term, the lowest order of
aberrations is only the second term and can be written as W = kp*.

(&) ,

Py X

For off-axis object points, without loss of generality, we can let P
and P’ be on the auxiliary axis lying in the yz-plane passing through
the center of the sphere O, with h being the distance from the auxiliary
axis to the optical axis in the plane of the aperture. We can then take

*A spherical refractive surface certainly does not result in spherical wavefronts.
If it did, W would be zero. Spherical wavefronts can be approximated by parabolas,
so in this case, the spherical wavefront at the refractive surface can be expressed
as z = ay? + s. If the image point lies at a different location on the optical axis,
the corresponding wavefront there will be z = by? + s. Hence, the difference in
their optical lengths is approximately the difference of their z-coordinates, which
is (a — b)y2acp?. Therefore, such a term appearing in the expression of W is not
considered an aberration; it simply means that the image is “defocused,” i.e., it lies
at a different location.
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over our previous arguments if we replace p* with [E? + (1 + h)?]? =
[(E2+1?) +2nh+h?)? = (2 +12)2 + 4(E2 +n®)nh + 2(E2 + 3n*)h? +
4nh® +h*, for a general point M(&, 1) on the sphere. We may express
W and name the various terms as follows:

W= A(& +1?)? +B(E2 +nP)nh) +Cn*h? +D(E* +n*)h? +Enh®.

spherical coma astigmatism  field curvature distortion

Since W is not zero, the wavefront is not spherical, and therefore the
light ray from P via M does not go through P’. Instead, it will end
up in the neighborhood of P/, the paraxial or Gaussian image point.
Exactly where it lands in the Gaussian image plane is determined by
the following set of formulae:®

where (x*,y*) is the location of the paraxial image point. Therefore,
in the presence of spherical aberration, the loci of the light rays in the
x’y’-plane are (X/ _ X*/)Q 4 (y/ _ y*/)Z — AIQ(E,Q 4 n2)2.

\j

The image of a point is not another point but a round spot of finite
size centered on the paraxial image point.

5See M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge University
Press, Sec. 5.1 (1999).
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In the presence of coma, the loci are (x' —x*)*+ [y’ —y* —2B/(&? +
ﬂ2)h]2 — BIQ(E,Q 4 T12)2h2-

-
'

In this case, the image of point P looks like a comet-shaped spot with
its tip at the paraxial image point. Hence the name coma.



On the 0.5 A/NA resolution
limit in the imaging of periodic
patternst

Ernst Abbe was the first person to state the limit of resolution of a
periodic pattern in projection optical imaging. The formulae, § =
S z‘w for on-axis illumination and 6 = %Si ;‘W for oblique illumination,
where § is the minimum pitch in an object, A is the wavelength of
the illuminating light, and w is the half-angle of the aperture, are
stated in words in Abbe’s 1873 article [1] and its English translation
by H. E. Fripp [2]. And the question of how Abbe arrived at these
formulae is answered in an 1876 letter to J. W. Stephenson, then
treasurer of the Royal Microscopical Society (a facsimile of this letter
and a transcript of which are reproduced at the end of this write-up).
This time, Abbe wrote out the formulae explicitly, accompanied by
two sketches showing the attainment of these resolutions by on-axis
and oblique illuminations of the grating, respectively (see Fig. 1). In
April of 1882, Abbe submitted a paper written in English to the Royal

1Adapted and abridged from A. Yen, “Rayleigh or Abbe? Origin and nam-
ing of the resolution formula of microlithography,” J. Micro/Nanolithogr. MEMS
MOEMS. 19(4), 040501 (2020) https://doi.org/10.1117/1.JMM.19.4.040501, and A.
Yen, “Clarifications on the 0.5A/NA resolution limit,” JM? 20(1), 010501 (2021)
https:/ /doi.org/10.1117 /1.JMM.20.1.010501.
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Figure 1. Page 13 of Abbe’s 15 December 1876 letter to J. W. Stephen-

son, in which he illustrated the illumination method for obtaining the
(ZEISS Archives: Ernst Abbe Estate

minimum resolution § = 12—
No. BACZ27167.)
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Microscopical Society in which he further stated that, for periodic
and regular features, “the minimum distance apart at which given
elements can be delineated separately with the feature in question”
was 6 = %%, “where a denotes the numerical aperture and A the
wave-length light” [3].

To show how Abbe demonstrated that the two-beam case in Fig. 1
could actually lead to an image of the grating of pitch 6 shown in the
sketch (as dots), let us start from 2sinw = %, which can be obtained
from the grating equation, as stated by Abbe on page 8 of the letter,
for the oblique illumination case shown in Fig. 1. He then essentially
stated that A = 2sinw - f, where A is the distance of separation of the
two diffractions in the back focal plane of the lens with focal length f,
by what he mentioned on page 9 of the letter as “a theorem enounced
by me and by Mr. Helmholtz”; Abbe was certainly referring to the sine
condition that he [1, 2] and Helmholtz independently discovered (see
§ 6 and Fig. 10 of this book; Helmholtz came to the same general form
in [4]). By combining the grating equation and the sine condition,
which must be fulfilled for aplanatic imaging, he obtained A = % - f.
Waves from these two diffraction spots then propagate and give rise
to an interference pattern in the geometrical image plane (see Fig. 2).

A

The pitch of such an interference pattern is 5, where 9 is half the

angle formed by the two beams. In Abbe’s case, sin9 = AT/2 because
1, the distance from the back focal plane to the image plane, is large
(as he assumed, on page 12 of the letter). Therefore, the pitch of the
image is &’ = 1- %, as he wrote on page 11 of the letter. Thus &’ = §- 1,
which means the pitch of the interference pattern in the image plane
is of the correct magnification according to geometrical optics. It is
therefore an image of the grating. And the minimum imageable pitch
is 5 = $2—. All this physics is discussed in more detail in § 25-27 of
this book.

The 0.5A/NA resolution limit is often called Rayleigh’s criterion

for resolution. It was derived explicitly in Rayleigh’s 1879 article [5]
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Figure 2. Page 11 of Abbe’s 15 December 1876 letter to J. W. Stephen-
son, in which he illustrated and explained that plane C contains an
image of the grating in plane A. (ZEISS Archives: Ernst Abbe Estate

No. BACZ27167.)
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(see Fig. 3), although the reasoning behind it — the minimum dis-
cernable separation of two neighboring lines is the distance between
the principal maximum to the first minimum of the diffraction pat-
tern in the focal plane —had already been given in two of his writings
in 1874 ([6, 7]; in [6] Rayleigh stated the radius of the first dark ring
of the point-spread function as 0.612, where R and f are the radius
and the focal length of the lens, respectively). In the beginning part
of the 1879 article, he put forward the formula obtained by G. B. Airy
in 1834,
v = 1.2197 A
TR

where O is the angular radius of the bright central disk, A represents
the wavelength of the light, and 2R is the diameter of the circular aper-
ture in front of a perfect lens, and went on to state that “in estimating
theoretically the resolving-power of a telescope on a double star, we
have to consider the illumination of the field due to the superposition
of the two independent images. If the angular interval between the
components of the star were equal to 29, the central disks would be
just in contact. Under these conditions there can be no doubt that the
star would appear to be fairly resolved, since the brightness of the
external ring-systems is too small to produce any material confusion,
unless indeed the components are of very unequal magnitude.” He
then went on to discuss two neighboring luminous lines and pro-
posed his resolution criterion that is more lenient than the above
requirement. Such luminous lines were generated in prism or grat-
ing spectroscopes by light sources with two spectral lines very close
in wavelength. Rayleigh first stated, quoting Airy and Verdet, that
the intensity (which he called brightness) of a luminous spectral line
was proportional to the square of the sinc function,

gin A& 2 aé
Af = sinc? | —
nA(lfa Af)
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XXXI. Investigations in Optics, with special reference to the
Spectroscope. By ORD Ravieien, F.R.S.*

[Plate VIL]
§ 1. Resolving, or Separating, Power of Optical Instrumenta.

CCORDING to the principles of common optics, there is
no limit to resolving-power, nor any reason why an
object, sufficiently well lighted, should be better seen with a
large telescope than with a small one. In order to explain
the peculiar advantage of largo instruments, it is necessary to
discard what may be looked upon as the fundamental principle
of common optics, viz. the 1 infinitesimal character of
the wave-length of light. It is probably for this reason that
the subject of the present section is so little understood out-
side the circles of practical astronomers and mathematical
ph{eicisls.

t is a simple consc?ucuoe of Huyghens’s principle, that the
direction of a beam of limited width is to a certain extent in-
definite. Consider the case of parallel light incident perpen-
dicularly upon an infinite sereen, in which is cut a circular
aperture. According to the principle, the various points of

o aperture may be regarded as secondary sources emitling
synchronous vibrations. In the direction of original propa-
tion the secondary vibrations are all in the same phase, and
ence the intensity is as great as possible. In other direc-

* Commniunicated by the Author.
Flil. Mag. 8. 5. Vol. 8. No. 49. Oct. 1879. T

262 Lord Rayleigh's Investigations in Optics.

tions the intensity is less; but thoro will be no sensible dis-
crepancy of phase, and therefore no sensible diminution of
intonsity, until the obliquity is such that the (greatest) pro-
Jjection of the diameter of the aperture upon the direction in
Juesti ts ton ible fraction of the wave-length of
the light. So long as the extremo difference of phase is Jess
than a quarter of a period, the resultant cannot differ much
from the maximum; and thus there islittle to choose between
directions making with the principal direction less angles than
that expressed in cireular measure by dividing the quarter,
wave-length by the diameter of the aperture. Direct antago-
nism of phase when the projecti ts to half
a wave-length. When the projection is twice as great, the
phases range over a complete period, and it might be supposed
at first sight that the secondary waves would neutralize one
th n q » h 5 of the preponderance of
the middle parts of the aperture, complete neutralization does
not occur until a higher obliguity is reached.

This indefiniteness of direction is sometimes said to be due
to “diffraction ” by the edge of the aperture—a mode of ex-
pression which I think misleading. i"rom the point of view
of the wave-theory, it is not the indefinitencss that requires
explanation, but rather the smallness of its amount.

f the circular beam be recoived upon a perfect lens, an
image is formed in the focal plane, in which directions are
represented by points. The imago accordingly consists of a
central disk of fi,zht, surrounded by liminous rings of rapidly
diminishing brightness. It was under this form that the
problem was originally investigated by Airy®. The angular
radius 6 of the oentmf disk is given by

8=12197%, . . . - . . (1)

in which A represents the wave-length of light, and 2R the
(diameter of the) aperture.

In estimating theoretically the resolving-power of a tole-
scope on a double star, we bave to consider the illumination of
the field due to the superposition of the two independent
images. If the angular interval between the components of
the star were equal to 26, the central disks would be just in
contact. Under these conditions there can be no doubt that
the star wonld appear to be fairly resolved, since the bright-
ness of the external ring-systems is too small to produce any

4 Camb. Phil. Trans. 1834,

Figure 3. Lord Rayleigh’s 1879 article on the resolution of two neigh-

boring features.
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where § is the horizontal axis, a is the horizontal dimension of the
rectangular aperture (placed after the prism but before the focusing
lens), and f is the focal length of the lens. He then tabulated the values
of the above function and pronounced that if the two neighboring
lines were so separated that the maximum intensity of one line fell
onto the first minimum of that of the other line, then the two lines
could be discerned because the combined brightness in the middle
of the two peaks (which have the brightness of 1) dipped down to
0.8106 (see Fig. 4). Hence, the smallest discernable separation d of
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the two lines was N

d=—".
a/f

If we translate this to our language, a/f is twice the numerical
aperture NA of the lens (in air). Hence, the Rayleigh criterion simply
implies that the discernable separation of two neighboring lines is
0.5A/NA. In fact, the same criterion can also be applied to the Airy
patterns. If we allow the maximum of the first Airy pattern to coincide
with the edge of the bright central disk of the second pattern, then the
light intensity at the saddle point in the middle of the two intensity
peaks is 0.7348 times the intensity at either peak, and the minimum
discernable distance in this case is 0.61A\/NA, as has been stated in
many textbooks.

What Rayleigh stated in his article can be easily explained. Light
disturbance in the image plane, produced by a distant star, is sim-
ply the point-spread function of the optical system (of the telescope),
since the distant star can be regarded as a d-function object. In a num-
ber of textbooks [8], one can find that the light intensity of the Airy
disk, which is the square of the point-spread function (the Fraunhofer
diffraction of a circular aperture), is proportional to

[h @NA-r)r,

ZINA - 1

where J; is the Bessel function of the first kind, order 1, whose first
zero occurs at the argument of 1.227r, and NA, the numerical aperture
of the optical system, equals Rayleigh’s R/d, where R is the radius of
the aperture and here d is the distance from the aperture to the image
plane. Setting the argument of the above Bessel function to 1.227, the
diameter of the Airy disk is then

A
oy — 1.92
T NA
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or, as Rayleigh stated, the angular radius is

T A
D= =122
Now let the object be an infinitely thin and infinitely long vertical
line, represented by 6(§) - 1. Its image is simply its convolution with
the point-spread function U(&, 1), i.e. [8(&) - 1] ® U(&,n). The result,
omitting again the pre-factor, is sinc ($%), as stated by Rayleigh. See
also § 20 of this book.

Rayleigh understood, however, that what he put forward was
not the absolute resolution limit. He stated in the article that “this
rule is convenient on account of its simplicity.” Born and Wolf also
stated in their book [9] that “no special physical significance is to
be attached to the Rayleigh criterion, and from time to time other
criteria of resolution have been proposed.” Rayleigh dealt with inco-
herent illumination. Under incoherent illumination, light intensity
of the final image is the sum of the intensities produced by each
individual point or line. For two neighboring lines, we may argue
that their minimum distance can even be 0.45A/NA, as the intensity
in the mid-point between the two peaks dips down to 0.954 times
the intensity at either peak. To be extreme, one can even argue that
a one-percent intensity dip at the mid-point should be considered
discernment of the two features. In fact, more than a century ago,
C. M. Sparrow stated that he was able to discern the two lines, by
direct vision and in positive and negative film, all the way down to
where the second derivative of the combined intensity curve at point
B in Fig. 4 reached zero, meaning no intensity dip at all, and 0.83
times the Rayleigh separation [10]. Therefore, a criterion based on a
two-point or two-line structure is ambiguous. Also, the separation
of the two peaks in the image intensity for the 0.45A/NA case is not
0.45A/NA but 0.365A/NA, resulting in a condition called “pitch walk-
ing” in microlithography. The root cause of all this ambiguity lies
in the continuous nature of the spatial frequencies of a two-point
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(or two-line) object not having sharp peaks (8-functions or near
d-functions in the spatial frequency domain) associated with periodic
or regular structures that are either passed or eliminated without am-
biguity by the pupil aperture.? Abbe’s resolution criteria deal exactly
with such periodic or regular structures and hence his resolution
limit is black and white.

Finally, we want to mention Helmholtz’s contribution to the ex-
pression of the resolution limit. Hermann von Helmholtz wrote
down the expression ¢ = 72— explicitly in a lecture on the res-
olution limit of the microscope to the Royal Prussian Academy of
Sciences on 20 October 1873 [12], and explained it in detail in [4].
Here, ¢ is the smallest discernable distance in an object, A is the wave-
length of light in the medium, and « is the angle formed by the
outermost rays emanating from the axial point of an object and going
through the system, and the optical axis. Hence, the expression is
exactly the same as Abbe’s. Like Rayleigh, Helmholtz derived this
criterion based on two neighboring bright lines and hence suffers
from the same ambiguity (mentioned by Helmholtz himself in [4]),
especially as he derived the expression in the context of microscopy.
As to whether Abbe or Helmholtz came up with the expression first,
Lummer and Reiche (see the footnote after Eq. 81) stated that
Helmholtz came up with the expression “almost at the same time,
though in another way.” This claim is substantiated by a postscript
at the end of Helmholtz’s 1874 article ([4], p. 584), in which he de-
scribed seeing Abbe’s 1873 publication and noticing a large overlap
of subjects discussed in the two works, at the last moment before dis-
patching his own manuscript. Helmholtz wrote, “The special festive
occasion for which this volume? of the annuals is published forbids

2The fact that the illumination is incoherent does not affect this conclusion. The
intensity is the same as if the two slits are coherently illuminated but one of them
has a phase shift of 7t/2 [11]. So we can apply the spectral analysis for coherent
imaging.

3The jubilee volume of the journal in which Helmholtz’s 1874 article appears.
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me to withhold or completely withdraw my work. Because it contains
the proofs, which Mr. Abbe still withheld, of the theorems needed
by both of us and a few simple attempts on the explanation of the
theoretical considerations, may its publication be pardoned from the
scientific standpoint.” ([4], p. 584). What modesty from a great
scientist!
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Abbe’s 15 December 1876 Letter
to J. W. Stephenson“

Jena, Dec. 15, 76

Dear Sir

You are too obliging a correspondent, and I am rather ashamed
of your praise. For I myself take pleasure in writing about my mi-
croscopical interests to a gentleman, whom I know to have a perfect
understanding of those things by his mathematical training—since
microscopists, in general, have no, or little, understanding.

I add a few remarks, which, I hope, will remove a difficulty, you
have found in my explanations, perhaps.

In some passages of my letter I distinguish: the pencil of direct rays
and the diffraction-pencils. But this distinction does not mean any
principal difference in the function, or action, of these rays. From a
general point of view, the pencil of direct rays, transmitted by a lined,
or marked, object to the microscope, is one among the diffraction
pencils; it is different from the others only by its greater intensity of
light; but in its action, in the formation of the images of structured
objects, it is quite on the same range with the others. (The outlines of
any object, it is true, are delineated by the direct rays alone, in bright
field; by diffracted rays only in dark field.)

‘Transcript of the letter provided by ZEISS Archives (Ernst Abbe Estate No.
BACZ 27167), with additional editing.
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Therefore in the production of the image of Pleurosigma, with
oblique light, you have at least three active pencils, not two; the
direct pencil, a [sketch], bemg the third. The three sets of lines arise
from the 3 combinations: a,b; @,¢, and b, c—every pair producing
one set, rectangular to the connecting line of corresponding points.
The image of P1. angul. with straight light, by an immersion lens, is
formed by 7 pencils.

As to Pleuros., whether there are 3 sets of lines or two, the follow-
ing will state my opinion.

The diffraction-phenomena, produced by 3 sets, crossing at 60°, or
by 2 sets, or by isolated apertures of any form, arranged: [sketch], are
not different one from another in the first row of spectra around the
direct pencil. Those diffraction-phenomena are different only in the
more distant spectra, which differ in position and relative brightness.

Now, with Pleuros. those more distant spectra are not visible
by any objective, from the great angular dispersion of the diffracted
rays off the incident ray—owing to the smallness of the structure.
(Those more distant pencils could be visible only in a medium of
considerably higher refractive index, than air, or water has.)

The microscopic image, depending on the distance and relative
position of the diffraction pencils, which are effective in the micro-
scope, must be the same for all the different structures named above,
as far as the first row of spectra is admitted only; what you see in that
case, either in Pleurosigma or on the [sketch] gratings, is the typical
image belonging to the inner part of a diffraction-phenomenon of this
kind: [sketch]

Therefore nothing can be inferred from the microscopic image of
Pl. ang. relating to the detail of the structure.

There may be 2 sets of lines, or three sets, or isolated apertures in
the scale etc.—in every case the known images will result.
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That rhombical apertures, as on the [sketch] grating look as hexag-
onal fields, is not surprising, if you consider my theoretical
explanation: that the microscopic images result from the interference
of the different diffraction pencils, which enter the microscope (the
direct pencil there included). From this point of view, the real forms
of the structure have no direct relation to the image—only an indirect
relation, by determining the diffraction-phenomenon partially.

The microscopic image, which any structure will show, is the more
similar to the structure, the more all the diffracted light is admitted to
the microscope. The interference of all the diffraction-pencils, which
come from the object, produces a copy of the real structure, alike to a
dioptrical image. This is the key-stone of my theory. From this is to
be inferred: The smaller a structure is (the more dispersed therefore
the diffraction-pencils) the less similar the microscopic image will be,
for any aperture of the objective applied; and those objects as the
fine diatoms, give, with any lens, only typical images (not copies of
the real forms), because any lens will admit only a few pencils of the
diffraction-phenomenon.

I am sorry not to have in my possession one single copy nei-
ther German nor English of my paper, in which I have stated more
precisely—though very briefly—the consequences of this theory
touching the interpretation of microscopical images. Perhaps it will
be possible to you to lend the 1st vol. of the “Bristol Naturalists’
Society’s Proceedings,” Part 2, in which you will find Mr. Fripp’s
translation in extenso; but you should observe the table of “Errata,”
which Mr. Fripp has given some time afterwards, because many
sentences in the translation are quite unintelligible by errata. The
abstract, which appeared in the M. M. Journal, is useless.

I add a few remarks about the mathematical side of the theory, of
which I have stated only the point of view in my paper. I think you
will quite understand the principle of my mathematical deduction
by considering the simplest case,—one set of equidistant lines—and
observing the following notices:
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1) be & the distance of the lines in a microscopical object; A the
wavelength for one definite colour; [sketch] be u, the angle of
incidence, in which a ray meets the grating; ... u_,, u_y, uy,
U4, Upo ... the angles formed by: the several diffracted rays
—2,—1,0, +1, 42, the direct ray (0) included, the perpendicular
line taken as zero-direction; there is

sin Uypo — Sinu+1 = Sinu+1 — sin Uy = sin Uy — sin u_1 =

in which formula the case of normal incidence is included, of
course. If now the diffracted rays enter a microscope, the sines
of the angles of any two consecutive rays with the axis of the

microscope have the same difference = 2.

2) [sketch] If an objective is focussed to the grating, and if this ob-
jective is perfectly” aplanatic for its focal point any ray forming
an angle u with the axis below the objective, is refracted in such
a way, that it will pass the upper (the back) focal-plane of the
lens in a linear distance from the axis

A=f-sinu

if f is the focal-length of the objective (by a theorem enounced
by me and by Mr. Helmholtz).

From this theorem 2), in connection with 1) is to be inferred: the
linear distance of the diffraction-spectra, which appear in the
back-focal-plane of the objective is always = % -, if correspond-
ing points in every two consecutive spectra are considered—
independent of the inclination of the incident rays to the grat-
ing. If you go from central light to oblique light, all the spectra

*“Perfectly aplanatic” means: without spherical aberration not only for one
point on the axis, but for the points aside the axis too.
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move within the back-plane of the system, without changing
their relative position.

3) All the rays, which result by diffraction, from one incident ray
have their oscillations in equal phase, if points are compared
on these rays which are situated in the back-focal-plane, where
the spectra are formed as images of the illuminating object; all
those rays therefore must interfere within the plane, where they
meet—that is the plane, where an image of the grating is for-
med by the objective (the conjugate focus of the microscopic
object).

4) [sketch] If A be the linear distance of the 2 interfering rays in
the back-focal-plane, 1 the distance of the conjugate focus to the
object (= length of tube of the microscope), the maxima and
minima of light, resulting by interference in the plane C, have

a distance N
=1-—.
A

Now if the two rays considered are consecutive rays from a grat-
ing with the distance §, A is 2 - f; therefore &’ = §- 1—that is the
same distance, in which the lines of the grating would appear
in a purely dioptrical image, under the same circumstances.

A being eliminated from the expression of &', the intervals in
the interference-image must be equal for the different colours;
this image must be achromatic, if the objective is achromatic
(constant for different colours).

If the two rays considered were not consecutive (as in the exper-
iment with the 3-holes-stop) A would have double (or triple. . .)
the value taken above; therefore &' would be 1, or :...of the
distance, which corresponds to the real distance o in a similar
image.

This reasoning shows, that the interference of the diffracted rays
can give a similar image of the structure, but not must.
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The want of mathematical exactness in the deduction above (in 4),
arising from the supposition: 1 infinitely great in relation to f and
A, is perfectly removed by considering the dioptrical effect of the
microscope in a different manner, which I have stated in No. VI of
my paper (page 213 in Mr. Fripp’s translation).

The theses in 1) and 2) involve the determination of the limit of
visibility, as deduced from the fact, that two pencils must enter the
objective in order to get an image. If w be the semi-aperture of any
objective, and & the minimum distance of visible lines in an object,
there is for purely central illumination: [sketch]

A
sinw

simnw=—- ; &=

and for the extreme oblique illumination, where the incident ray
touches the margin of the lens on one side, the next diffracted ray on
the other side [sketch]:

1 A
5 =

2sinw = — = ——
2sinw

o
as stated on p. 244 of Mr. Fripp’s translation.

I hope these remarks will be sufficient to you for getting a clear
notion of the mathematical principles of the theory.

I shall be very glad, if you should like to show the experiments
to the Microscopical Society—especially if you should think it con-
venient to produce them not as paradox phenomena, but rather as
phenomena illustrating a distinct idea of the functions of the micro-
scope. For there is no want of optical curiosities among microscopists;
and I take no interest in bringing forth more of that. Please, make
any use of my explanations, you like.

With my best regards I remain

Yours truly
E. Abbe
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