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Abstract. The effect of p-type doping of the donor layer with 2,3,5,6-tetrafluoro-
7,7,8,8-tetracyanoquinodimethane (F4TCNQ) on the performance of planar pn-heterojunction
organic photovoltaic devices using 4,4′,4′′-tris[3-methylphenyl(phenyl)amino]triphenylamine
(m-MTDATA) or 4,4′,4′′-tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA) as an elec-
tron donor and C60 as an electron acceptor was studied. It was found that doping of the
donor layer with F4TCNQ increases both the short-circuit photocurrent and the fill fac-
tor by 1.7 to 2.0 times and 1.5 to 1.6 times, respectively, but reduces the open-circuit
voltage, resulting in the enhancement of power conversion efficiency by 1.6 to 1.7 times.
These features caused by the doping are attributed to the decrease in the bulk resis-
tance of the electron donor layer as a result of the p-type doping. The decrease in the
open-circuit voltage was partly compensated by incorporation of a thin layer of undoped
m-MTDATA on the ITO electrode, and hence, the power conversion efficiency was further
enhanced. C© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3556725]
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1 Introduction

Organic thin-film photovoltaic (OPV) devices have been receiving a great deal of attention as
candidates for next-generation solar cells or photodetectors because of their potentially low cost,
light weight, and capability of large-area, flexible device fabrication.1–5

The development of new materials, including both small molecules and polymers, and the
implementation of new device structures have led to significant improvement in power conver-
sion efficiency (PCE).6–18 At present, PCEs of 8% under simulated sunlight illumination have
been attained.19–21 With regard to small molecular materials for OPV devices, polycrystalline
materials have usually been used because of their relatively high charge-carrier mobilities. Ph-
thalocyanines, and perylene pigments and fullerenes are typical examples of electron donors and
acceptors that give a high PCE. Recently, growing attention has also been paid to amorphous
molecular materials for use in OPV devices. Following the report that a planar pn-heterojunction
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OPV device using N,N′-bis(α-naphthyl)-N,N′-diphenyl-[1,1′-biphenyl]-4,4′-diamine as an elec-
tron donor and C60 as an electron acceptor exhibits 1% PCE,22 there have been extensive studies
on OPV devices using a variety of amorphous molecular materials as electron donors and
fullerenes as electron acceptors, and a PCE up to over 2% has been attained.23–36 With regard
to device structures, p-i-n,7,12,14 bulk-heterojunction,6,8 and tandem structures,11,13,17 as well
as a planar pn-heterojunction structure, together with the incorporation of an exciton-blocking
layer9,10,16 or optical spacers,15,16 have been employed to improve the PCE.

Unlike inorganic semiconductors, organic semiconductors that are used for OPV devices
are essentially insulators. The observed current density that flows in the external circuit of
OPV devices at given cell voltages under simulated sunlight illumination significantly de-
creases as the series resistance in the equivalent circuit increases; this results in a low fill
factor (FF) and PCE. Making organic layers as thin as possible and reducing the contact
resistance at the interface between organic layers and electrodes are required to improve
the PCE of OPV devices. Charge-transfer doping of organic layers is an effective method
for reducing the series resistance in the equivalent circuit. It is well known that charge-
transfer doping, i.e., p- or n-type doping, of both π -conjugated polymers,37,38 and polymers
containing pendant π -electron systems39 produces electrically conducting polymers. Elec-
trochemically p-doped pendant polymers40,41 and chemically doped polymers42 have been
used as materials for OPV devices and organic light-emitting diodes (OLEDs). Recently,
charge-transfer doping has been extended to amorphous molecular materials,43 and p- or
n-doped crystalline and amorphous molecular materials have been applied for OPV de-
vices and OLEDs.12,44–48 It has been shown that p-doping of zinc phthalocyanine and amor-
phous molecular materials, e.g., 4,4′,4′′-tris[3-methylphenyl(phenyl)amino]triphenylamine (m-
MTDATA) and 4,4′,4′′-tris(diphenylamino)triphenylamine (TDATA), with 2,3,5,6-tetrafluoro-
7,7,8,8-tetracyanoquinodimethane (F4TCNQ) increases the electrical conductivities of these
organic materials;12,44–48 as a result, hole injection from the electrode is enhanced in OLEDs,
and the operating voltage is significantly reduced.45–48 With regard to OPV devices, it has not
been fully clarified how charge-transfer doping affects device performance parameters such as
open-circuit voltage (VOC), short-circuit current density (JSC), and FF.

In the present study, we have investigated the effect of p-type doping of the donor layer with
F4TCNQ on the performance of planar pn-heterojunction OPV devices. Amorphous molecu-
lar materials with low solid state ionization potentials (Ips), m-MTDATA (Ip 5.1 eV,49) and
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4,4′,4′′-tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA) (Ip 5.15 eV50), and C60 were
used as electron donors and an electron acceptor, respectively. These electron donors with the low
solid-state ionization potentials are thought to be suitable for p-type doping, enabling electron
transfer to an electron acceptor, F4TCNQ, in the ground state. In addition, grain-boundary-free
amorphous molecular materials that form smooth, uniform amorphous thin films are expected
to allow uniform doping.51,52

2 Experimental

2.1 Materials

m-MTDATA,53 2-TNATA,50 and N,N’-bis(3-methylphenyl)-diphenyl-[1,1′-biphenyl]-4,4′-
diamine (TPD) were purchased from OHJEC Co. C60 was purchased from Nakalai Tesque,
Inc. F4TCNQ was purchased from Wako Pure Chemical Industries, Ltd. Indium-tin-oxide
(ITO)-coated glass with a sheet resistance of 15 � / � was purchased from Sanyo Vacuum
Industries, Co., Ltd.

2.2 Device Fabrication

ITO-coated glass substrates were cleaned by successive washing with neutral detergent, deion-
ized water, tetrahydrofuran (THF), and trichloroethene in an ultrasonic bath, followed by ex-
posure to trichloroethene vapor. Finally, the substrates were irradiated with ultraviolet light
(Senjyu UV lamp VX-200HK002) for 20 min. Poly(3,4-ethylenedioxythiophene) doped with
poly(4-styrene sulfonate) (PEDOT:PSS) (H. C. Starck, PH500) was spin-coated onto the ITO-
coated glass substrate with a spin coater (ASS 302; 3000 rpm, 10 s), and then dried at 130oC
for 10 min. Amorphous thin films of m-MTDATA or 2-TNATA were prepared by a thermal
deposition method onto the PEDOT:PSS layer at 2.6×10−4 Pa at a deposition rate of 0.1 nm s−1

at room temperature. Then, C60 was vacuum deposited onto the m-MTDATA or 2-TNATA film
at 2.6×10−4 Pa at a deposition rate of 0.1 nm s−1 at room temperature, followed by successive
thermal deposition of lithium fluoride (0.02 nm s−1 ) and aluminum (0.4 to 0.8 nm s−1) onto the
C60 layer. Doping of m-MTDATA or 2-TNATA with F4TCNQ was carried out by co-deposition
of m-MTDATA or 2-TNATA and F4TCNQ at 2.6×10−4 Pa at a deposition rate ratio of 10:1.
The fabricated devices were sealed using glass plates with epoxy resin in a nitrogen-filled glove
box and then annealed at 100oC for 10 min before measurements.

2.3 Measurements

Current density – voltage characteristics in the dark and under AM1.5G illumination (500 W
Xenon lamp, USHIO UXL-500SX, AM1.5 filter) at room temperature were recorded using
an Advantest R6243 power source meter. Light intensity was measured using a power meter
(MELLES GRIOT, Broadband Power/Energy Meter, 13PEM 001).

3 Results and Discussion

m-MTDATA and TDATA doped with F4TCNQ have been used as a hole-transporting layer in
OPV devices;13,45,46 however, the performance data of planar pn-heterojunction OPV devices
using m-MTDATA as an electron donor and C60 as an electron acceptor is not yet available
in the literature. In the present study, planar pn-heterojunction OPV devices consisting of m-
MTDATA or 2-TNATA as an electron donor and C60 as an electron acceptor, ITO/PEDOT:PSS
(ca. 30 nm)/m-MTDATA (50 nm)/C60 (50 nm)/LiF (0.1 nm)/Al (80 to 150 nm) (device A)
and ITO/PEDOT:PSS (ca. 30 nm)/2-TNATA (50 nm)/C60 (50 nm)/LiF (0.1 nm)/Al (80 to
150 nm) (device B), were fabricated, and their performance was examined. Then, the effect
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Fig. 1 Structures of fabricated devices.

of p-type doping of the donor layer with F4TCNQ on the cell performance was investigated.
For this purpose, the following devices were fabricated: ITO/PEDOT:PSS (ca. 30 nm)/m-
TDATA: F4TCNQ (10:1.0) (50 nm)/C60 (50 nm)/LiF (0.1 nm)/Al (80 to 150 nm) (device D)
and ITO/PEDOT:PSS (ca. 30 nm)/2-TNATA :F4TCNQ (10:1.0) (50 nm)/C60 (50 nm)/LiF (0.1
nm)/Al (80 to 150 nm) (device E). Figure 1 shows the structures of the fabricated OPV devices.

Figures 2(a) and 2(b) show the current density (J) − voltage (V) characteristics of device
A and device D, and device B and device E, respectively, in the dark and under AM1.5G
illumination at an incident light intensity of 100 mW cm−2. Table 1 summarizes the performance
of the fabricated OPV devices, VOC, JSC, FF, and PCE, under AM1.5G illumination at an incident
light intensity of 100 mW cm−2. Device A using m-MTDATA as an electron donor exhibited
a VOC of 0.40 V, a JSC of 0.7 mA cm−2, a FF of 0.24, and a PCE of 0.07%. Device B using
2-TNATA as an electron donor showed similar performance to that of device A, exhibiting a
VOC of 0.45 V, a JSC of 0.5 mA cm−2, a FF of 0.25, and a PCE of 0.05%. For comparison, a
corresponding pn-heterojunction device using TPD as an electron donor and C60 as an electron
acceptor, ITO/PEDOT:PSS (ca. 30 nm)/TPD (50 nm)/C60 (50 nm)/LiF (0.1 nm)/Al (80 to 150
nm) (device C), was also fabricated and its performance was examined. Device C exhibited a
VOC of 0.67, a JSC of 1.4 mA cm−2, a FF of 0.42, and a PCE of 0.38% (Table 1).

It has generally been understood that VOC corresponds to the difference between the highest
occupied molecular orbital (HOMO) level of electron donor and the lowest unoccupied molec-
ular orbital (LUMO) level of electron acceptor.4 The VOC values from 0.40 to 0.45 V observed
for device A and device B roughly correspond to the difference between the HOMO level of
m-MTDATA or 2-TNATA (5.1, 5.15 eV)5,49,50 and the LUMO level of C60 (4.5 eV).2 Likewise,
the VOC value of 0.67 V observed for device C roughly corresponds to the difference between
the HOMO level of TPD (5.45 eV)50 and the LUMO level of C60. Since m-MTDATA and
2-TNATA have similar solid-state ionization potentials and hole drift mobilities of ∼3 × 10−5

cm2 V−1s−1 at 1.0 × 105 V m−1 at room temperature,54–57 the similar performance observed
for device A and device B seems to be reasonable. As light is mainly absorbed by C60, slight

Fig. 2 J–V characteristics of (a) device A and device D, and (b) device B and device E in the
dark and under AM1.5G illumination at an incident light intensity of 100 mW cm−2.
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Table 1 Device performance under AM1.5G illumination at an intensity of 100 mW cm−2.

Devicea VOC (V) JSC (mA cm−2) FF PCE (%)

A 0.40 ± 0.04 0.7 ± 0.2 0.24 ± 0.02 0.07 ± 0.02
B 0.45 ± 0.03 0.5 ± 0.1 0.25 ± 0.01 0.05 ± 0.01
C 0.67 ± 0.08 1.4 ± 0.2 0.42 ± 0.06 0.38 ± 0.05
D 0.27 ± 0.01 1.2 ± 0.1 0.38 ± 0.04 0.12 ± 0.02
E 0.19 ± 0.04 1.0 ± 0.1 0.38 ± 0.04 0.08 ± 0.01
F 0.37 ± 0.07 1.2 ± 0.2 0.36 ± 0.03 0.16 ± 0.01

aDevice A : ITO/PEDOT:PSS (ca. 30 nm)/m-MTDATA (50 nm)/C60 (50 nm)/LiF (0.1 nm)/Al (80 to 150 nm).
Device B : ITO/PEDOT:PSS (ca. 30 nm)/ 2-TNATA (50 nm)/C60 (50 nm)/LiF (0.1 nm)/Al (80 to 150 nm).
Device C : ITO/PEDOT:PSS (ca. 30 nm)/TPD (50 nm)/C60 (50 nm)/LiF (0.1 nm)/Al (80 to 150 nm). Device D
: ITO/PEDOT:PSS (ca. 30 nm)/F4TCNQ-doped m-MTDATA (50 nm)/C60 (50 nm)/LiF (0.1 nm)/Al (80 to 150
nm). Device E : ITO/PEDOT:PSS (ca. 30 nm)/F4TCNQ-doped 2-TNATA (50 nm)/C60 (50 nm)/LiF (0.1 nm)/Al
(80 to 150 nm). Device F : ITO/PEDOT:PSS (ca. 30 nm)/m-MTDATA (10 nm)/F4TCNQ-doped m-MTDATA
(40 nm)/C60 (50 nm)/LiF (0.1 nm)/Al (80 to 150 nm). All devices were annealed at 100oC for 10 min.

differences in the ultraviolet absorption spectra between m-MTDATA and 2-TNATA did not
appreciably affect the performance under simulated AM 1.5G sunlight illumination.

Very low PCEs of these devices stem from relatively low VOC and small JSC and FF. The
relatively low VOC is attributed to the low HOMO levels of these electron donors, and the small
JSC value is attributed to the absence of visible light absorption by m-MTDATA and 2-TNATA
(Fig. 3) and to their very low hole drift mobilities. It has been reported that the dissociation
process of photogenerated hole-electron pairs at the donor/acceptor interface to generate charge
carriers in competition with the charge recombination process is greatly influenced by charge-
carrier mobilities of organic materials used and that a tenfold increase in mobility dramatically
improves JSC and FF, doubling the maximum power output.58 The limited FF for these devices
results from the large series resistance (Rs) of these devices. In fact, the Rs values calculated
from the J−V curves under illumination were ca. 210 and 60 �cm2 for device A and device
B, respectively. The relatively small shunt resistance (Rsh) values under illumination (ca. 650
and 1200 �cm2 for device A and B) were also thought to be responsible for the low FF. Higher
performance of device C than that of device A and device B is attributable to the higher HOMO
level and much higher hole drift mobility of TPD (1.0 × 10−3 cm2 V−1 s−1 at 1.0 × 105

V cm−1)57 relative to those of m-MTDATA and 2-TNATA.
The p-doping of the donor layer with F4TCNQ resulted in the increase of both JSC and FF

and a significant decrease of VOC. That is, device D and device E exhibited 1.7 to 2.0 times
higher JSC and 1.5 to 1.6 times larger FF, respectively, but significantly lower VOC than device
A and device B. As a result, device D and device E using F4TCNQ-doped materials gave 1.6 to
1.7 times larger PCEs than device A and device B, as shown in Fig. 2 and Table 1. The increase

Fig. 3 Electronic absorption spectra of vapor-deposited films of m-MTDATA (30 nm) and 2-TNATA
(30 nm).
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of both JSC and FF caused by the p-doping of the donor layer with F4TCNQ can be explained
in terms of the increased hole mobility of F4TCNQ-doped m-MTDATA and 2-TNATA and
the decreased series resistance of the devices using these doped donor materials. The increase
of charge-carrier mobility by p-type doping has been reported with regard to 1,3,5-tris[N,N-
bis(4,5-dimethoxyphenyl)aminophenyl]benzene59 and zinc phthalocyanine.60 The decrease in
the resistance of donor materials by p-type doping was shown by the analysis of the J−V curves
of device D and device E under illumination. The Rs values calculated from the J−V curves
under illumination for device D and device E were ca. 8 and 7 � cm2, respectively, which
are much smaller than those calculated from the J−V curves of device A and device B using
undoped electron donors. The increase in electrical conductivities of m-MTDATA and TDATA
by the p-doping with F4TCNQ has been reported.45,46

The observed current density (Jobs) that flows in the external circuit of OPV devices is given
by the subtraction of the photocurrent density (Jph) from the dark current density (Jd) [Eq. (1)].
Since JSC is the current density observed at the zero cell voltage where Jd is zero, JSC is equal
to Jph. If it is simply assumed that the photocurrent observed for the OPV device corresponds to
that observed for photoconductors, Jph is expressed as Eq. (2), where L is the thickness of the
sample, I0 is the total number of photons arriving at the unit surface area of the cell per second,
α is the absorption coefficient, η is the photogeneration efficiency of charge carriers, τ is the
carrier lifetime, e is the elementary electric charge, μ is the charge carrier mobility, and E is the
electric field. The parameters involved in Jph that are affected by the p-doping of the electron
donor are suggested to be μ and η. That is, the increase in Jph is attributable to the increase of
μ for the p-doped donor materials and to the increase of η owing to the increased μ.

J
obs

= Jd − Jph, (1)

Jph = 1

L
I0(1 − exp[−αL])η τeμE (2)

The dark current density is the sum of the current density that flows through the cell and
the leakage current density that flows through the shunt resistance [Eq. (3)] in the equivalent
circuit of OPV devices (Fig. 4). Jobs is expressed as Eq. (4), where J0 is the reverse saturated
dark current density, Rs and Rsh represents series and shunt resistances, respectively, V is
the cell voltage, n is the diode ideal factor, k is the Boltzmann constant, and T is the absolute
temperature. Numerical calculation for Eq. (4) clearly shows that Jobs at given cell voltages under
VOC significantly decreases and hence, FF also significantly decreases as the series resistance
Rs increases. The decrease in the Rs of the m-MTDATA and 2-TNATA layer caused by the
p-doping with F4TCNQ is responsible for the enhancement of both Jobs and FF. There was no
shunt resistance decrease by the doping (ca. 500 and 1200 �cm2 for device D and device E).
Considering the low HOMO level of m-MTDATA and 2-TNATA (5.1, 5.15 eV)5,49,50 and the
LUMO level of F4TCNQ (5.24 eV),44 electron transfer from the electron donor to the electron
acceptor F4TCNQ is suggested to take place in the dark, resulting in the increase in the electrical

Fig. 4 Equivalent circuit of OPV devices.
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Fig. 5 J–V characteristics of device D and device F in the dark and under AM1.5G illumination
at an incident light intensity of 100 mW cm−2.

conductivity of the F4TCNQ-doped m-MTDATA and TDATA

Jd = Jdiode + Jsh (3)

Jobs = J0

[
exp

[
e(V − JobsRs)

nkT

]
− 1

]
+ V − JobsRs

Rsh

− Jph. (4)

VOC is the voltage where Jobs is zero. Although Eq. (4), which is applied for inorganic
semiconductor photovoltaic devices, predicts that the VOC value is not affected by Rs, the
decrease of VOC caused by the p-doping is due to the hole injection from the ITO electrode into
the p-doped donor layer at a lower applied voltage because of the decreased resistance of the
p-doped donor layer. The VOC value decreases as such injection dark current starts to flow at
a lower cell voltage. Comparison of the J–V characteristics in the dark between device A and
device D [Fig. 2(a)] and between device B and device E [Fig. 2(b)] clearly shows that the dark
current density for device D and device E abruptly starts to increase at a lower cell voltage of ca.
0.2 V as compared with ca. 0.4 V for device A and device B. It is understood that charge-carrier
injection from the electrode into the organic layer takes place for OPV devices and that hole
injection from the anode into the p-doped donor layer is facilitated because of the increase in
the electrical conductivity of the p-doped material.

It was expected that the reduction of VOC can be compensated by incorporation of a thin
layer of undoped m-MTDATA on the ITO electrode. From this viewpoint, the following device
was fabricated: ITO/PEDOT:PSS (ca. 30 nm)/m-MTDATA (10 nm)/m-MTDATA: F4TCNQ
(10:1.0) (40 nm)/C60 (50 nm)/LiF (0.1 nm)/Al (80 to 150 nm) (device F). Device F exhibited
higher VOC than that for device D, maintaining almost the same JSC and FF as those obtained
for device D, and hence, led to further enhancement of PCE (Fig. 5 and Table 1).

4 Summary

In the present study, we have investigated how the p-type doping of electron donors with low
solid-state ionization potentials, m-MTDATA and 2-TNATA, with a strong electron acceptor
F4TCNQ, affects JSC, VOC, FF, and PCE of OPV devices, where C60 is used as an electron
acceptor. The results demonstrated that the p-doping of the donor layer with F4TCNQ causes
the increase in both JSC and FF accompanied by the decrease in VOC, leading to higher PCE.
These characteristic features are explained in terms of the decreased bulk resistance of the
donor layer caused by the p-doping. The reduction of VOC caused by the p-doping was partly
compensated by the incorporation of a thin layer of undoped m-MTDATA on the ITO electrode,
and hence, PCE was further enhanced. The present study shows that charge-transfer doping of
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organic materials to reduce their bulk resistance is an effective approach for improving the PCE
of OPV devices.
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