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Abstract. Fluorescence microscopy allows real-time moni-
toring of optical molecular probes for disease characteriza-
tion, drug development, and tissue regeneration. However,
when a biological sample is thicker than 1 mm, intense
scattering of light would significantly degrade the spatial
resolution of fluorescence microscopy. In this paper, we de-
velop a fluorescence microtomography technique that uti-
lizes the Monte Carlo method to image fluorescence re-
porters in thick biological samples. This approach is based
on an l0-regularized tomography model and provides an ex-
cellent solution. Our studies on biomimetic tissue scaffolds
have demonstrated that the proposed approach is capable of
localizing and quantifying the distribution of optical molec-
ular probe accurately and reliably. C©2011 Society of Photo-Optical
Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3596171]
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Fluorescence molecular imaging is a very popular method
to study biological molecules, pathways, and events in living
cells and tissues.1 With its sensitivity, specificity, noninvasive-
ness, and cost-effectiveness, fluorescence molecular imaging is
widely applied in preclinical and clinical applications. However,
after propagating over a few hundred micrometers, fluorescence
light would become highly diffusive. The state-of-the-art mi-
croscope operates only at depths less than one transport mean
free path length in tissue. With the intense scattering signal,
it becomes difficult to image a fluorescence probe distribution
within a thick biological sample using the current fluorescence
microscopy.2, 3

In this letter, we propose a fluorescence tomographic method
to reconstruct an optical molecular probe distribution using a
standard fluorescence microscope on a thick biological sample.
The light propagation through the biological tissue is a com-
plicated process that involves both absorption and scattering.
The photon propagation model governs the interaction between
light and tissues, and is essential for tomographic imaging with
visible and near-IR light.

The popular diffusion approximation model (DA) is fairly
accurate and efficient in the cases of high scattering and weak
absorption in a large tissue sample. However, the DA model
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suffers from a substantial discrepancy near either sources or
boundaries,4 which happens to be the case of microscopic
imaging. Monte Carlo simulation (MC) is a statistical tech-
nique that accurately traces photon paths in the biological en-
vironment. The MC method can give an accurate estimation
for light propagation.5 However, the MC method takes long
computation time. Recently, the massive parallel approach us-
ing general-purpose graphic processing units (GPGPU) has
been adopted to speed up the MC simulation. Alerstam et al.
showed that GPU-based acceleration could be applied in the
MC simulation to obtain a massive speedup over the tra-
ditional CPU implementation.6 Recently, we implemented a
GPU-based Monte Carlo simulator on a multi-GPU system
with the CUDA platform. Using four NVidia Tesla C1050
GPUs, we are able to archive a speedup of over 800 times
compared to the same implementation on a single CPU core,
enabling the Monte Carlo method to be used in the inverse
process.

Using the GPU-based Monte Carlo simulation, we devel-
oped a Monte Carlo algorithm for fluorescence tomography.
Usually, microscopic imaging focuses on a region of interest
(ROI) in the biological sample and acquires surface fluores-
cence scattering signals emitted from optical molecular probes
in the ROI. The ROI volume can be discretized into finite vol-
umetric elements. The acquired photon fluence rate data on the
surface of the ROI is a linear combination of fluorescence source
intensities,

� = A · S, (1)

where � is a vector of the photon fluence rate measured at de-
tector pixels, S is a vector of fluorescence source intensities, and
A is the discrete Green function. A column vector of A is con-
structed from the photon fluence rate at each detector pixel com-
puted from the GPU-based Monte Carlo simulator, assuming
that each potential elemental fluorescence source is with a unit
intensity.

In practice, the measurable quantity � in Eq. (1) can
only be collected on a partial external surface of an object,
either upside or downside of a biological sample, while the
fluorescence sources are distributed in a three-dimensional
(3D) domain. Clearly, the source reconstruction is an ill-
conditioned problem, which often produces false solutions
due to the existence of multiple solutions and the presence of
measurement noise. Regularization is often used to stabilize the
reconstruction. With the use of regularization, such as Tikhonov
regularization, feasible region constraint,7 and compressive
sensing-based l1-norm regularization,8, 9 fluorescence tomogra-
phy shows improvements, but the ill-posedness of the problem
remains.

To find a stable solution, here we introduce a well-posed
model to regularize the inverse source problem: Given the prior
optical parameters of the sample, including the absorption co-
efficient μa, scattering coefficient μs, and anisotropic factor g,
then the positions and powers of luminescent sources can be
uniquely determined from the measurable diffused light signal
on the boundary of the ROI under the assumption that the number
of isolated luminescent sources n is known in the ROI. Based
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Fig. 1 Microbead distribution in the scaffold.

on this concept, Eq. (1) can be converted to an optimization
problem:10

⎧⎨
⎩

min ‖� − A · S‖
Sik > 0, k = 1, 2, . . . , n
Sj = 0, j /∈ {i1, i2, . . . , in}

, (2)

where the vector S only includes n positive nonzero values{
Si1 , Si2 , · · · , Sin

}
, which represents the power of the fluo-

rescence sources, and its index {i1, i2, · · · , in} corresponds to
the source positions. The new reconstruction model based on
Eq. (2) has a unique solution,11 and can effectively overcome
the ill-posedness of fluorescence tomography.

Equation (2) is an optimization problem subject to the l0-
regulization, which is non-deterministic polynomial time hard
(NP-hard), and cannot be efficiently solved using a commonly
adopted gradient-based optimization method. In the work, we

Fig. 2 Scaffold experiment results: (a) An microbead fluorescence emission image from a 0.65-mm thick scaffold; (b) a reconstructed microbead
distribution from (a); (c) the projected fluorescence emission image from (b); (d) a microbead fluorescence emission image from a 0.8-mm thick
scaffold; (e) the reconstructed microbead distribution from (d); (f) the projected fluorescence emission image from (e); (g) a microbead fluorescence
emission image from a 1.4-mm thick scaffold; (h) the reconstructed microbead distribution from (g); and (i) the projected fluorescence emission
image from (h).

Journal of Biomedical Optics July 2011 � Vol. 16(7)070501-2



JBO Letters

developed a differential evolution (DE)-based heuristic recon-
struction algorithm to solve the optimization problem.10 DE is
based on a spontaneous self-adaptive vector difference operator,
and displayed a superior converging behavior with high preci-
sion. Experience with numerous benchmark and real-life prob-
lems suggests that the DE often has a fast and reliable converging
behavior with a relatively small population size. Each candidate
solution in DE is a weighted combination of the columns in
A. Due to the rapid convergence of DE, the optimizer can de-
lineate the feasible region of the fluorescence sources in a few
generations (i.e., iterations), and many of the columns in the
discrete Green function A are never used. Taking advantage of
this observation, we replace the full Green function construction
with an on-the-fly evaluation scheme: whenever a column in A
is needed in a candidate solution, and has not been evaluated,
that column will be computed by performing the Monte Carlo
simulation. Compared with the full Green function evaluation,
the on-the-fly scheme saves about 40 to 70% of Monte Carlo
runs, which further speeds up the reconstruction process.

The constraint on the number of light sources, however, can-
not be always obtained in advance. We can heuristically de-
termine the number of light sources by gradually increasing
the number of sources and solve the optimization problem in
Eq. (2). For each reconstructed source distribution, if two or
more sources are so close that they cannot be isolated within a
user-provided spatial resolution, they are combined into a single
source. After the source combination, the source distribution is
equivalent to a previous reconstructed counterpart with a smaller
number of sources. Such a number can always be iteratively and
heuristically determined to interpret measured data effectively
and efficiently.10

We investigated the accuracy and robustness of the proposed
fluorescence microtomography approach in experiments on
biomimetic tissue scaffolds. Three poly (D,L-lactide) (PDLA)
scaffolds were fabricated using an electrospinning technique12

with thicknesses of 0.65, 0.8, and 1.4 mm, respectively. The
optical properties were measured using a spectrophotometer
(Varian Cary 5000 UV-Vis-NIR, GMI, Inc.). The absorption co-
efficient is approximately 0.01 mm− 1, the scattering coefficient
15.0 mm− 1, and the anisotropic factor 0.9. Fluorescence mi-
crobeads of 90 μm diameter (Spherotech Inc.) were laminated
and pressed onto each scaffold sample to mimic green fluo-
rescence labeled cells. The actual microbead distribution was
captured under a fluorescence microscope, as shown in Fig. 1,
and serves as the control image. The scaffold was illuminated
using a uniform field of blue laser light (λ = 473 nm) to ex-
cite the microbeads, and the emission signal captured using an
EMCCD camera with a 1x long working distance lens (Mi-
tutoyo, M Plan 1×), creating a field of view of 8.192 mm
× 8.192 mm, which is the same as the size of the EMCCD
sensor. From each set of captured emission signals, we recon-
structed the microbead distribution, as shown in Fig. 2. The
on-fly matrix evaluation and optimization took about 20 mi-
nus. The results show no significant difference in localization
accuracy over all the scaffold thicknesses. Figures 2(b), 2(e),
and 2(h) present maximum position errors of ∼250, ∼275, and
∼500 μm respectively. The theoretical spatial resolution is finer
based on the numerical studies, which is around 100 to 150 μm
(∼2 to 3 pixels) in the lateral and axial directions with the

current imaging setup. These reconstruction errors were relative
to the size of ROI, and induced from the measurement noise
rather than the ill-posedness of the reconstruction. This claim
was confirmed in our numerical simulation where a reduced
measurement noise was correlated to an improved location ac-
curacy.

In summary, we have developed a novel fluorescence mi-
crotomography approach to reconstruct fluorescence reporters
in thick biological samples. This tomographic imaging method
is based on a well-posed inverse model we have established,
and has a unique and stable solution. Our experiments have
demonstrated that the proposed fluorescence microtomographic
method is able to localize and quantify an optical molecular
probe distribution accurately, up to a spatial resolution of sev-
eral hundred micrometers in relatively thick and highly opaque
samples. Using a powerful microscope setup, we expect further
improvements in spatial resolution for fluorescence microto-
mography.
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