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Abstract. Modeling and simulation are often used to understand and investigate random quantities and estima-
tors. In 1997, Roe and Metz introduced a simulation model to validate analysis methods for the popular endpoint
in reader studies to evaluate medical imaging devices, the reader-averaged area under the receiver operating
characteristic (ROC) curve. Here, we generalize the notation of the model to allow more flexibility in recognition
that variances of ROC ratings depend on modality and truth state. We also derive and validate equations for
computing population variances and covariances for reader-averaged empirical AUC estimates under the gen-
eralized model. The equations are one-dimensional integrals that can be calculated using standard numerical
integration techniques. This work provides the theoretical foundation and validation for a Java application called
iRoeMetz that can simulate multireader multicase ROC studies and numerically calculate the corresponding
variances and covariances of the empirical AUC. The iRoeMetz application and source code can be found
at the “iMRMC” project on the google code project hosting site. These results and the application can
be used by investigators to investigate ROC endpoints, validate analysis methods, and plan future studies.
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1 Introduction
The area under the receiver operating characteristic (ROC)
curve, denoted AUC, is a common endpoint in reader studies
to evaluate medical imaging devices.1 ROC data from reader
studies are confidence-of-disease ratings from clinicians (read-
ers) evaluating images (cases). Therefore, the endpoint in a mul-
tireader multicase (MRMC) ROC study is affected by two
important sources of variability—the readers and the cases—
and in studies past the exploratory stage, we often want to
account for both sources in our analyses.

Modeling and simulation are tools that help us to understand
and investigate the distribution and statistical behavior of ran-
dom quantities and estimators. Roe and Metz2 (R&M) proposed
a simulation model that launched the study of different analysis
methods and endpoints related to MRMC ROC studies. Their
model was developed to validate the Dorfman, Berbaum, and
Metz (DBM) method that compares AUCs from two modal-
ities.3 The R&M model simulates ROC ratings according to a
binormal model for each reader and generates data from a
“fully crossed” study design where each patient is imaged by
two or more modalities, with the resulting cases evaluated once
by each reader.

With few modifications, the R&M model has been used to
validate and characterize many other MRMC ROC analysis
methods for almost two decades.4–10 The R&M model has
also been used to investigate power and sizing methods for
ROC studies,11,12 and adapted to yield discrete ROC ratings13,14

and explore alternative study designs.15 Finally, while AUC has
been the primary reader performance measure analyzed with the
R&Mmodel to date, the R&Mmodel has also been used to ana-
lyze binary performance measures16,17 and utility.18

The R&M model assumes a four-factor modality × reader ×
case × truth mixed-effects analysis of variance model for the
ROC ratings. In the original work, reader and case effects and
their interactions were assumed to be random and the variance
components were chosen to be the same across truth states and
across modalities. As we show below, the assumptions applied
to the R&M model in the original work can be relaxed. In the
current work, we generalize the notation to clarify that the vari-
ance components can depend on truth state and modality.

As discussed by Hillis,19 when the variance components are
assumed to be the same across truth states and modalities,
the R&M model has the following interpretations: (1) ROC rat-
ings for each reader are generated from an equal-variance binor-
mal model (i.e, a binormal model such that variances of the
nondiseased and diseased ROC ratings are equal); and (2) the
expected differences (or separations) between the nondiseased
and diseased ROC ratings vary across readers, with the separa-
tions having the same variance for each modality. This last result
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implies that for a simulation study that assumes equal AUCs
across modalities (i.e., a null-hypothesis study), the resulting
AUC estimates will have the same variance for each modality.
It is natural to question this assumption, especially when compar-
ing an imaging modality with and without a computer aid. Beiden
et al.20 found that the reader variability of readers’ AUCs was
much smaller when using a computer aid in classifying microcal-
cifications in mammograms compared to those without the aid.

When fitting an ROC curve with a binormal model, it is gen-
erally recognized that for real data the distributions of the latent
decision variables of the diseased and nondiseased ROC ratings
will often have different variances, with the diseased distribution
typically wider. This causes the ROC curve to be unsymmetric
about the negative diagonal. Such unsymmetric ROC curves
have been seen as far back as the early psychophysical experi-
ments of the 1960s21,22 and in recent studies evaluating medical
imaging modalities.19,23–26 Unsymmetric ROC curves have
motivated other models of ROC ratings27–29 and are sometimes
characterized by a mean-to-sigma ratio defined as the difference
of the binormal means divided by the difference of the binormal
standard deviations across truth states in an unequal-variance
binormal model.19,21,26 For this reason, Hillis19 introduced an
unequal-variance binormal model by allowing some of the vari-
ance components to depend on truth but with some additional
constraints.

In this paper, our main purpose is to present the exact nature
of the relationship between the R&M model inputs (these
include the model parameters and numbers of readers and
cases) and the means, variances and covariances of the resulting
reader-averaged empirical AUC estimates. R&M note that they
were not able to determine such a relationship. Knowledge of
this relationship builds on earlier work by Gallas et al.16 and
allows an investigator to, among other things, (1) verify that
the simulation model has been correctly programmed by com-
paring parameter estimates based on the simulations to the true
values of the parameters; and (2) quantify the bias of AUC vari-
ance estimates by similarly comparing simulation results to the
true values. We consider this paper to be an important first step
toward our ultimate aim of being able to calibrate a simulation
model that will produce data that matches a real data set with
respect to the estimated parameters from an analysis method,
such as that proposed by Obuchowski and Rockette.30

In this paper, we begin by generalizing the notation of the
R&M model by allowing all of its variance components to
depend on both modality and truth state. Then, we present and
validate equations for computing the population variances and
covariances for empirical AUC estimates computed from data
simulated from the generalized R&M model. The generalized
model includes the original R&M model (with the equal vari-
ance-components assumption) and the unequal-variance model
proposed by Hillis19 as special cases. Although these two special
cases are sufficient for many situations, we anticipate that
researchers may want to use other special cases of the general-
ized R&M model, or the generalized model itself for simulating
data. Presenting equations for the generalized model eliminates
the need to derive equations for each special case in the future.

2 Methods

2.1 Generalized Roe and Metz Model

The R&M simulation model is for simulating rating data that
emulate an ROC reader-performance study that has N0

nondiseased cases and N1 diseased cases that are interpreted
and rated by NR readers. Here, we focus on a fully crossed
study design to compare two modalities, denoted by A and B,
where “fully crossed” refers to the data collection: all the readers
rate all the cases in both modalities with respect to confidence of
disease. The result of such a study is a dataset with 2 × ðN0 þ
N1Þ × NR ROC ratings ½ðmodalitiesÞ × ðcasesÞ × ðreadersÞ�.
R&M denote the ROC ratings by Xijkt, where i denotes modality
(i ¼ “A” or “B”), j denotes reader, k denotes case, and t denotes
truth ðt ¼ 0;1 ≡ nondiseased; diseasedÞ.

Using the notation of R&M, the model is given by

Xijkt ¼ μt þ τit þ Rjt þ Ckt þ ½RC�jkt þ ½τR�ijt þ ½τC�ikt
þ ½τRC�ijkt þ Eijkt; (1)

where Xijkt denotes the value of the ROC rating for modality i,
reader j, case k, and truth state t. Modality and truth are fixed
factors and reader and case are random factors, i.e., effects
involving reader or case are random effects and all other
effects are fixed. Consequently, the Greek terms μt; τit are
fixed effects and the remaining seven terms are random.

The random terms in the R&M model are all independent
zero-mean Gaussian random variables: R is the reader effect,
C is the case effect, ½RC� is the reader × case effect, ½τR� is
the modality × reader effect, ½τC� is the modality × case effect,
½τRC� is the modality × reader × case effect, and E is an inde-
pendent random error term. The corresponding variance compo-
nents are denoted σ2R; σ

2
C; σ

2
RC; σ

2
τR; σ

2
τC; σ

2
τRC, and σ2E. The

independent error term Eijkt can be attributed to a reader’s
inability to exactly reproduce their ROC rating for a case; E is
sometimes referred to as internal noise or reader jitter. R&M
pointed out that the pure error and the three-way interaction vari-
ance components cannot be separately estimated “without multi-
ple readings of each case in each modality by all readers.” As
such, they defined an aggregate term εijkt ¼ ½τRC�ijkt þ Eijkt.

2.1.1 Updated notation

Here, we generalize the R&M model, clarifying that the model
is, in fact, a four-factor model. In addition to modality, reader,
and case, truth is a factor. In particular, truth has a hierarchical
relationship with cases:31 each case can have only one truth state
and cases are “nested” within truth. Mathematically, we will use
α to express the truth factor and rewrite the R&M model as

Xijkt ¼ αt þ ½τα�it þ ½Rα�jt þ ½Cα�kt þ ½RCα�jkt þ ½τRα�ijt
þ ½τCα�ikt þ ½τRCα�ijkt; (2)

where we have omitted the pure error term since it cannot be
distinguished from the four-way interaction term without repli-
cations. Following statistical conventions, we could surround α
and its subscript t with parentheses (for terms that include case)
to indicate the nesting of cases within truth. However, we will
not follow this convention for simplicity.

Now, the four-factor structure of the model is clearly shown
in Eq. (2). We point out that this model includes only inter-
actions with truth or effects nested within truth; in particular,
there are no effects for modality alone or reader alone. The
rationale for omitting the modality and reader effects is that
these terms would have no effect on the ROC curve for a given
reader and test, since the ROC curve is invariant to location
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shifts of the decision variable. We note that the fixed interaction
½τα�it allows different modalities to have different ROC curves.

2.1.2 Allow variances to depend on modality and truth

Given the new notation for the R&M model, we now generalize
it to allow the variance components to depend on modality
and truth.

There are three random-effect terms that do not include
modality: ½Rα�jt; ½Cα�kt; ½RCα�jkt. They correspond to six vari-
ance components: σ2R0; σ

2
C0; σ

2
RC0 are for nondiseased cases ðt ¼

0Þ and σ2R1; σ2C1; σ2RC1 are for diseased cases ðt ¼ 1Þ. The sum of
these six variance components that do not depend on modality is

σ2Ω ¼ σ2R0 þ σ2C0 þ σ2RC0 þ σ2R1 þ σ2C1 þ σ2RC1: (3)

There are three random-effect terms that include modality:
½τRα�ijt, ½τCα�ikt, and ½τRCα�ijkt. They correspond to 12 vari-
ance components: σ2AR0; σ

2
AC0; σ

2
ARC0 are for modality A, nondi-

seased cases ði ¼ A; t ¼ 0Þ, σ2AR1; σ2AC1; σ2ARC1 are for modality
A, diseased cases ði ¼ A; t ¼ 1Þ, σ2BR0; σ

2
BC0; σ

2
BRC0 are for

modality B, nondiseased cases ði ¼ B; t ¼ 0Þ, and σ2BR1; σ
2
BC1;

σ2BRC1 are for modality B, diseased cases ði ¼ B; t ¼ 1Þ. The
sums of the variance components that are specific to modality
A and B are

σ2A ¼ σ2AR0 þ σ2AC0 þ σ2ARC0 þ σ2AR1 þ σ2AC1 þ σ2ARC1; (4)

σ2B ¼ σ2BR0 þ σ2BC0 þ σ2BRC0 þ σ2BR1 þ σ2BC1 þ σ2BRC1: (5)

The original R&M model is a special case of the generalized
model. All we need to do is assume, as R&M did, that the vari-
ance components of the ROC ratings do not depend on modality
or truth. We can replicate the original R&M model by setting
generalized R&M model variance components equal to the
original ones as given in Table 1. Other simplifications can
be similarly handled.

2.2 Expected AUCs

Here, we examine the expected value of the empirical estimate
of AUC, also known as the trapezoidal estimate,32 given the
R&M model. Without loss of generality, we focus on modality
A. A similar discussion can be derived for modality B.

The estimated reader-averaged AUC for modality A is

dAUCA ¼
XNR

j¼1

XN0

k¼1

XN1

k
0 ¼1

sðXAjk 01 − XAjk0Þ∕N0N1NR; (6)

where we shall refer to sðxÞ as the “success function;” sðxÞ
equals 1.0 when reader j successfully rates diseased case k 0

higher than nondiseased case k, sðxÞ equals 0.0 if the ratings
are in the wrong order, and sðxÞ equals 0.5 if the ratings are tied.

As we consider the expected reader-averaged AUC for
modality A, we are averaging over readers and cases as we aver-
age over the ROC ratings. We express the expectation of dAUCA

[Eq. (6)] as

AUCA ¼ E

�XNR

j¼1

XN0

k¼1

XN1

k 0¼1

sðXAjk 01 − XAjk0Þ∕N0N1NR

�

¼ E½sðXAjk 01 − XAjk0Þ� ¼ E½sAjkk 0 �; (7)

where we have introduced the random variable sAjkk 0 ¼
sðXAjk 01 − XAjk0Þ that we refer to as a “success observation.”
The equivalences above are true because we can pull the sum-
mations out of the expected value and all the summands yield
the same result. To be clear, E½sAjkk 0 � is the expected value of
sAjkk 0 for a randomly selected reader reading randomly selected
diseased and nondiseased cases. In a sense, the expected value
averages over the subscripts, and is not dependent on them.

In Eq. (6), XAjk 01 − XAjk0 is nothing more than the difference
of a few fixed effects and many zero-mean random effects.
Specifically, it is a normal random variable with a mean and
variance given by

ΔA ¼ ðα1 þ ½τα�A1Þ − ðα0 þ ½τα�A0Þ;
varðXAjk 01 − XAjk0Þ ¼ σ2Ω þ σ2A;

(8)

where σ2Ω is the sum of the six variance components that do not
depend on modality [Eq. (3)] and σ2A is the sum of the six vari-
ance components that are specific to modality A [Eq. (4)].
Therefore, we can express the expected value of dAUCA analyti-
cally as

AUCA ¼ EðsAjkk 0 Þ ¼ PrðXAjk 01 − XAjk0 > 0Þ

¼ ΦðΔA∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Ω þ σ2A

q
Þ; (9)

where Φð·Þ is the cumulative distribution function of the stan-
dard normal distribution.

2.3 Variances and Covariances

Here, we turn our attention to variances and covariances. Both
appear in the variance of the difference of estimated reader-aver-
aged AUCs:

V ¼ varð dAUCA − dAUCBÞ
¼ varð dAUCAÞ þ varð dAUCBÞ − 2covð dAUCA; dAUCBÞ:

(10)

Table 1 Equivalences needed to replicate original R&M model with
the generalized R&M model.

Original
R&M Generalized R&M

σ2R ¼ σ2R0 ¼ σ2R1

σ2C ¼ σ2C0 ¼ σ2C1

σ2RC ¼ σ2RC0 ¼ σ2RC1

σ2τR ¼ σ2AR0 ¼ σ2BR0 ¼ σ2AR1 ¼ σ2BR1

σ2τC ¼ σ2AC0 ¼ σ2BC0 ¼ σ2AC1 ¼ σ2BC1

σ2ε ¼ σ2ARC0 ¼ σ2BRC0 ¼ σ2ARC1 ¼ σ2BRC1
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Without loss of generality, we first discuss the variance

of dAUCA. A similar discussion can be given for the variancedAUCB. We will then discuss the covariance of dAUCA anddAUCB.

2.3.1 Variance

The variance of a single modality can be decomposed into dif-
ferent representations. We shall use the success-moment repre-
sentation that can be derived using U-statistics;33 i.e.,

varð dAUCAÞ ¼ ctAMA; (11)

where cA is a vector of coefficients (see Table 2 for the coef-
ficients of the fully-crossed study design considered in this
paper) and MA is a vector of eight product moments (see
Table 3, every other row of column 1). Each element, ½MA�l
ðl ¼ 1;2; : : : ; 8Þ, is the expected value of the product of two suc-
cess observations from that modality. There are eight moments
because the two success observations may come from the same
or different readers (when reader subscripts match or not), the
same or different nondiseased cases (when the nondiseased case
subscripts match or not), and the same or different diseased
cases (when the diseased case subscripts match or not). To
see this clearly or to understand any of the discussion below,
it may be useful to write a success observation in terms of
the success function acting on a difference in ratings; recall
sAjkk 0 ¼ sðXAjk 01 − XAjk0Þ. Furthermore, it may even be neces-
sary to write out the difference in ratings in terms of the con-
stituent random effects.

The particular moment will be clear from the subscripts as,
from this point forward, we will not allow different subscripts to
take on the same value. The interpretation of each moment is
driven by the unique subscripts that appear. For example, in the
expression ½MA�1 ¼ EðsAjkk 0sAjkk 0 Þ we see that the subscripts
are identical on both success observations; therefore, the expres-
sion is the expected value for a randomly selected reader reading
a randomly selected diseased and nondiseased case. In contrast,
in the expression ½MA�8 ¼ EðsAjkk 0sAj 0k 0 0k 0 0 0 Þ we see that every
subscript on the first success observation is different from its

Table 2 Coefficients of the moments that are found in the variance,
Eq. (11) and in the covariance (Eq. 13). For the fully-crossed study
design considered in this paper, cA ¼ cB ¼ cAB.

½cA�1 ¼ 1
N0N1NR

½cA�5 ¼ ðNR−1Þ
N0N1NR

½cA�2 ¼ ðN0−1Þ
N0N1NR

½cA�6 ¼ ðN0−1ÞðNR−1Þ
N0N1NR

½cA�3 ¼ ðN1−1Þ
N0N1NR

½cA�7 ¼ ðN1−1ÞðNR−1Þ
N0N1NR

½cA�4 ¼ ðN0−1ÞðN1−1Þ
N0N1NR

½cA�8 ¼ ðN0−1ÞðN1−1ÞðNR−1Þ
N0N1NR

− 1

Table 3 Each constituent moment of varðAUCAÞ and covðAUCA;AUCBÞ calculated using the generalized R&M variance components. Each row is
an equation for the variances σ2Að·Þ and σ2Ωð·Þ that appear in Eq. (12) and (15). For example, in the row corresponding to ½MAB�5,
σ2Ωð5Þ ¼ σ2R0 þ σ2RC0 þ σ2R1 þ σ2RC1. Note that the generalized R&M variance components are organized in columns, leaving spaces when variance
components are not included.

Moments Variance components

½MA�1 ¼ EðsAjkk 0sAjkk 0 Þ∶ Special case, refer to the text

½MAB�1 ¼ EðsAjkk 0sBjkk 0 Þ∶ σ2Ωð1Þ ¼ 0

½MA�2 ¼ EðsAjkk 0sAjk 0 0k 0 Þ∶ σ2Að2Þ ¼ σ2AC0 þσ2ARC0

½MAB�2 ¼ EðsAjkk 0sBjk 0 0k 0 Þ∶ σ2Ωð2Þ ¼ σ2C0 þσ2RC0

½MA�3 ¼ EðsAjkk 0sAjkk 0 0 Þ∶ σ2Að3Þ ¼ σ2AC1 þσ2ARC1

½MAB�3 ¼ EðsAjkk 0sBjkk 0 0 Þ∶ σ2Ωð3Þ ¼ σ2C1 þσ2RC1

½MA�4 ¼ EðsAjkk 0sAjk 0 0k 0 0 0 Þ∶ σ2Að4Þ ¼ σ2AC0 þσ2ARC0 þσ2AC1 þσ2ARC1

½MAB�4 ¼ EðsAjkk 0sBjk 0 0k 0 0 0 Þ∶ σ2Ωð4Þ ¼ σ2C0 þσ2RC0 þσ2C1 þσ2RC1

½MA�5 ¼ EðsAjkk 0sAj 0kk 0 Þ∶ σ2Að5Þ ¼ σ2AR0 þσ2ARC0 þσ2AR1 þσ2ARC1

½MAB�5 ¼ EðsAjkk 0sBj 0kk 0 Þ∶ σ2Ωð5Þ ¼ σ2R0 þσ2RC0 þσ2R1 þσ2RC1

½MA�6 ¼ EðsAjkk 0sAj 0k 0 0k 0 Þ∶ σ2Að6Þ ¼ σ2AR0 þσ2AC0 þσ2ARC0 þσ2AR1 þσ2ARC1

½MAB�6 ¼ EðsAjkk 0sBj 0k 0 0k 0 Þ∶ σ2Ωð6Þ ¼ σ2R0 þσ2C0 þσ2RC0 þσ2R1 þσ2RC1

½MA�7 ¼ EðsAjkk 0sAj 0kk 0 0 Þ∶ σ2Að7Þ ¼ σ2AR0 þσ2ARC0 þσ2AR1 þσ2AC1 þσ2ARC1

½MAB�7 ¼ EðsAjkk 0sBj 0kk 0 0 Þ∶ σ2Ωð7Þ ¼ σ2R0 þσ2RC0 þσ2R1 þσ2C1 þσ2RC1

½MA�8 ¼ EðsAjkk 0sAj 0k 0 0k 0 0 0 Þ∶ Special case, refer to the text

½MAB�8 ¼ EðsAjkk 0sBj 0k 0 0k 0 0 0 Þ∶ Special case, refer to the text
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counterpart on the second success observation; therefore, the
expression is an expected value over a pair of randomly selected
readers (that are unique), reading randomly selected diseased
and nondiseased cases (that are all unique).

To derive the eight moments, we first treat two special cases,
then we discuss the rest. The two special cases are the examples
above: ½MA�1 and ½MA�8. In the first special case, the success
observations are identical and both are equal to one or zero
(ROC ratings from the generalized R&Mmodel are continuous);
consequently, their product equals one or zero. Therefore,
½MA�1 ¼ EðsAjkk 0 Þ ¼ AUCA. In the second special case, the
success observations are independent because they come
from different readers reading different nondiseased and dis-
eased cases. Therefore, the expected value can be factored
and ½MA�8 ¼ EðsAjkk 0 ÞEðsAj 0k 0 0k 0 0 0 Þ ¼ AUC2

A.
The remaining moments ofMA (moments 2 to 7) can be writ-

ten as

½MA�l ¼
Z

∞

−∞
Φ

0
B@ΔAþx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Ωþσ2A−σ2ΩðlÞ−σ2

AðlÞ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ΩðlÞ þσ2

AðlÞ
q

1
CA

2

ϕðxÞdx;

(12)

where expressions for the variances σ2ΩðlÞ and σ2
AðlÞ ðl ¼

2; : : : ; 7Þ are listed in alternate rows of Table 3, and ϕð·Þ is
the probability density function of the standard normal distribu-
tion. We point out that σ2Ω þ σ2A − σ2ΩðlÞ − σ2AðlÞ is the sum of the
variances of the random effects that are common to the two suc-
cess observations within each moment.

Given a fully-specified R&M model, we can compute the
moments above (and the moments corresponding to the variance

of dAUCB) using basic numerical integration methods. The der-
ivation of the expression above follows a common outline. We
exemplify the derivation for one of the moments in Appendix A.
Here is the outline:

1. Identify the random effects that are common to the two
success observations. These will be the effects corre-
sponding to shared subscripts.

2. Write the moment as the expected value of the product
of two conditional expected values, one for each suc-
cess observation. Each conditional expected value
assumes that the random effects found in Step 1 are
fixed.

3. Recognize that each conditional expected value equals
a probability that can be expressed in the form ΦðZÞ,
where Z is a normal random variable.

4. Integrate over the random variables that were initially
fixed in Step 1. This is a one-dimensional (1-D) inte-
gral of the product of two normal cumulative distribu-
tion functions and one normal probability distribution
function.

2.3.2 Covariance

The covariance of dAUCA and dAUCB can be decomposed into a
success-moment representation analogous to the variance;
namely,

covð dAUCA; dAUCBÞ ¼ ctABMAB; (13)

where cAB ¼ cA for the fully-crossed study design considered
in this paper (see Table 2) andMAB is a vector of eight moments
(see Table 3, every other row of column 1). Here, each moment
is the expected value of the product of one success observation
from modality A and another from B. For example,

½MAB�5 ¼ EðsAjkk 0sBj 0kk 0 Þ; (14)

where the two success observations come from different random
readers reading the same cases in different modalities.

There is only one special case this time: ½MAB�8. The success
observations for this moment are again independent because
they again come from different readers reading different cases.
Therefore, the expected value can be factored and ½MAB�8 ¼
EðsAjkk 0 ÞEðsBj 0k 0 0k 0 0 0 Þ ¼ AUCAAUCB.

The remaining moments of MAB (moments 1 to 7) can be
written as

½MAB�l ¼
Z

∞

−∞
Φ

0
B@ΔA þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Ω − σ2ΩðlÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2A þ σ2ΩðlÞ

q
1
CA

×Φ

0
B@ΔB þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Ω − σ2ΩðlÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2B þ σ2ΩðlÞ

q
1
CAϕðxÞdx; (15)

where the variances σ2ΩðlÞ are listed in every other row of Table 3.
We point out that σ2Ω − σ2ΩðlÞ is the sum of the variances of the
random effects that are common to the two success observations
within each moment.

Given a fully specified R&M model, we can compute the
moments above using basic numerical integration methods. The
derivation of the expression above follows the same common
outline as above. We illustrate the derivation for ½MAB�5 in
Appendix A.

2.4 Design of Simulation Studies

In this paper, we mimic the Monte Carlo (MC) simulation
experiments run by R&M; however, we modify their experi-
ments by perturbing the input variance components so that the
variance components of the ROC ratings depend on modality
and truth state. The purpose of the experiments here is to val-
idate the numerical calculations given above against simulated
results. Like R&M, we simulate data sets that are fully crossed:
all readers read all images in both modalities with no re-reading.
In what follows, we describe the original R&M simulations and
detail how the simulations in this paper are built on the original.

R&M set to zero the effect for nondiseased cases and all four
modality-truth interaction effects:

α0 ¼ ½τα�A0 ¼ ½τα�B0 ¼ ½τα�A1 ¼ ½τα�B1 ¼ 0: (16)

Consequently, the expected differences in ROC ratings for
both modalities are equal to the effect for diseased cases ðΔA ¼
ΔB ¼ α1Þ. R&M considered three levels of this effect; namely,
α1 ¼ 0.75, 1.50, and 2.50. These three levels ultimately control
the expected AUCs via Eqs. (8) and (9). Now, since the varian-
ces of the random effects did not depend on modality, they effec-
tively simulated a null-hypothesis experiment: AUCA ¼ AUCB.
The experiments in this paper will use the same values for the
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fixed effects. However, because we perturb some variance com-
ponents in order to generate ROC ratings that depend on modal-
ity and truth state (described below), AUCA will not equal
AUCB and they will both be different from the AUCs of the
original R&M simulation.

R&M investigated experiments with three or five readers and
case-sets that ranged from 50 to 400. They also explored ratios
of case mixes (nondiseased to diseased) of 1:1 and 9:1. We shall
only investigate experiments with five readers, 50 nondiseased
cases, and 50 diseased cases. We feel that limiting the investi-
gations related to the size of the experiment is appropriate since
the purpose here is more modest than the original purpose (val-
idating a hypothesis test).

R&M based their original simulation experiments on corre-
lation estimates found in actual ROC analyses using the
CORROC algorithm,34 which assumes an underlying bivariate
binormal distribution. They investigated high versus low data
correlation between and within readers (due to reading the same
cases) at both high and low values of total reader variability. We
explore a similar set of variance structures, but we perturb them
to get variance structures that are different across modality and
truth state. Specifically, we halve the variances of effects that
involve modality A and truth ¼ diseased, and we double the var-
iances of effects that involve modality B and truth ¼ diseased:

σ2AR1 ¼ σ2τR × 0.5; σ2AC1 ¼ σ2τC × 0.5; σ2ARC1 ¼ σ2τC × 0.5;
σ2BR1 ¼ σ2τR × 2.0; σ2BC1 ¼ σ2τC × 2.0; σ2BRC1 ¼ σ2τC × 2.0:

(17)

This perturbation causes σ2A to be different from σ2B, which
then causes AUCA to be different from AUCB [Eq. (9)].

In total, we explore two levels of between- and within-reader
data correlation, four levels of reader variability, and three levels
of performance in a factorial fashion for a total of 24 simulation
configurations. Details are provided in Appendix B that will
allow the interested reader to replicate our experiments.

3 Results

Figure 1 shows the variances and covariances of dAUCA anddAUCB (numerical results versus estimates) of the 24 simulation
experiments described above: 8 configurations × 3 performance
levels. The x-axis shows the variances by numerical integration.
The y-axis shows the MC estimates of variance given 1000 MC
trials. There is some variability along the line of equality due to
the relatively small number of MC trials. The absolute value of
the relative differences between the numerical results and the
estimates averaged over all 24 simulation configurations is
5.2%. For 100,000 MC trials, the averaged absolute value of
the relative differences is 0.5% and the variability along the
line of equality is not visible (not shown).

4 Conclusions
In this paper, we generalized the R&M model by allowing all of
its variance components to depend on both modality and truth
state. This will allow investigators to model and simulate
MRMC ROC studies that better fit their data. Additionally, we
presented and validated equations for computing the population
variances and covariances for empirical AUC estimates com-
puted from data simulated from the generalized R&M model.
These equations show the core relationships between the ROC
data and the reader-averaged AUCs. These equations and rela-
tionships should help investigators to validate new MRMC vari-
ance and covariance estimation methods, explore novel study
designs, size future trials, and model MRMC ROC data.

For the interested investigator, the first author has made
available a stand-alone Java application called iRoeMetz.
iRoeMetz and its source code can be found in Ref. 35.
iRoeMetz can simulate ROC studies according to the general-
ized R&M model and numerically calculate the expected
moments and variances found in this paper. Additionally, all the
original R&M simulation configurations and those used in this
paper can be downloaded and tested.

Future work is needed in this area, investigating real data sets
and calibrating the different possible R&M models of decision
scores to be consistent with real data estimates of AUC variance
components. To cover the full range, datasets that study different
anatomical locations and diseases, and different imaging modal-
ities (with and without computer aids as appropriate) are needed.
The results of such future work would provide investigators with
more information and examples to help them calibrate the R&M
model (or any other model) to their situation so that they can
appropriately size future reader studies. We are collecting data-
sets for this work for public sharing toward this goal; we wel-
come any and all contributions.

There are other interesting future efforts that could support
the need mentioned above. One direction of study could link the
success moments at the core of the work here to the parameters
of the Obuchowski and Rockette30 model for AUC observations.
Another direction of study could be to uncover the inverse map-
ping: given the parameters of the Obuchowski and Rockette
model for AUC observations, solve for the variance components
of the ROC ratings that are consistent with them. It is not cur-
rently known whether the solution is unique or if it can be
treated efficiently and effectively.

Appendix A
In this appendix, we derive one of the product moments, ½MAB�5,
that enters into the computation of the covariance betweendAUCA and dAUCB via Eq. (13). Adapting the results to the

Variances and covariances of AUCs, 1000 Monte Carlo trials
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Fig. 1 The variances and covariances (estimates versus numerical
results) of the 24 generalized R&M simulation configurations
described in the text. The estimates are described in the text. The
results here are for 1000 Monte Carlo (MC) trials. Differences con-
verge as the number of MC trials increases.
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other moments that are required for computing the variance ofdAUCA and the variance of dAUCB is straightforward.
Although the generalized R&M model has many parameters

and the variances and the covariance of the reader-averaged
AUCs are fairly complex, all of the success moments are derived
the same way and the results have a common form. The deri-
vations follow a common outline. The results are straightfor-
ward 1-D integrals involving the normal distribution that can
be calculated using basic numerical integration methods. We
illustrate the derivation for ½MAB�5.

Here is the derivation outline:

1. Identify the random effects that are common to the two
success observations. These will be the effects corre-
sponding to shared subscripts.

2. Write the moment as the expected value of the product
of two conditional expected values, one for each suc-
cess observation. Each conditional expected value
assumes that the random effects found in Step 1 are
fixed.

3. Recognize that each conditional expected value equals
a probability that can be expressed in the form ΦðZÞ,
where Z is a normal random variable equal to a differ-
ence in ROC ratings with the random effects found in
Step 1 temporarily fixed.

4. Integrate over the random variables that were initially
fixed in Step 1. This is a 1-D integral of the product of
two normal cumulative distribution functions and one
normal probability distribution function.

Step 1: The fifth product moment is

½MAB�5 ¼ EðsAjkk 0sBj 0kk 0 Þ
¼ E½sðXAjk 01 − XAjk0ÞsðXBj 0k 01 − XBj 0k0Þ�: (18)

The random effects that are common to both success functions
are the ones that do not depend on reader or modality:
½Cα�k 01; ½Cα�k0. Note that these random effects are the effects
corresponding to shared subscripts. This can be seen if we
write out the differences in ROC ratings in terms of the constitu-
ent random effects.

Step 2: Here, we first write the moment as the expected value
of a conditional expected value, where the random effects found
in Step 1 are fixed; namely,

½̱MAB�5 ¼ E½EðsAjkk 0sBj 0kk 0 j½Cα�k 01; ½Cα�k0Þ� (19)

With the common random effects fixed, sAjkk 0 is independent of
sBj 0kk 0 . Therefore, we can factor the conditional expected value
to obtain

½̱MAB�5 ¼ E½EðsAjkk 0 j½Cα�k 01; ½Cα�k0Þ
× EðsBj 0kk 0 j × ½Cα�k 01; ½Cα�k0Þ�: (20)

Step 3: In the expected value concerning modality A, the
argument of the success function is a normal random variable
Z with mean and conditional variance given by

μZ ¼ ΔA þ ½Cα�k 01 − ½Cα�k0; (21)

σ2Z ¼ σ2R0 þ σ2RC0 þ σ2R1 þ σ2RC1 þ σ2AR0 þ σ2AC0

þ σ2ARC0 þ σ2AR1 þ σ2AC1 þ σ2ARC1: (22)

Using the definitions given in Eq. (4) and Table 3, we see that
σ2Z ¼ σ2A þ σ2Ωð5Þ. We have a similar result for the argument of
the success function in the expected value concerning modality
B. Since the argument to each conditional expected value is a
normal random variable, we can write

½̱MAB�5 ¼ E

2
64Φ

0
B@ΔA þ ½Cα�k 01 − ½Cα�k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2A þ σ2Ωð5Þ
q

1
CA

×Φ

0
B@ΔB þ ½Cα�k 01 − ½Cα�k0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2B þ σ2Ωð5Þ
q

1
CA
3
75: (23)

Step 4: Last, we see that the only randomness that remains
above is the difference ½Cα�k 01 − ½Cα�k0. This difference is a nor-
mal random variable Y ¼ ½Cα�k 01 − ½Cα�k0 with mean zero and
variance σ2Ω − σ2Ωð5Þ ¼ σ2C0 þ σ2C1. After a change

of variables, X ¼ Y∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Ω − σ2Ωð5Þ

q
we can effectively integrate

over the random variables that were initially fixed,
½Cα�k 01; ½Cα�k0, with the following:

½MAB�5 ¼
Z

∞

−∞
Φ

0
B@ΔA þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Ω − σ2Ωð5Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2A þ σ2Ωð5Þ

q
1
CA

×Φ

0
B@ΔB þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Ω − σ2Ωð5Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2B þ σ2Ωð5Þ

q
1
CAϕðxÞdx: (24)

This last expression can be calculated using basic numerical
integration methods. In our software, we simply sample the
1-D integral at 256 points on the interval (−10; 10) and use
the midpoint rule (rectangle rule).

Appendix B
Here, we document the simulation configurations used in this
paper. We start by defining original R&M variance components.
We then map them to generalized R&M variance components
(Table 1). Finally, we perturb them to get variance structures
that are different across modality and truth state.

The simulation configurations in this paper explore the fol-
lowing settings in a factorial fashion for 5 readers, 50 nondi-
seased cases, and 50 diseased cases:

• Two levels of between- and within-reader data correlation:

HighρBR∶ σ2C ¼ 0.3 σ2τC ¼ 0.3 σ2RC ¼ 0.2 σ2τRC ¼ 0.2

LowρBR∶ σ2C ¼ 0.1 σ2τC ¼ 0.1 σ2RC ¼ 0.2 σ2τRC ¼ 0.6

• Four levels of reader variability: σ2R ¼ σ2τR ¼ 0.0055,
0.011, 0.030, and 0.056.

• Three levels of performance: ΔA ¼ ΔB ¼ α1 ¼ 0.75,
1.50, and 2.5.
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Let us consider the simulation with the high between- and
within-reader data correlation and the lowest reader variability.
After mapping and perturbing, the generalized R&M variance
components are

σ2R0 ¼ 0.0055; σ2C0 ¼ 0.3; σ2RC0 ¼ 0.2;
σ2R1 ¼ 0.00550; σ2C1 ¼ 0.30; σ2RC1 ¼ 0.2;

σ2AR0 ¼ 0.0055; σ2AC0 ¼ 0.3; σ2ARC0 ¼ 0.2;
σ2AR1 ¼ 0.00275; σ2AC1 ¼ 0.15; σ2ARC1 ¼ 0.1;
σ2BR0 ¼ 0.0055; σ2BC0 ¼ 0.3; σ2BRC0 ¼ 0.2;
σ2BR1 ¼ 0.01100; σ2BC1 ¼ 0.60; σ2BRC1 ¼ 0.4:

This variance structure used with the lowest level of perfor-
mance ðΔA ¼ ΔB ¼ α1 ¼ 0.75Þ leads to the following expect-
ations of performance and uncertainty for 5 readers, 50
nondiseased cases, and 50 diseased cases:

AUCA ¼ 0.714;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð dAUCAÞ

q
¼ 0.044;

AUCB ¼ 0.681;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð dAUCBÞ

q
¼ 0.035;

AUCA −AUCB ¼ 0.032;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð dAUCA − dAUCBÞ

q
¼ 0.047:
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