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Abstract. Recent advances in the field of radiomics have enabled the development of a number of prognostic
and predictive imaging-based tools for a variety of diseases. However, wider clinical adoption of these tools is
contingent on their generalizability across multiple sites and scanners. This may be particularly relevant in the
context of radiomic features derived from T1- or T2-weighted magnetic resonance images (MRIs), where signal
intensity values are known to lack tissue-specific meaning and vary based on differing acquisition protocols
between institutions. We present the first empirical study of benchmarking five different radiomic feature families
in terms of both reproducibility and discriminability in a multisite setting, specifically, for identifying prostate
tumors in the peripheral zone on MRI. Our cohort comprised 147 patient T2-weighted MRI datasets from
four different sites, all of which are first preprocessed to correct for acquisition-related artifacts such as bias
field, differing voxel resolutions, and intensity drift (nonstandardness). About 406 three-dimensional voxel-
wise radiomic features from five different families (gray, Haralick, gradient, Laws, and Gabor) were evaluated
in a cross-site setting to determine (a) how reproducible they are within a relatively homogeneous nontumor
tissue region and (b) how well they could discriminate tumor regions from nontumor regions. Our results
demonstrate that a majority of the popular Haralick features are reproducible in over 99% of all cross-site com-
parisons, as well as achieve excellent cross-site discriminability (classification accuracy of ≈0.8). By contrast,
a majority of Laws features are highly variable across sites (reproducible in <75% of all cross-site comparisons)
as well as resulting in low cross-site classifier accuracies (<0.6), likely due to a large number of noisy filter
responses that can be extracted. These trends suggest that only a subset of radiomic features and associated
parameters may be both reproducible and discriminable enough for use within machine learning classifier
schemes. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.6.2.024502]
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1 Introduction
The extraction of quantitative descriptors of image intensity,
appearance, shape, gradient, structure, and texture (termed
radiomics) from medical imaging1,2 has enabled the develop-
ment of machine learning tools for disease detection,2 charac-
terization,3 outcome prediction,4 and prognosis.5 While there
is an increasing interest in using radiomic tools in a clinical set-
ting, this is contingent on benchmarking these features in terms
of (a) reproducibility (i.e., numeric consistency and variability
of radiomic feature values associated with a specific tissue
region) and (b) discriminability (how well radiomic features
can distinguish pathologically different tissue regions) across
a variety of clinically acquired images. This may be especially
relevant when utilizing imaging data [magnetic resonance image
(MRI), computed tomography (CT), and positron-emission
tomography (PET)] from multiple different institutions, each
of which may utilize different scanners as well as potentially
different sequences and acquisition parameters.

Radiomic features (quantified as responses to texture and
wavelet operators, such as gray, Haralick,6 gradient,7 Laws,8

and Gabor9) have primarily been evaluated in terms of how
well they differentiate between tumor and nontumor regions
on imaging.10–12 The reproducibility of these feature families
has primarily been evaluated through well-controlled single-
site studies in the context of CT imaging, where a majority
of radiomic features did demonstrate consistency across
scanners13 and acquisition settings.14 However, these findings
have not generalized to similar single-site studies of radiomic
features derived from MRI.12,15,16 This may be because most
previous work has primarily focused on feature reproducibility
within a defined tumor region. However, radiomic features are
known to be sensitive to subtle pathological differences in
tumor phenotype (grade and aggressiveness17). Therefore, when
assessing radiomic feature performance, one may need to con-
sider both normal (or nontumor) regions and diseased regions
on MRI, in order to benchmark feature performance in a more
controlled fashion across different sites and scanners.
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The performance of radiomic features on MRI is also
dependent on common sources of acquisition variance between
sites, including voxel resolutions, image reconstruction methods,
magnetic field strengths, scanner hardware, and sequence
parameters (echo times, repetition times, and slice thicknesses),
as well as acquisition artifacts, such as bias field,18 noise,19 and
intensity drift.20 When benchmarking radiomic features on MRI,
it may thus be critical to first account for these sources of vari-
ance between different sites and scanners. To our knowledge,
benchmarking of commonly used radiomic features on MRI to
determine their reproducibility or discriminability has not been
widely attempted, especially in a multisite setting. It is, thus,
also unknown which specific classes and parameters of radiomic
features offer optimal performance in a multisite setting.

In this paper, we present the first detailed study of both
reproducibility and discriminability of five different radiomic
feature families in a multisite setting, using clinical prostate
T2-weighted (T2w) MRIs. After correcting for known MR
acquisition-related artifacts, we evaluated the reproducibility
of over 400 radiomic features within a pathologically defined
“nontumor” region in the peripheral zone (PZ) of the prostate.
Two different measures of feature reproducibility have been uti-
lized: (1) multivariate coefficient of variation21 (CV) to evaluate
the overall dispersion (or relative variability) of radiomic feature
distributions across sites, and (2) instability score22 (IS) to
quantify the overlap in radiomic feature distributions between
sites. Radiomic feature discriminability was evaluated via the
receiver-operator characteristic (ROC) analysis of a quadratic
discriminate analysis (QDA) classifier in distinguishing between

nontumor and tumor regions within the prostatic PZ, in a multi-
site experiment. The specific questions we posed are as follows:
(a) What are the cross-site reproducibility and discriminability
characteristics of different radiomic features and feature fami-
lies? (b) Which radiomic feature parameters result in the best
trade-off between reproducibility and discriminability? The
answers to these questions could help us understand the basis
for why certain radiomic features or feature families generalize
or discriminate better than others in a multisite setting. Further,
evaluating the performance of individual radiomic operators
may also help provide an intuition for benchmarking differences
between radiomic feature families.

The rest of the paper is organized as follows: we next
describe the overall experimental design of this work (illustrated
in Fig. 1), including the data, preprocessing, and feature extrac-
tion, as well as the experimental methodology for evaluating
cross-site radiomic feature reproducibility and discriminability.
Finally, our experimental results for multisite benchmarking of
different radiomic feature families are presented and discussed,
followed by the concluding remarks.

2 Experimental Design

2.1 Data Description

This Institutional Review Board-approved retrospective study
utilized 147 T2w prostate MRI datasets from four different
institutions. This study was limited to using T2w acquisitions
as these are routinely used in prostate radiomic analysis23

Fig. 1 Overview of the experimental workflow. The upper row shows the preprocessing steps applied to
each MRI dataset. The lower row shows experimental benchmarking of radiomic features in terms of
multisite reproducibility and discriminability. The table under reproducibility shows all the cross-site
pairings used to calculate the two different reproducibility measures. The tables under discriminability
show four training and testing set used to calculate the cross-site discriminability measure, with the
red box corresponding to the held-out testing site in each run.

Journal of Medical Imaging 024502-2 Apr–Jun 2019 • Vol. 6(2)

Chirra et al.: Multisite evaluation of radiomic feature reproducibility and discriminability for identifying peripheral. . .



(due to offering excellent structural detail and contrast), as well
as being most commonly available from all four sites. Each MRI
dataset had been acquired preoperatively using an endorectal
coil on a three Tesla MRI scanner. The included patients
from each institution had confirmed prostate cancer and an
evaluation of their prostate-specific antigen levels and biopsy
reports resulted in them undergoing a radical prostatectomy.
In the absence of additional clinical markers, this inclusion
criterion was to ensure that the patient populations at each site
had undergone clinically comparable management and thus
may be expected to have similar tumor phenotypes.

T2w MRI data from each patient was acquired as a series of
DICOM images, which were directly saved from the scanner
(acquisition parameters summarized in Table 1). Datasets
from each site were then annotated for tumor extent in the
PZ (based on available pathology sections and reports), the
outer boundaries of the PZ and central gland (CG), as well
as the prostate capsule. Each site was annotated by a different
radiologist and no inter-reader analysis was available.

2.2 Correction of T2w MRI to Account for Intensity
Artifacts and Resolution Differences

All MRI datasets were first processed to minimize three
known sources of noise and variance in MRIs: bias field,18

differing voxel resolutions (see Table 1), and intensity
nonstandardness.20,24 These artifacts were accounted for by
sequentially applying bias field correction, resampling, and
intensity standardization. Correcting bias field prior to intensity
standardization was based on findings in previous work.25

Resampling was performed after bias field correction (and
prior to standardization) to ensure that intensity variations
were not propagated through the volume. Figure 2 depicts a rep-
resentative two-dimensional (2-D) patient image from each site,
both prior to and after all three correction procedures had been
applied. Expert annotations for tumor (red), CG (green), and
capsule (blue) are also visualized in Figs. 2(b), 2(e), 2(h),
and 2(k). With the exception of annotations all prepossessing
steps as well as feature extraction and analysis was performed
using MATLAB2016b.

1. Bias field correction: This was performed to compen-
sate for inhomogeneity artifacts across the T2w MRI
volume due to the use of an endorectal coil during
acquisition. This manifested as a nonuniform intensity
appearance across the MRI [which can be seen in
Figs. 2(a), 2(g), and 2(j)]. For site S1, low-pass bias

filtering26 was applied, whereas for sites S3 and S4,
the N4ITK method27 was utilized to correct this arti-
fact. The site S2 was found to have been bias field
corrected on the scanner, and thus no additional bias
correction was applied.

2. Resampling: Datasets were isotropically resampled in
all three dimensions via linear interpolation to ensure
consistent voxel sizes and resolutions across all the
sites and patients. In addition, this enabled the use of
“true” 3-D radiomic feature extraction in subsequent
steps. The resulting voxel dimensions of each of the
147 T2w MRI datasets were 0.27 × 0.27 × 0.27 mm.
All expert annotations were similarly resampled to
ensure that they remained in correspondence with
T2w MRI volumes.

3. Intensity standardization: T2w MR signal intensities
have been shown to lack tissue-specific meaning
between patients, sites, and acquisition protocols.
Landmark-based histogram transformation20 was
used to align T2w signal intensity distributions across
all patient datasets. Five patients from S1 were
selected at random to generate a template distribution.
Distributions for all patient volumes from all four sites
were then nonlinearly mapped to the template distri-
bution, using deciles as landmarks on both target and
template distributions. As a result, distributions for all
patient datasets were brought into alignment, thus
ensuring that the signal intensities were in tissue-
specific correspondence.

2.3 Tumor and Nontumor Region of Interest
Selection

Resampled annotations were utilized to select the nontumor
region of interest (ROI) for every patient volume as follows:
first, all tumor annotations per 2-D section in each dataset
were selected and dilated by 1.89 mm (≈7 pixels). This region
was then removed from the annotated PZ region and the
remaining largest contiguous region was then extracted to
be used as the nontumor ROI. Similarly, the largest contiguous
annotated tumor region within the PZ on each 2-D section
was used as the tumor ROI. These are visualized as red
(tumor) and yellow (nontumor) outlines in Figs. 2(c), 2(f),
2(i), and 2(l).

2.4 Radiomic Feature Extraction

Previous studies have widely demonstrated that prostate appear-
ance within the PZ can be modeled using image texture
features.11,28 A total of 406 radiomic features from across five
different families were extracted on a per-voxel basis from each
T2w MRI dataset (see Table 2). Features were extracted in 3-D
from the entire T2w MRI volume, following which the mean
value of each feature was calculated over all the voxels
within each of the tumor and nontumor ROIs. We denote
the resulting average radiomic feature value for a given ROI
c as fiðcÞ; i ∈ f1; : : : ; 406g. For each site Sk; k ∈ f1; : : : ; 4g,
and for all ROIs (both tumor and nontumor)
c ∈ Sk; k ∈ f1; : : : ; 4g, the radiomic feature vectors are denoted
as F̄iðkÞ ¼ ½fiðcÞj∀c ∈ Sk�.

Table 1 Summary of multisite prostate 3T T2w MRI data, as
originally acquired from each institution.

Site
[x; y; z] voxel

dimensions (mm) Manufacturer TR/TE(ms)
Number of
datasets

S1 [0.27, 0.27, 2.20] GE Medical 4216-8266/
155-165

15

S2 [0.41, 0.41, 3.00] Siemens 2840-7500/
107-135

11

S3 [0.27, 0.27, 3.00] Philips 4754/115 56

S4 [0.36, 0.36, 2.97] Siemens 4000/120-122 65
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2.5 Feature Normalization

Feature normalization was applied to ensure that radiomic
features extracted from different sites lie within a comparable
range of values. For each site Sk, each feature vector F̄iðkÞ is
normalized as

EQ-TARGET;temp:intralink-;e001;326;230FiðkÞ ¼
F̄iðkÞ − μiðkÞ

σiðkÞ
; (1)

where μiðkÞ is the mean and σiðkÞ is the mean absolute deviation
(MAD) of F̄iðkÞ (over all the samples c ∈ Sk; k ∈ f1; : : : ; 4g).
This process was repeated for each site S1;: : : ;4 individually so
that all features within a site have a mean of 0 and a MAD of 1.
Then, for each site Sk; k ∈ f1; : : : ; 4g, we denote the normalized
radiomic feature vectors for tumor ROIs ct ∈ Sk as Ft

iðkÞ, and
for nontumor ROIs cb ∈ Sk as Fb

i ðkÞ; i ∈ f1; : : : ; 406g.

2.6 Generation of Bootstrapped Subsets

To ensure more robust estimation of the evaluation measures
used in this study, bootstrapping was utilized as follows. For

Table 2 Summary of 3-D radiomic features and associated param-
eters extracted from each T2w MRI dataset.

Feature
type Parameters

Window sizes
(WS)

Total
number

Gray Mean, median,
variance, range

3, 5, 7, 9, 11 20

Haralick Co-occurrence features for
entropy, homogeneity,

contrast, etc.

3, 5, 7, 9, 11 60

Gradient Sobel, Kirsch,
gradient operators in
X , Y , Z directions

— 13

Laws Edge (E), ripple (R),
spot (S), level (L),
wave (W) operators

3, 5 152

Gabor XY and XZ orientations
(θXY ; θXZ )

3, 5, 7, 9, 11 160

Fig. 2 Results of annotating and correcting representative T2wMRI datasets, each row corresponding to
a different site. (a), (d), (g), and (j) Original field-of-view prostate T2wMRIs. (b), (e), (h), and (k) Same 2-D
MRIs after bias field correction, resampling, and intensity standardization, but cropped to around the
prostate capsule alone. Note the relatively uniform appearance of the image. Also shown are the expert
annotations for the prostate capsule (in blue) and the central gland (in green). (c), (f), (i), and (l) Expert-
annotated tumor region in red and the “nontumor” region in yellow are shown for each of these images.
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each site Sk, k ∈ f1; : : : ; 4g, N ¼ 100 bootstrapped subsets
were generated. Each bootstrapped subset, sk;n; n ∈ f1; : : : ; Ng,
comprised 75% of the samples from each site Sk. The associated
radiomic feature vectors for each subset sk;n are denoted as
Fb
i ðk; nÞ (for nontumor ROIs) and Ft

iðk; nÞ (for tumor ROIs),
i ∈ f1; : : : ; 406g.

2.7 Quantifying Cross-Site Reproducibility

The two different reproducibility measures utilized were multi-
variate coefficient of variation (denoted CV) and instability
(denoted IS). These measures were chosen as quantifying
different aspects of feature reproducibility. The CV considered
features with a large standard deviation across sites as being
poorly reproducible, whereas IS considered features with dis-
similar distributions across sites as exhibiting poor reproduc-
ibility. Both measures were only evaluated within nontumor
regions to remove any potential confounding factors introduced
by tumor region heterogeneity.

Multivariate CV: The ratio of the standard deviation to
the population mean is known as the CV.29 A multivariate
extension21 of this measure (denoted CV) is utilized to assess
the variability of radiomic feature between sites, where a lower
value indicates a better cross-site reproducibility. For instance,
given sites S1 and S2 with radiomic feature vectors Fb

i ð1Þ and
Fb
i ð2Þ (corresponding to nontumor ROIs), the mean vector is

defined as μ̄1;2 ¼ ½μ1; μ2� [where μ1 and μ2 correspond to the
means of Fb

i ð1Þ and Fb
i ð2Þ], and the covariance matrix is denoted

as Σ1;2. Then, for every i ∈ f1; : : : ; 406g

EQ-TARGET;temp:intralink-;e002;63;431CVið1;2Þ ¼
�ðμ̄T1;2 � Σ1;2 � μ̄1;2Þ

ðμ̄T1;2 � μ̄1;2Þ2
�
1∕2

: (2)

Instability: We have utilized preparation-induced instability
(denoted IS), as previously presented by Leo et al.,22 for multi-
site comparison of histomorphometric features from pathology
data. For example, for a pair of sites S1 and S2 with correspond-
ing feature vectors Fb

i ð1Þ and Fb
i ð2Þ, IS is computed as the per-

centage of bootstrapped pairwise comparisons in which Fb
i ð1Þ is

different from Fb
i ð2Þ ∀i ∈ f1; : : : ; 406g. Further algorithmic

details for the implementation of IS are provided in the original
paper.22 The IS has the benefit of being more directly interpret-
able than CV. For example, if ISi ¼ 0.1, this indicates Fb

i ð1Þ
and Fb

i ð2Þ are significantly different in 10% of cross-site com-
parisons (i.e., they are reproducible 90% of the time). Features
with an IS closer to 1 are considered to be more unstable (and
hence less reproducible).

Bootstrapped computation of CV and IS: For a given pair
of sites Sp; Sq, consider the bootstrapped subsets sp;n and sq;n,
n ∈ f1; : : : ; Ng. The corresponding radiomic feature vectors
are denoted as Fb

i ðp; nÞ (associated with all nontumor
ROIs cb ∈ sp;n) and Fb

i ðq; nÞ (associated with cb ∈ sq;n),
i ∈ f1; : : : ; 406g. The CVi;n is computed for each pairwise
comparison of Fb

i ðp; nÞ and Fb
i ðq; nÞ, ∀n ∈ f1; : : : ; Ng. As

there are six unique pairs of sites and N ¼ 100 subsets, there
are 600 comparisons for each feature. The cumulative CV for
each feature is calculated as the average of all 600 comparisons.

Instability was calculated as a single value for each pair of
sites, where the bootstrapped subsets sk;n; n ∈ f1; : : : ; Ng were
utilized for pairwise comparison between sites. The cumulative

IS for each feature was computed as the average of six values
(one for each unique pair of sites).

2.8 Quantifying Cross-Site Discriminability

A QDA classifier30 was trained to distinguish between tumor
and nontumor ROIs, using each radiomic feature individually.
The choice of classifier was based on the fact that single features
were being evaluated in all experiments and because simpler
classifiers may provide a more direct evaluation of a feature’s
discriminatory performance. The area under the ROC curve
(denoted AUC) was used to quantify classifier performance,
where an AUC ¼ 1 implied perfect classification, whereas an
AUC ¼ 0.5 implied random guessing.10

Bootstrapped computation of AUC: AUC was calculated
in a hold-one-site-out fashion, in order to determine the effect
of utilizing different sites for training the classifier. Thus, when
S1 is the testing cohort, the corresponding training cohort com-
prised data from fS2; S3; S4g. This was repeated four times so
that each of the four sites S1; : : : ; S4 in turn is considered to be
the testing cohort once.

Bootstrapping was integrated into this process as follows.
Consider when fS2; S3; S4g formed the training cohort and
S1 was the testing cohort. For each bootstrap iteration
n; n ∈ f1; : : : ; Ng, tumor and nontumor ROIs from the training
subsets sq;n; q ∈ f2;3; 4g were used to train a QDA classifier
hið1; nÞ, for each radiomic feature i ∈ f1; : : : ; 406g. The
hið1; nÞ was then evaluated on samples in s1;n (from the testing
cohort S1) to compute AUCi;n. This was repeated for each of the
four possible testing cohorts and for each of N ¼ 100 subsets so
that the cumulative AUC for each feature was calculated as the
average of 400 values.

2.9 Experimental Evaluation

As most existing studies have focused on intrasite reproduc-
ibility or discriminability,15 the following experiments were
constructed to assess cross-site trends in radiomic feature
performance. To gain further insight into the optimal choice
of radiomic features and associated parameters in a cross-site
setting, the trade-off between complementary measures of
reproducibility and discriminability was also examined. All
processing, feature extraction, and analyses were performed
using MATLAB2017a (The MathWorks, Inc., Natick,
Massachusetts).

2.9.1 Experiment 1: cross-site reproducibility and
discriminability of radiomic feature families

Radiomic features were ranked and evaluated in terms of each
CV, IS, and AUC. Cumulative bar plots for each measure were
visualized as follows. First, the range of each measure was di-
vided into four bins. The proportion of features from each fea-
ture family that fell into each bin was then cumulatively plotted.
This yielded a single bar per bin, comprising different colors for
different feature families. A complementary set of bar plots were
also visualized to show the percentage of total features found
within each of the four bins. In addition, box-and-whisker
plots were generated for each measure on a per-family basis
to facilitate a direct comparison of trends across radiomic feature
families.
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2.9.2 Experiment 2: relationship between cross-site
reproducibility and discriminability and
radiomic feature parameters

To determine which features were both discriminable and repro-
ducible, scatter plots of AUC versus IS and AUC versus CV
were generated. Each point in the scatter plot was an individual
radiomic feature with a unique color assigned for each feature
family. Based on the trade-off between different evaluation mea-
sures, relevant “feature clusters” were identified, such as groups
of features that were most reproducible (lowCV or IS) as well as
most discriminative (high AUC) across sites. Such clusters were
further evaluated to determine any common parameters or win-
dow sizes that can be linked to their benchmarked performance.

3 Results

3.1 Experiment 1: Radiomic Feature Family Trends
in Cross-Site Reproducibility and Discriminability

Figure 3 illustrates the performance of different radiomic feature
families via cumulative bar plots in terms of each IS, CV, and
AUC, and Fig. 4 similarly depicts this performance via box-and-
whisker plots for each evaluation measure.

The gray features primarily had cross-site IS scores of under
0.2 with a median IS ¼ 0.1 [Figs. 3(a) and 4(a)]. This suggests
that the gray feature family is relatively stable, demonstrating
cross-site reproducibility of at least 80% across all comparisons.
As revealed by Figs. 3(b)–3(c) and Figs. 4(b)–4(c), the median
performance of the gray feature family is among the best in
terms of CV as well as AUC, albeit with a fair amount of
variance.

The Haralick feature family comprises the majority of fea-
tures with an IS ¼ 0 [Figs. 3(a)–3(d)] with an upper bound
of IS < 0.01 [Fig. 4(a)]. In other words, most Haralick features
are reproducible in >99% of all cross-site comparisons. Based
on the box-and-whisker plots in Figs. 4(a)–4(c), the Haralick
feature family had the lowest median IS, as well as the
second-lowest median CV and AUC values (only marginally
worse than gray features).

The gradient features perform comparably to the Haralick
feature family in terms of IS [Fig. 3(a)], indicating that they
are relatively reproducible across all sites. However, the gradient
feature family exhibits the worst median performance for
CV across all feature families, appearing primarily within the
bottom 50% of features [Fig. 3(b)] as well as the second worst
performance in terms of AUC [Fig. 4(b)].

Fig. 3 Cumulative bar plots depicting the proportion of radiomic features that lie within specified bins for
(a) and (d) IS, (b) and (e) CV , and (c) and (f) AUC. Bins in each plot are chosen to roughly correspond to
0 to 15th percentile, 16 to 50th percentiles, 51 to 85th percentiles, and 86 to 100th percentiles of per-
formance for each measure. Note that the X -axis of CV (b) comprises percentiles as this measure is not
bounded, unlike IS (a) and AUC (c), which are bounded and thus comprise the original values. The top
row of bar plots (a)–(c) shows the proportion of each radiomic feature family (in different colors) that lies
within each bin. The bottom row of bar plots (d)–(f) shows the percentage of the total number of features
found within each bin.
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The Laws features are among the worst performing in term of
IS, CV, and AUC [Figs. 3(a)–3(c)]. It is the only feature family
that consistently appears in the lowest ranked bin across all
three measures, as well as exhibits a large range in performance
[seen in Figs. 4(a)–4(c)]. As shown in Figs. 4(d)–4(f), this
means that Laws features comprise the majority of the bottom
10% to 15% of all features in each measure.

The Gabor feature family demonstrates performance similar
to that of Haralick features. It is second-ranked in terms of
IS [together with gray features, Figs. 3(a) and 4(b)] and
comprises the majority of the top 15% of features in terms of
CV [Figs. 3(b) and 3(e)] and AUC [Figs. 3(c) and 3(f)].

3.2 Experiment 2: Relationship between Cross-Site
Reproducibility and Discriminability

Figure 5(a) depicts the scatter plot for AUC versus IS, based on
which five distinctive “feature clusters” can be identified (high-
lighted via boxes, denoted as A–E). Similarly, Fig. 5(b) depicts
a scatter plot for AUC versus lnðCVÞ (natural log used to ensure
scaled visualization), within which three feature clusters have
been denoted as F–H. A comprehensive list of all features in
each of these clusters is provided in the Appendix Table 3.

Cluster A [yellow, upper left, Fig. 5(a)] comprises the best-
performing Gabor features, all of which have a θXZ of 0 and
were primarily extracted at window sizes of 7, 9, and 11. This
set of features also appears in cluster F [yellow, upper left,
Fig. 5(b)]. Cluster B [AUC ¼ 0.75 − 0.82, IS ¼ 0.15 − 0.2,
Fig. 5(a)] also comprises Gabor features but with a θXZ
greater than 0. While the Gabor features in clusters A and F
are in-plane 2-D responses, cluster B corresponds to cross-plane
3-D responses. Cluster C [green, IS ¼ 0 − 0.01, Fig. 5(a)]
comprises Haralick features with AUC ¼ 0.79 − 0.83, all of
which are either inertia- or entropy-based features extracted
at different window sizes. In Fig. 5(b), this group of Haralick
features appears to have been split into clusters G (green,

CV ¼ 1.65 − 1.85) and H (green, CV ¼ 1.86 − 2.60) based
on differences in cross-site reproducibility. The marginally
more reproducible features in cluster G correspond to entropy
features extracted at larger window sizes (9 and 11). Clusters
D (pink, IS ¼ 0) and E (pink, IS ¼ 0.5) comprise Laws features
that have opposing trends in cross-site reproducibility but per-
form equally poorly in terms of cross-site discriminability
(AUC ¼ 0.45 − 0.65).

4 Discussion
Our overall experimental objective in this work was to provide
insight into how radiomic features generalized across different
sites in terms of specific benchmarking measures. In addition,
we tried to determine how similar or different these bench-
marking trends were within each radiomic feature family (i.e.,
features that share a common formulation) as well as across
parameter choices.

We hypothesize that the excellent performance of the gray
feature family observed in experiment 1 may be due to the
extensive preprocessing applied to the MRIs. As this radiomic
feature family is the most directly dependent on the underlying
MR signal intensity values, it is also likely to be most affected
by correcting the major sources of noise and variance on T2w
MRI. Incidentally, similar findings on gray features have also
been reported in the context of lung PET imaging.31,32

Our findings that Haralick features were associated with the
excellent performance in IS and CV mirror the findings by Zhao
et al.14 on radiomic features derived from CT, who reported that
Haralick features were resilient to variance in slice thickness and
image reconstruction. However, when analyzing radiomic fea-
ture reproducibility on ADC MRI, Brynolfsson et al.33 reported
that Haralick features varied as a function of image noise,
resolution, and intensity range. Our contrasting results in the
current study may be due to our extensive preprocessing of
T2w MRI to specifically correct the major sources of noise.

Fig. 4 Box-and-whisker plots illustrating overall trends for each feature family (along the X -axis), in terms
of (a) IS, (b) CV , and (c) AUC. Note that the red line in the middle of each box reflects the median value,
and the box is bounded by 25th and 75th percentiles. The whisker plot extends to the minimum and
maximum values (obtained across all features) outside the box and outliers are denoted via the red
plus symbol.
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A majority of the Haralick features in cluster C [Fig. 5(a)] are
entropy- or inertia-based and parallels the work of Molina
et al.16 who reported that entropy-based features were relatively
resilient to changes in dynamic range and resolution in brain
MRIs. Inertia (sum-var, diff-var, sum-av, and diff-av) quantifies
the probability of two pixels within a neighborhood either sum-
ming or subtracting to specific values, thus, computing the con-
trast in terms of MR intensity co-occurrences.30 Subtle variance
in image contrast is a well-known hallmark of prostate cancer
appearance on MRI,34 and these radiomic features have been
widely used in previous approaches for prostate lesion classifi-
cation via MRI.11,28 Entropy-based features are known to cap-
ture the dissimilarity in intensity co-occurrences, which has
been related to the heterogeneity of prostate cancer lesions
on MRI.17

Interestingly, the gradient feature family uniquely demon-
strates excellent IS performance but relatively poor performance
in terms of CV [Figs. 4(a)–4(b)]. Further interrogation revealed
that gradient features exhibit a large spread in feature values
across sites with a reasonably low mean. In other words,
gradient feature distributions markedly overlap between sites
(resulting in a low IS), but CV reveals their subpar reproduc-
ibility. This could also explain why gradient features perform
relatively poorly in cross-site discriminability experiments.

The overall poor reproducibility of Laws features in terms of
both CV and IS indicates that there are at least one or more sites
that exhibit very little overlap with the others, despite extensive
correction of noise and variance on MRI. In a previous work
utilizing CT images, Laws features demonstrated similarly
poor reproducibility across different slice thicknesses14 and
repeat imaging tests.35 Figure 3(c) shows that the Laws feature
family is the only family with an AUC below 0.6, which is
achieved by nearly 50% of all Laws features. Notably, Laws

features also comprised ≈38% of our feature set due to the
large number of permutations of Laws kernels. A very small
subset of Laws features did achieve reasonable CV, IS, and
AUC but with no discernible trend in kernels or window
sizes among them. We hypothesize that Laws features may
thus require careful kernel and parameter selection to ensure
that poor features are not utilized. When contrasting Laws fea-
tures comprising clusters D and E [Fig. 5(a)], we did not observe
any clear differences in window sizes or parameters. This further
reinforces our observation from experiment 1 that careful
parameter selection may be required when using Laws features
in a cross-site setting. Notably, Laws features also appear in a
much more dispersed fashion in Fig. 5(b) compared to Fig. 5(a),
thus highlighting the wide variations in individual feature
performance.

While the Gabor feature family exhibit a reasonable trade-off
between the three evaluation measures, high-performing Gabor
features across all three evaluation measures were found to
primarily comprise features extracted at large window sizes
(7, 9, and 11) as well as being in-plane 2-D responses (i.e.,
θXZ ¼ 0). These findings are consistent with the previous
work, where macroscale 2-D Gabor features were similarly
found to be discriminatory for prostate cancer detection28,36

and they exhibit reproducible performance across sites.11 In
addition, while Gabor features comprised as large a proportion
of our feature set as Laws features, a majority of Gabor
responses are both reproducible and discriminable across
sites. The difference in performance between Gabor features
in clusters A and F (in-plane 2-D responses) and cluster B
(cross-plane 3-D responses) indicates that the 3-D component
in Gabor features may be noisier, reflected by their higher insta-
bility. This is likely due to isotropic resampling in the Z-direc-
tion (from 3 to 0.27 mm) to correct for size differences as well as

Fig. 5 The 2-D scatter plots illustrating the relationship between measures: (a) IS versus AUC and
(b) lnðCV Þ versus AUC. Each point in the scatter plot represents an individual feature, and each
color represents the feature family. The boxes A − H identify specific feature clusters of interest,
which are further discussed in Sec. 4.2.
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to use “true” 3-D radiomic features in our experiments. The
relatively high discriminability of the 3-D component alone
(reflected by high AUC values) does appear to indicate that
they may nevertheless provide useful complementary informa-
tion to the 2-D in-plane response (clusters A and F).

There has been limited recent work on the trade-offs
observed between reproducibility and discriminability of radio-
mic features. In a study of lung CT-based radiomic features to
discriminate granulomas from adenocarcinomas,37 it was found
that the top discriminating features were not necessarily the
most reproducible across multiple sites (based on an instability
measure22). Several studies have also looked at multisite dis-
criminatory performance of MRI- and CT-based radiomic fea-
tures and choice of classifiers.38–40 Recent work by Ginsburg
et al.11 demonstrated significant variance in the performance
of prostate radiomic features in holdout testing (i.e., when evalu-
ated on MRI data from a site not considered for feature selection
and classifier training). This swing in performance indicates that
cross-site discriminability of radiomic features is likely to be
closely tied to their reproducibility across sites. These findings
appear to be borne out by our own experiments as well.
Our results also paralleled the initial findings by the image
biomarker standardization initiative41 on radiomic feature vari-
ability in carefully controlled settings (although primarily for
CT imaging thus far).

To quantify the reproducibility of radiomic features, previous
studies have primarily focused on measures such as concord-
ance correlation coefficient,14 CV,15 or intraclass correlation.42

However, all three of these measures are based on the availabil-
ity of repeat (test/retest) acquisitions, i.e., they quantified how
reproducible a radiomic feature was between repeated imaging
examinations. As our experiments were conducted using clinical
multisite data, repeated acquisitions was not retrospectively
available. We, therefore, utilized preparation-induced instabil-
ity,22 which defines feature reproducibility based on boot-
strapped resampling and comparison of feature distributions
between different sites. To ensure our findings could be placed
in the context of previous work, we also utilized a multivariate
extension of the popular CV measure. Between these two mea-
sures, we believe we have evaluated radiomic feature reproduc-
ibility as best possible using clinically acquired multisite data.
An avenue of future work could also be to assess benchmark
feature performance between scanners and sites using test-retest
MRI scans from patients16,43 or phantoms,44 as has been done in
PET31 and CT13,14 previously.

Previous work has shown that radiomic features may be able
to distinguish between different Gleason grades of prostate
cancer on MRI.17 However, our study did not specifically evalu-
ate how feature reproducibility was affected by tumor grade as
this information was not consistently available across the differ-
ent sites on a lesion basis. Instead we examined the reproduc-
ibility of radiomic features within relatively well-defined,
homogeneous “nontumor” regions within the PZ of the prostate
(from which we first excluded annotated tumor regions). While
it is difficult to guarantee that there were no benign confounders
in these nontumor regions, our approach ensured that tumor tis-
sue heterogeneity45 did not bias our analysis. Similarly, feature
discriminability was considered in the context of separating
tumor from “nontumor” independent of the tumor grade. A
potential expansion of this study would be to examine radiomic
features within similar Gleason grade tumors to determine how
the trends from the current study generalize in that setting.

Despite our best efforts in conducting this large-scale multi-
site study of radiomic features, we do acknowledge several
limitations. Though we curated 147 patients across four
sites, the retrospective nature of our data collection caused
an unequal number of patients per site, which could have
affected our cross-site analysis. We did attempt to utilize boot-
strapping when computing the evaluation measures to over-
come this issue. As PIRADS reports and Gleason score
information were not consistently available from all four insti-
tutions, we opted to examine feature trends in differentiating
nontumor from tumor regions. As all patients had been clin-
ically indicated for radical prostatectomy, our analysis was
predicated on the assumption that tumor and nontumor regions
would exhibit clear and consistent differences across these
patient populations. This also ensured a reasonable number
of patient samples for our analysis from across four sites.
In addition, as a different expert performed the annotation at
each site, inter-reader variability could be a confounding factor
in our results. We attempted to account for this to some degree
by limiting our analysis to the midgland alone, where experts
tend to be most confident in their assessment.46 In addition,
reproducibility was evaluated within a well-defined nontumor
region to further minimize the impact of variability in tumor
annotations between experts.

The goal of our analysis was to determine how radiomic
features vary as a function of different MRI acquisition param-
eters resulting in different voxel sizes, slice thicknesses, image
appearance, and MR signal intensity ranges. As T2w MRI
was both consistently available across all the sites while also
being nonquantitative, we opted to limit our study to this
one sequence. While our feature trends may hold for other
MR sequences, these will have to be studied separately. We
attempted to correct for the largest sources of variations in
T2w MR appearance via preprocessing (including bias correc-
tion, voxel resampling, and intensity standardization), which
may have impacted the reproducibility and discriminability of
the radiomic features we considered. Past work on the effect
of bias field correction on the performance of CAD in prostate
cancer detection47 reported that bias field correction improved
classifier AUC as well as intrasite reproducibility. Similarly,
when evaluating the effect of sequential preprocessing steps,
bias field correction followed by standardization was found
to result in optimal image quality and better algorithmic
performance.25 However, the interplay between these different
operations in terms of the resulting radiomic features has not
been extensively explored. This would require a comprehensive
evaluation of different permutations of preprocessing opera-
tions, which was out of the scope of the current study and
will be examined in future work.

5 Concluding Remarks
In this work, we presented the first empirical, cross-site evalu-
ation of MRI-based radiomic feature reproducibility and dis-
criminability. We evaluated 406 3-D radiomic features from
across five distinct feature families in terms of three benchmark-
ing measures, utilizing 147 T2w MRI patient datasets from four
different sites. We then attempted to compare different feature
families and subgroups to determine how specific filter or
parameter choices were linked to their performance. The lessons
learned with respect to specific radiomic operators also helped
us understand performance differences between feature families,
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which can help in choosing specific parameters or formulations
of radiomic features. The following are our key takeaways.

• The popular Haralick feature family demonstrated the best
trade-off in terms of both cross-site reproducibility and
discriminability. Further interrogation revealed that spe-
cific Haralick features that quantify image contrast and
entropy were the most reproducible and discriminable
across sites, likely benefiting from using intensity co-
occurrences (more resilient to absolute intensity values)
as well as the extensive preprocessing applied to the MRIs
prior to feature extraction. As these features have been
reported as associated with prostate cancer presence11,28

and aggression,34 our results appear to confirm their utility
for disease characterization on prostate MRI.

• Gabor features extracted as 2-D responses and at larger
window sizes also demonstrated both good reproducibil-
ity and discriminability.11 Like the Haralick feature fam-
ily, these features have been successfully used to detect
and segment cancer within the cancerous lesions on pros-
tate MRI.28

• Notably, the 3-D component of these Gabor responses was
marginally poorer in terms of both reproducibility and dis-
criminability. Despite the addition of complementary infor-
mation, noise in the 3-D component was likely introduced
by isotropic voxel resampling. While 3-D features based on
isotropic-resampled volumes have been commonly used in
different applications,48,49 our results indicate that there
may be a performance trade-off that needs to be considered
when using 2-D versus 3-D features.

• Laws features comprised the majority of the worst-ranked
radiomic features in terms of both cross-site reproducibil-
ity and discriminability. A possible explanation for the
highly variable performance of Laws features may be
the large number of parameter combinations (and thus,
features), making it hard to identify which of them were
optimal for disease characterization. As several Laws
features have been associated with specific pathological
patterns of disease,50 our findings indicate that careful
parameter selection may be required when considering
this feature family.

• Careful preprocessing of the T2w MRI prior to radiomic
feature extraction appeared to enable both Haralick and
gray radiomic features to benchmark as more reproducible
and discriminable in multisite setting than has been reported
previously.16 A more extensive study of the interplay and
effectiveness of different processing operations may thus
be critical when conducting such large multisite studies.

While our study has examined radiomic features alone, it may
also be interesting to consider how our evaluation measures might
be utilized in the context of benchmarking deep learning-based
approaches. This could provide a better understanding of how
convolutional filter responses (commonly used in deep learning)
vary as a result of fundamental MRI parameter changes. Other
future directions could include examining the effect of cross-
site feature reproducibility and discriminability in applications
such as patient prognosis and outcome prediction. This could
pave the way for more robust and reliable radiomics-based deci-
sion support systems to be utilized in clinical practice.

6 Appendix
Table 3 provides a list of features found within each cluster ref-
erenced in Fig. 5 and in the accompanying description to pro-
vide more detailed information with regards to specific features
and parameters.

Table 3 Summary of radiomic features in clusters A–G highlighted in
Fig. 5.

Clusters A and F: AUCð0.86 − 0.93Þ; ISð0 − 0.1Þ; CV ð1.29 − 1.53Þ

Gabor θXY ¼ 0, θXZ ¼ 0, WS = (9,11)

Gabor θXY ¼ 2π
8 , θXZ ¼ 0, WS = (7,9,11)

Gabor θXY ¼ 2π
8 , θXZ ¼ 0, WS = (5,7,9,11)

Gabor θXY ¼ 3π
8 , θXZ ¼ 0, WS = (7)

Gabor θXY ¼ 5π
8 , θXZ ¼ 0, WS = (7,9,11)

Gabor θXY ¼ 6π
8 , θXZ ¼ 0, WS = (7,9,11)

Gabor θXY ¼ 7π
8 , θXZ ¼ 0, WS = (7,9,11)

Cluster B: AUCð0.75 − 0.82Þ; ISð0.15 − 0.20Þ

Gabor θXY ¼ 0, θXZ ¼ 2π
8 , WS = (7,9,11)

Gabor θXY ¼ 0, θXZ ¼ 2π
8 , WS = (7,9,11)

Gabor θXY ¼ 0, θXZ ¼ 3π
8 , WS = (7,9,11)

Gabor θXY ¼ 2π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)

Gabor θXY ¼ 2π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)

Gabor θXY ¼ 2π
8 , θXZ ¼ 3π

8 , WS = (7,9,11)

Gabor θXY ¼ 2π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)

Gabor θXY
2π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)

Gabor θXY ¼ 2π
8 , θXZ ¼ 3π

8 , WS = (7,9,11)

Gabor θXY ¼ 3π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)

Gabor θXY ¼ 3π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)

Gabor θXY ¼ 3π
8 , θXZ ¼ 3π

8 , WS = (7,9,11)

Gabor θXY ¼ 4π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)

Gabor θXY ¼ 4π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)

Gabor θXY ¼ 4π
8 , θXZ ¼ 3π

8 , WS = (7,9,11)

Gabor θXY ¼ 5π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)

Gabor θXY ¼ 5π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)

Gabor θXY ¼ 5π
8 , θXZ ¼ 3π

8 , WS = (7,9,11)

Gabor θXY ¼ 6π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)

Gabor θXY ¼ 6π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)

Gabor θXY ¼ 6π
8 , θXZ ¼ 3π

8 , WS = (7,9,11)

Gabor θXY ¼ 7π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)

Gabor θXY ¼ 7π
8 , θXZ ¼ 2π

8 , WS = (7,9,11)
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Table 3 (Continued).

Gabor θXY ¼ 7π
8 , θXZ ¼ 3π

8 , WS = (7,9,11)

Cluster C: AUCð0.79 − 0.83Þ; ISð0 − 0.01Þ
Haralick inertia WS = (3,5,7,9,11)

Haralick sum-var WS = (3,5,7,9,11)

Haralick diff-var was = (3,5,7,9)

Haralick diff-av WS = (3,7,9,11)

Haralick entropy WS = (9,11)

Haralick idm WS = (9,11)

Haralick sum-ent WS = (9,11)

Haralick diff-ent WS = (9,11)

Cluster D: AUCð0.45 − 0.65Þ; ISð0Þ

Laws E3S3L3

Laws E5S5L5

Laws E5R5L5

Laws W5R5L5

Laws L5R5E5

Laws S5R5E5

Laws W5R5E5

Laws E5R5S5

Laws S5W5S5

Laws W5R5S5

Cluster E: AUCð0.45 − 0.65Þ; ISð0.5Þ
Laws E3S3S3

Laws L3E3S3

Laws S3L3S3

Laws S3S3S3

Laws W5E5E5

Laws L5W5S5

Laws E5E5S5

Laws E5W5S5

Laws S5E5S5

Laws S5R5S5

Laws R5L5S5

Laws R5E5S5

Laws R5S5S5

Table 3 (Continued).

Laws R5R5S5

Laws W5W5S5

Laws L5E5R5

Laws L5S5R5

Laws L5R5R5

Laws L5W5R5

Laws E5S5R5

Laws E5R5R5

Laws S5S5R5

Laws S5R5R5

Laws R5L5R5

Laws R5E5R5

Laws R5S5R5

Laws R5W5R5

Laws W5E5R5

Laws W5S5R5

Laws L5R5W5

Laws L5W5W5

Laws E5L5W5

Laws S5R5W5

Laws R5S5W5

Laws R5R5W5

Laws W5E5W5

Laws W5S5W5

Laws W5R5W5

Cluster G: AUCð0.79 − 0.83Þ; CV ð1.65 − 1.85Þ

Haralick entropy ws = 9,11

Haralick sum-ent ws = 9,11

Haralick diff-ent ws = 9,11

Haralick diff-av ws = 9,11

Haralick idm ws = 9,11

Cluster H: AUCð0.79 − 0.83Þ; CV ð1.86 − 2.6Þ

Haralick inertia ws = 3,5,7,9,11

Haralick sum-var ws = 3,5,7,9,11

Haralick diff-av ws = 3,5,7

Haralick diff-var ws = 3,5,7,9

Journal of Medical Imaging 024502-11 Apr–Jun 2019 • Vol. 6(2)

Chirra et al.: Multisite evaluation of radiomic feature reproducibility and discriminability for identifying peripheral. . .



Disclosures
No conflicts of interest, financial or otherwise, are declared by
any authors involved in this work.

Acknowledgments
Research reported in this publication was supported by the
National Cancer Institute of the National Institutes of Health
under Award Nos. 1U24CA199374-01, R01CA202752-01A1,
R01CA208236-01A1, R01CA216579-01A1, R01CA220581-
01A1, 1U01CA239055-01; National Center for Research
Resources under Award No. 1 C06 RR12463-01; VA Merit
Review Award IBX004121A from the United States
Department of Veterans Affairs Biomedical Laboratory
Research and Development Service; the DOD Prostate
Cancer Idea Development Award (W81XWH-15-1-0558);
the DOD Lung Cancer Investigator-Initiated Translational
Research Award (W81XWH-18-1-0440); the DOD Peer
Reviewed Cancer Research Program (W81XWH-16-1-0329);
the Ohio Third Frontier Technology Validation Fund; the
Wallace H. Coulter Foundation Program in the Department of
Biomedical Engineering, and the Clinical and Translational
Science Award Program (CTSA) at Case Western Reserve
University. Initial finding of this research were published in
the 2018 SPIE Proceedings along with an oral presentation,
though significant changes and additions have been made
since that time.51 The content is solely the responsibility of
the authors and does not necessarily represent the official views
of the National Institutes of Health, the U.S. Department of
Veterans Affairs, the Department of Defense, the United States
Government, or SPIE.

References
1. V. Kumar et al., “Radiomics: the process and the challenges,” Magn.

Reson. Imaging 30(9), 1234–1248 (2012).
2. H. J. W. L. Aerts, “The potential of radiomic-based phenotyping in

precision medicine,” JAMA Oncol. 2, 1636 (2016).
3. R. T. H. M. Larue et al., “Quantitative radiomics studies for tissue char-

acterization: a review of technology and methodological procedures,”
Br. J. Radiol. 90(1070), 20160665 (2017).

4. T. P. Coroller et al., “CT-based radiomic signature predicts distant meta-
stasis in lung adenocarcinoma,” Radiother. Oncol. 114(3), 345–350
(2015).

5. J. Lao et al., “A deep learning-based radiomics model for prediction of
survival in Glioblastoma multiforme,” Sci. Rep. 7, 10353 (2017).

6. R. Haralick, “Statistical and structural approaches to texture,” Proc.
IEEE 67(5), 786–804 (1979).

7. C. Ma et al., “An improved sobel algorithm based on median filter,”
in 2010 2nd Int. Conf. Mechan. Electron. Eng. (2010).

8. K. I. Laws, Textured Image Segmentation No. USCIPI-940, University
of Southern California Los Angeles Image Processing INST, 76–118
(1980).

9. A. Bovik, M. Clark, and W. Geisler, “Multichannel texture analysis
using localized spatial filters,” IEEE Trans. Pattern Anal. Mach. Intell.
12(1), 55–73 (1990).

10. A. P. Bradley, “The use of the area under the ROC curve in the
evaluation of machine learning algorithms,” Pattern Recogn. 30(7),
1145–1159 (1997).

11. S. B. Ginsburg et al., “Radiomic features for prostate cancer detection
on MRI differ between the transition and peripheral zones: preliminary
findings from a multi-institutional study,” J. Magn. Reson. Imaging
46(1), 184–193 (2016).

12. A. H. Dinh et al., “Quantitative analysis of prostate multiparametric
MR images for detection of aggressive prostate cancer in the
peripheral zone: a multiple imager study,” Radiology 280(1), 117–127
(2016).

13. D. Mackin et al., “Measuring computed tomography scanner variability
of radiomics features,” Investig. Radiol. 50(11), 757–765 (2015).

14. B. Zhao et al., “Reproducibility of radiomics for deciphering tumor
phenotype with imaging,” Sci. Rep. 6(1), 23428 (2016).

15. S. Gourtsoyianni et al., “Primary rectal cancer: repeatability of global
and local-regional MR imaging texture features,” Radiology 284(2),
552–561 (2017).

16. D. Molina et al., “Lack of robustness of textural measures obtained from
3D brain tumor MRIs impose a need for standardization,” PLoS One 12,
e0178843 (2017).

17. D. Fehr et al., “Automatic classification of prostate cancer Gleason
scores from multiparametric magnetic resonance images,” Proc. Nat.
Acad. Sci. 112, E6265 (2015).

18. S. Kahali, S. K. Adhikari, and J. K. Sing, “On estimation of bias field
in MRI images: polynomial vs Gaussian surface fitting method,”
J. Chemomet. 30(10), 602–620 (2016).

19. M. E. Soto, J. E. Pezoa, and S. N. Torres, “Thermal noise estimation and
removal in MRI: a noise cancellation approach,” Lect. Not. Comput. Sci.
7042, 47–54 (2011).

20. L. Nyul, J. Udupa, and X. Zhang, “New variants of a method of MRI
scale standardization,” IEEE Trans. Med. Imaging 19(2), 143–150 (2000).

21. S. Aerts, G. Haesbroeck, and C. Ruwet, “Multivariate coefficients of
variation: comparison and influence functions,” J. Multivar. Anal.
142, 183–198 (2015).

22. P. Leo et al., “Evaluating stability of histomorphometric features across
scanner and staining variations: prostate cancer diagnosis from whole
slide images,” J. Med. Imaging 3(4), 047502 (2016).

23. G. Lemaître et al., “Computer-aided detection and diagnosis for prostate
cancer based on mono and multi-parametric MRI: a review,” Comput.
Biol. Med. 60, 8–31 (2015).

24. D. Palumbo et al., “Interplay between bias field correction, intensity
standardization, and noise filtering for T2-weighted MRI,” in 2011
Annual Int. Conf. IEEE Eng. Med. Biol. Soc. (2011).

25. A. Madabhushi and J. K. Udupa, “Interplay between intensity standardi-
zation and inhomogeneity correction in MR image processing,” IEEE
Trans. Med. Imaging 24(5), 561–576 (2005).

26. M. S. Cohen, R. M. Dubois, and M. M. Zeineh, “Rapid and effective
correction of RF inhomogeneity for high field magnetic resonance
imaging,” Hum. Brain Mapp. 10(4), 204–211 (2000).

27. N. J. Tustison et al., “N4itk: Improved n3 bias correction with robust
b-spline approximation,” in 2010 IEEE Int. Symp. Biomed. Imaging:
From Nano to Macro (2010).

28. S. E. Viswanath et al., “Central gland and peripheral zone prostate
tumors have significantly different quantitative imaging signatures on
3 tesla endorectal, in vivo T2-weighted MR imagery,” J. Magn. Reson.
Imaging 36(1), 213–224 (2012).

29. A. Albert and L. Zhang, “A novel definition of the multivariate coef-
ficient of variation,” Biomet. J. 52(5), 667–675 (2010).

30. R. M. Rangayyan, Biomedical Image Analysis, CRC Press, Boca Raton
(2005).

31. R. T. H. Leijenaar et al., “Stability of FDG-PET radiomics features:
an integrated analysis of test-retest and inter-observer variability,”
Acta Oncol. 52, 1391–1397 (2013).

32. B. A. Altazi et al., “Reproducibility of F18-FDG PET radiomic features
for different cervical tumor segmentation methods, gray-level discreti-
zation, and reconstruction algorithms,” J. Appl. Clin. Med. Phys. 18,
32–48 (2017).

33. P. Brynolfsson et al., “Haralick texture features from apparent diffusion
coefficient (ADC) MRI images depend on imaging and pre-processing
parameters,” Sci. Rep. 7(1), 4041 (2017).

34. A. Wibmer et al., “Haralick texture analysis of prostate MRI: utility for
differentiating non-cancerous prostate from prostate cancer and differ-
entiating prostate cancers with different Gleason scores,” Eur. Radiol.
25(10), 2840–2850 (2015).

35. Y. Balagurunathan et al., “Test-retest reproducibility analysis of lung
CT image features,” J. Dig. Imaging 27, 805–823 (2014).

36. A. Algohary et al., “Radiomic features on MRI enable risk categoriza-
tion of prostate cancer patients on active surveillance: preliminary
findings,” J. Mag. Reson. Imaging 48(3), 818–828 (2018).

37. M. Orooji et al., “Combination of computer extracted shape and texture
features enables discrimination of granulomas from adenocarcinoma
on chest computed tomography,” J. Med. Imaging 5(02), 1 (2018).

Journal of Medical Imaging 024502-12 Apr–Jun 2019 • Vol. 6(2)

Chirra et al.: Multisite evaluation of radiomic feature reproducibility and discriminability for identifying peripheral. . .

https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1001/jamaoncol.2016.2631
https://doi.org/10.1259/bjr.20160665
https://doi.org/10.1016/j.radonc.2015.02.015
https://doi.org/10.1038/s41598-017-10649-8
https://doi.org/10.1109/PROC.1979.11328
https://doi.org/10.1109/PROC.1979.11328
https://doi.org/10.1109/34.41384
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1002/jmri.25562
https://doi.org/10.1148/radiol.2016151406
https://doi.org/10.1097/RLI.0000000000000180
https://doi.org/10.1038/srep23428
https://doi.org/10.1148/radiol.2017161375
https://doi.org/10.1371/journal.pone.0178843
https://doi.org/10.1073/pnas.1505935112
https://doi.org/10.1073/pnas.1505935112
https://doi.org/10.1002/cem.2825
https://doi.org/10.1007/978-3-642-25085-9
https://doi.org/10.1109/42.836373
https://doi.org/10.1016/j.jmva.2015.08.006
https://doi.org/10.1117/1.JMI.3.4.047502
https://doi.org/10.1016/j.compbiomed.2015.02.009
https://doi.org/10.1016/j.compbiomed.2015.02.009
https://doi.org/10.1109/TMI.2004.843256
https://doi.org/10.1109/TMI.2004.843256
https://doi.org/10.1002/(ISSN)1097-0193
https://doi.org/10.1002/jmri.23618
https://doi.org/10.1002/jmri.23618
https://doi.org/10.1002/bimj.v52:5
https://doi.org/10.3109/0284186X.2013.812798
https://doi.org/10.1002/acm2.2017.18.issue-6
https://doi.org/10.1038/s41598-017-04151-4
https://doi.org/10.1007/s00330-015-3701-8
https://doi.org/10.1007/s10278-014-9716-x
https://doi.org/10.1002/jmri.25983
https://doi.org/10.1117/1.JMI.5.2.024501


38. Z.-C. Li et al., “Multiregional radiomics features from multiparametric
MRI for prediction of MGMT methylation status in glioblastoma multi-
forme: a multicentre study,” Eur. Radiol. 28(9), 3640–3650 (2018).

39. A. E. Fetit et al., “Radiomics in paediatric neuro-oncology: a multi-
centre study on MRI texture analysis,” NMR Biomed. 31(1) (2017).

40. C. Parmar et al., “Machine learning methods for quantitative radiomic
biomarkers,” Sci. Rep. 5(1), 13087 (2015).

41. A. Zwanenburg et al., “Image biomarker standardisation initiative,”
arXiv e-prints (2016).

42. M. Bologna et al., “Stability assessment of first order statistics features
computed on ADC maps in soft-tissue sarcoma,” in 39th Ann. Int. Conf.
IEEE Eng. Med. Biol. Soc. (EMBC 2017) (2017).

43. A. Fedorov et al., “An annotated test-retest collection of prostate multi-
parametric MRI,” Sci. Data 5(180281) (2018).

44. B. Baebler, K. Weiss, and D. Pinto dos Santos, “Robustness and repro-
ducibility of radiomics in magnetic resonance imaging: a phantom
study,” Invest. Radiol. 54(4), 221–228 (2018).

45. R. Stoyanova et al., “Prostate cancer radiomics and the promise of
radiogenomics,” Transl. Cancer Res. 5(4), 432–447 (2016).

46. W. L. Smith et al., “Prostate volume contouring: a 3D analysis of seg-
mentation using 3dtrus, CT, and MR,” Int. J. Radiat. Oncol. Biol. Phys.
67(4), 1238–1247 (2007).

47. S. Viswanath et al., “Empirical evaluation of bias field correction algo-
rithms for computer-aided detection of prostate cancer on T2wMRI,” in
Medical Imaging 2011: Computer-Aided Diagnosis (2011).

48. A. Chaddad, M. Kucharczyk, and T. Niazi, “Multimodal radiomic
features for the predicting Gleason score of prostate cancer,” Cancers
10(8), 249 (2018).

49. R. Ortiz-Ramon et al., “A radiomics evaluation of 2D and 3D MRI
texture features to classify brain metastases from lung cancer and mela-
noma,” in 39th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC 2017)
(2017).

50. N. M. Braman et al., “Intratumoral and peritumoral radiomics for the
pretreatment prediction of pathological complete response to neoadju-
vant chemotherapy based on breast DCE-MRI,” Breast Cancer Res. 19
(2017).

51. P. Chirra et al., “Empirical evaluation of cross-site reproducibility in
radiomic features for characterizing prostate MRI,” in Medical Imaging
2018: Computer-Aided Diagnosis (2018).

Biographies of the authors are not available.

Journal of Medical Imaging 024502-13 Apr–Jun 2019 • Vol. 6(2)

Chirra et al.: Multisite evaluation of radiomic feature reproducibility and discriminability for identifying peripheral. . .

https://doi.org/10.1007/s00330-017-5302-1
https://doi.org/10.1002/nbm.3781
https://doi.org/10.1038/srep13087
https://doi.org/10.1097/RLI.0000000000000530
https://doi.org/10.21037/tcr
https://doi.org/10.1016/j.ijrobp.2006.11.027
https://doi.org/10.3390/cancers10080249
https://doi.org/10.1186/s13058-017-0846-1

