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atmospheric turbulence on motion compensated frame average images. The primary focus of
this research was to develop a blind deconvolution technique that could be employed in a tactical
military environment where both time and computational power are limited. Additionally, this
technique can be employed to measure atmospheric seeing conditions. In a blind deconvolution
fashion, the algorithm simultaneously computes a high resolution image and an average model
for the atmospheric blur parameterized by Fried’s seeing parameter. The difference in this
approach is that it does not assume a prior distribution for the seeing parameter, rather it assesses
the convergence of the image’s variance as the stopping criteria and identification of the proper
seeing parameter from a range of candidate values. Experimental results show that the conver-
gence of variance technique allows for estimation of the seeing parameter accurate to within
0.5 cm and often even better depending on the signal to noise ratio. © The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of
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1 Introduction

Both military and civilian applications have driven a significant amount of research on enhancing
the quality of images received from optical sensors degraded by the effects of diffraction. When
imaging through atmospheric turbulence, the representation of the remote scene is degraded by
the diffraction of light from neighboring areas. Various techniques to illuminate and capture the
remote scene can be employed by a sensor, and the chosen technique is often driven by the
intended application of the sensor as shown by the following examples. In this article, we
focus on applications associated with military targeting sensors.

Current state-of-the-art military targeting sensors typically detect light in the infrared spec-
trum. This allows for numerous advantages, such as easier separation of man-made versus natu-
ral targets as well as the ability to obtain high quality images in low light conditions. Another
class of sensor known as a LAser Detection And Ranging (LADAR) system captures a target’s
reflection from a laser illumination source. This class of sensor is receiving significant attention
as improvements to the technology are made. In addition to the ability to image in low light
environments, some classes of LADAR sensors also allow for the collection of three dimensional
(3-D) images. Regardless of the sensor type, there are substantial benefits to image deblurring in
military applications. Benefits include minimizing the risk of misidentifying a target and perhaps
accidentally inflicting damage to nonhostile targets. Ultimately, the algorithm employed to
remove atmospheric turbulence effects may depend on the type of sensor since algorithm design
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is commonly based on statistical models of the received data in addition to processing time
limitations.

Due to various physical phenomena, images collected by each class of sensor may have
differing noise distributions. For instance, many traditional imaging sensors collect images
from incoherent illumination sources where the intensity closely follows a Poisson distribution
due to the random photon arrival rate at the detector. The images received by a LADAR sensor
often have more of a negative binomial distribution due to the constructive and destructive inter-
ference associated with the highly coherent illumination source.1 In some cases, the electronics
used to capture an image may drive the received images to have more of a normal distribution.
Regardless of the class of sensor and associated noise distribution, a common technique for
improving the signal to noise ratio (SNR) of the received image is the process of multiple
frame averaging.2

Many imaging systems currently employed or in development have high enough frame rates to
capture and produce multiple frame image ensembles consisting of 10 to perhaps hundreds of
images over a short period of time. With proper registration, the summation of these images
will tend to average out the effects of noise and thus improve the overall SNR. This technique
is commonly required in situations where the number of photons received from a target is low, as in
the case of imaging stellar targets or remote scenes at long slant ranges through the atmosphere.
Assuming proper registration, the imaging sensor can commonly be described as shift invariant.
This allows us to model the received image as the convolution between the remote scene and the
point spread function (PSF). The frequency representation of the PSF in an average sense is the
product of the diffraction limited optical transfer function (OTF) and the atmospheric blur.2 Finally,
when using motion compensated frame average (MCFA) images comprised of the summation of
numerous short-exposure frames, the atmospheric blur can accurately be described using the short-
exposure OTF.3 A key advantage associated with the employment of the average short-exposure
model is that the entire blurring function is reduced to a single unknown parameter (Fried’s seeing
parameter—r0) which this research will focus on accurately identifying.

Current military targeting sensors employed in a tactical environment do not account for the
effects of atmospheric blur. Reasons for this include the fact that blind deconvolution algorithms
are often computationally expensive and time intensive. Additionally, adaptive optics are often
too complex to employ in a highly dynamic environment. Deconvolution algorithms such as the
Richardson–Lucy (RL) deconvolution algorithm where the PSF is known are generally accepted
to perform better than blind-deconvolution algorithms where the PSF is unknown. However, in a
tactical environment where the targeted scene and imaging sensor position are continually
changing, it is practically impossible to have prior knowledge of the PSF.

Considerable work has been accomplished in blind deconvolution for incoherently illuminated
remote scenes.4–11 The shear magnitude of this research supports its importance for a variety of
image processing disciplines. The problem we are attempting to solve was previously addressed
by MacDonald.2,12 This work by MacDonald focused on undoing the distorting effects of atmos-
pheric turbulence in short exposure, partially coherent imaging of remote scenes at long slant ranges.
Key contributions of the algorithmoriginally presented byMacDonald are as follows.Amethodwas
developed for estimatingboth anenhanced remote scene aswell as anaverageOTFparameterizedby
the atmospheric seeingparameterwhere the noisewas dominated by the constructive and destructive
interference caused by the partially coherent illumination source. Although the effort was originally
focused on providing an enhanced image, an equally important contribution was the ability to esti-
mate Fried’s seeing parameter where scintillometry or other measurement techniques were unavail-
able or impractical. Finally, the algorithm was tailored toward sensors employed in a tactical
environment where both processing capability and available time are limited. For these reasons,
we will compare our results to MacDonald’s work as his work represents the only prior attempt
to solve the problem of parameterized blind deconvolution to recover atmospheric seeing.

The organization of this article is as follows. A brief description of the system model to
include noise and atmospheric turbulence effects on the received image will be provided in
Sec. 2. In Sec. 3, we will discuss various techniques for removing atmospheric blur maximum
a priori (MAP) estimator developed for blind estimation of r0.

12 Additionally, a novel technique
will be presented which improves upon the ability to blindly estimate r0. A performance com-
parison of the two blind algorithms on both fully and partially illuminated simulated scenes
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distorted by various noise distributions will be provided in Sec. 4. Finally, the results will be
validated with experimental data as shown in Sec. 5.

2 Background

Due to numerous physical phenomena, the images captured by a sensor intended to represent a
remote scene have imperfections. First, we know that optical imperfections with the system can
cause the diffraction of light to neighboring areas. When operating a sensor within the atmos-
phere, optical imperfections can commonly be binned into those directly related to the manu-
facturing of the sensor and those that result from atmospheric turbulence. Second, the received
image is generally further degraded by the effects of noise. This noise can also result from
numerous sources such as read out noise, thermal noise, and noise associated with the illumi-
nation source.

The total PSF or spatial impulse response of an optical sensor accounts for the diffraction
effects directly attributed to the sensor optics, hopt, and those that can be attributed to atmospheric
turbulence, hatm. This total PSF, htot is the convolution of the two primary components as shown
in Eq. (1) in one-dimensional (1-D), where x is the spatial position or image pixel location.

htotðxÞ ¼ hoptðxÞ × hatmðxÞ: (1)

The impulse response of the optics can be computed by conducting a propagation experiment
using known sensor parameters as shown in Ref. 1. In frequency space, the total OTF, Htot, the
optical OTF,Hopt, and atmospheric OTF,Hatm, are simply the Fourier transforms of their respec-
tive PSFs, and the convolution operator is replaced by the multiplication operator

F ½htotðxÞ� ¼ HtotðνÞ ¼ HoptðνÞHatmðνÞ; (2)

where ν is the spatial frequency.
As a general rule of thumb, when collecting images with exposure times of less than 1∕100 of

a second, we can assume that the atmosphere through which the remote scene is viewed remains
constant.3 Due to the ill-posed nature of blind deconvolution with two-dimensional (2-D)
images, it is mathematically impossible to directly solve for the PSF impacting collected images
when noise is present. Despite this hurdle, numerous algorithms have been developed to circum-
vent these mathematical challenges with considerable success by making various assumptions or
approximations.4–11 One technique for simplifying this problem considers a parameterization of
the OTF. When using MCFA compilations of images where each individual image has an expo-
sure time of less than 1∕100 of a second, the average short-exposure OTF, H̄SE, is reduced to a
function of a single unknown parameter, Fried’s seeing parameter, r0, as shown in Eq. (3).

H̄SEðνÞ ¼ exp

�
−3.44

�
λ̄fν
ro

�
5∕3�

1 −
�
λ̄fν
D

�
1∕3��

: (3)

In the mathematical model for H̄SE as a function of spatial frequency, the mean wavelength of
light detected is λ̄, f is the focal length of the lens, and D is the aperture diameter of the sensor.
For purposes of this research, we will substitute H̄SE as our model for the atmospheric OTF,
Hatm. However, the technique developed in Sec. 3.3 could also be demonstrated to work
with the simpler long-exposure case where the image frames are averaged without motion com-
pensation. The average long-exposure OTF, H̄LE, is shown in Eq. (4).3

H̄LEðνÞ ¼ exp

�
−3.44

�
λ̄fν
ro

�
5∕3�

. (4)

Imaging devices exhibit a cutoff frequency dictated by their optical specifications according
to Eq. (5). In this diffraction-limited case, the maximum spatial frequency, νmax, can be computed
by
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νmax ¼
D
λf

; (5)

where λ is the wavelength of the light of interest. When there are benefits to using long-exposure
imaging in certain scenarios such as astrophotography, the loss of frequency content is often an
undesired side effect. In a tactical military scenario or any other dynamic environment, it would
be impractical if not impossible to point a sensor long enough at a target to warrant the use of
long-exposure imaging. Figure 1 compares the frequency response for a sensor that is diffraction
limited to the frequency response considering a long- and short-exposure OTF for two levels of
atmospheric seeing. It is clearly evident that, provided the scenario allows, there are inherent
benefits with respect to frequency content when using properly registered short-exposure
images. The parameters for this demonstration were chosen to match those that will be employed
to obtain the experimental results listed in Sec. 5 and are listed in Table 1.

3 Image Deconvolution

The process of deconvolution is commonly performed on collected images, i, that are degraded
by a PSF, h, and additive noise, n. The goal of the process is to recover the true representation of
the remote scene, o, shown in Eq. (6).

Fig. 1 (a) Comparison of the frequency response for this sensor given an r 0 of 5 cm. As expected,
the short-exposure optical transfer function (OTF) is very close to the diffraction limited OTF since
r 0 is equal to the aperture diameter. However, the long-exposure OTF reveals a significant attenu-
ation in high frequency content. (b) Comparison of the frequency response for this sensor given an
r 0 of 2 cm. Higher levels of turbulence yield a higher loss in frequency content for the long-expo-
sure scenario and significant attenuation of high frequency content for the short-exposure
scenario.

Table 1 Optical system specifications.

Parameter name Defined value

Mean wavelength (λ̄) 600 nm

Detector array size 582 × 582

Pixel size 8.3 × 8.6 μm2

Sensor focal length (f ) 1.5 m

Aperture diameter (D) 5 cm
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ðo × hÞ þ n ¼ i. (6)

As previously mentioned, there are a plethora of algorithms designed to aid in this problem.
Perhaps the most widely accepted or recognized algorithm for image deconvolution when the
collected images follow a Poisson distribution is the RL algorithm.

3.1 Richardson–Lucy Deconvolution Algorithm

One of the key benefits of the RL algorithm

ôðx; yÞnew ¼ ôðx; yÞold
X
u

X
v

iðu; vÞ
Iðu; vjr0Þ

hðu − x; v − yjr0Þ; (7)

where

Iðu; vjr0Þ ¼ E½iðu; vÞjr0� ¼
X
x

X
y

ôðx; yÞhðu − x; v − yjr0Þ; (8)

for a wide variety of imaging applications in the presence of Poisson statistics, is that if the
algorithm converges, it will converge to the maximum likelihood estimate (MLE).13–15 In
Eq. (7), ðx; yÞ are the coordinates for the remote scene, ðu; vÞ are the coordinates in the detector
plane, ô is an estimate for o, and I is the expected value of the intensity received at each detector
pixel given a specific PSF. However, a commonly cited drawback to this technique is the noise
amplification that occurs as the number of iterations increases.9,16 If allowed to iterate indefi-
nitely, the estimate for o would be only noise. Therefore, we must stop iterations before noise
amplification occurs. Clearly, this could be accomplished interactively by the user; however, for
an automated or blind routine, any required user interaction would be undesirable. The method
proposed in this work will rely on the convergence of the estimate of the noise power and the
predicted variance of the collected data to cease iterations. Convergence of variance as a criteria
to cease iterations has been used previously with success;12,17 however, the novelty in this work is
that we will also use the convergence of variance to identify the best model for the PSF para-
meterized by r0.

3.2 Blind Estimate of Seeing Via MAP Technique

The idea of using the RL algorithm in a blind fashion to deblur an image was previously pre-
sented by Fish et al.4 However, their work did not employ the theoretical models for the long- and
short-exposure transfer functions parameterized by r0.

3 Perhaps the most similar work to this
research was accomplished by MacDonald. He developed a blind technique that was iterative in
nature like the RL algorithm, yet he introduced a priori information for images distorted by
speckle noise following more of a negative binomial distribution.12 MacDonald introduced a
priori information for the distribution of r0 in hopes of maximizing the likelihood at the appro-
priate level of seeing.

If we assume independence of the measurements for every pixel in the detector array, we can
state the joint probability of the observed noisy image, i, as

p½I ¼ iðu; vÞ; ∀ðu; vÞ� ¼
Y
u

Y
v

Iðu; vjr0Þiðu;vÞe−Iðu;vjr0Þ
iðu; vÞ! : (9)

Ideally, we would like to maximize the likelihood or log likelihood

Lðr0Þ ¼
X
u

X
v

½iðu; vÞ ln½Iðu; vjr0Þ� − Iðu; vjr0Þ − iðu; vÞ!�; (10)

over a range for r0 to identify the appropriate PSF. Unfortunately, likelihood continually
increases with r0 as illustrated by the following example in Fig. 2. When the RL algorithm
maximizes likelihood for a given PSF, the maximum likelihood (ML) solution for r0 does
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not necessarily occur when the correct PSF parameterized by r0 is chosen. This is the direct
problem that MacDonald sought to solve by introducing a priori information for the distribution
of r0.

MacDonald hypothesized that a distribution could be applied to the value for r0 based on the
intuitive observation that the seeing is seldom extremely better than the average and can often be
worse. The form of the probability density function for the random parameter r0 was assumed to
be

fR0
ðr0Þ ¼

"
e−

r0
ravg

ravg

#N2

; (11)

where ravg is the average atmospheric seeing and N2 is the number of pixels in the detector array.
When applying this technique to the example illustrated in Fig. 2, we see that likelihood is maxi-
mized near the correct value of r0 as shown in Fig. 3. Although the technique is successful in this
scenario, two mathematical challenges remain. First, the choice of an exponential distribution for
r0 is probably inaccurate. Extremely low values of r0 are expected to be nearly as unlikely as
high values. Second, the effect of scaling the exponential density function by the number of
pixels in the detector array is difficult to justify for partially illuminated scenes such as astro-
nomical images. The convergence of variance technique will remove the requirement for the
prior distribution on r0 and allow us to directly converge to the correct value.

Fig. 2 (a) The original image without the added effects of atmospheric blurring. (b) The image that
would be received by a sensor with the specifications listed in Table 1 given an r 0 of 2.5 cm.
(c) Demonstration that shows likelihood is not maximized for the correct value of r 0.

Fig. 3 (a) Log likelihood of the exponential prior as a function of r 0. (b) Overall log likelihood with
the addition of the prior. With the addition of the prior, likelihood is maximized for the correct value
of r 0.
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3.3 Blind Estimate of Seeing Via Convergence of Variance Technique

The convergence of variance technique works on the premise of searching for the best possible
PSF parameterized by r0 in the amount of time available for processing. Given more time, the
technique will provide a more refined estimate for r0. We will first explain this technique in more
detail using the assumption that the images collected follow Poisson statistics. Later, we will
demonstrate the technique using images that follow a negative binomial noise model.
Ultimately, the technique should work regardless of the noise distribution assuming the correct
iterative deblurring algorithm and convergence criteria are used.

This technique relies on a comparison of variance between the image estimate, ô, and the
collected image, i. At this point, we can assume that any further iterations would only serve to fit
the estimates to the noise. In other words, iterations would cease whenX

u

X
v

½iðu; vÞ − Iðu; vÞ�2 <
X
u

X
v

Vðu; vÞ; (12)

where V is the actual image variance. Assuming the collected MCFA follows Poisson statistics,
the deblurring algorithm employed would be the Richardson–Lucy algorithm in Eq. (7), and

Vðu; vÞ ¼ iðu; vÞ: (13)

The relationship in Eq. (13) is allowed since the assumption can be made that the intensity
captured by each detector is independent of other detectors, and each intensity can essentially be
thought of as an independent Poisson random variable. The summation of these random var-
iables is, therefore, a good approximation for the total image variance.

Due to the photon counting nature of many imaging applications, the Poisson distribution is
often employed as a statistical model for the detected images. However, due to the highly coher-
ent nature of laser light, images detected by a LADAR sensor often follow more of negative
binomial distribution. Fortunately, the robustness of the convergence of variance technique
allows for employment in this scenario as well. MacDonald derived an iterative MLE where
the noise is dominated by laser speckle as

ôðx; yÞnew ¼ ôðx; yÞold

P
u

P
v

�
iðu;vÞ

Iðu;vjr0Þ hðu − x; v − yjr0Þ
�

P
u

P
v

�
iðu;vÞþM

MþIðu;vjr0Þ hðu − x; v − yjr0Þ
� ; (14)

whereM is the coherence parameter of the light.12 Using the deblurring algorithm in Eq. (14), we
would again iterate until the relationship in Eq. (12) is satisfied where

Vðu; vÞ ¼ iðu; vÞ
�
1þ iðu; vÞ

M

�
: (15)

Equation (15) represents the variance for a negative binomial random variable, which should
well approximate the variance in laser illuminated imagery.

The diagram in Fig. 4 demonstrates how this technique could be employed in an operational
scenario where processing time and computational power are limited. In this scenario, images are
collected and fed into the r0 estimation process. At any point in time, the best possible estimate
for r0 can be drawn upon for deblurring an image. However, in parallel, the outer loop will
continue to work on characterizing the current atmospheric seeing conditions. One of the key
advantages to this algorithm is that it is easy to parallelize. Even with a common home computer
that has a multicore processor, it is easy to simultaneously test multiple values of r0 for con-
vergence. The r0 to employ in the deblurring algorithm would be the lowest value of r0 for which
Eq. (12) is satisfied. Additionally, we can further enhance the process by first conducting a
coarse estimate of r0 followed by a more refined estimate as indicated in Fig. 5.

MacDonald references the employment of a convergence test for ceasing iterations in his
algorithm; however, it is apparent that he did not utilize this test as a sufficient criteria for
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identifying the correct value of atmospheric seeing. As previously mentioned, if allowed suffi-
cient time the relationship in Eq. (12) will be satisfied for the correct r0 and all higher values.
However, the criteria will never be attained for low estimates of r0. The following sections will
demonstrate the employment of this technique on images with Poisson and negative binomial
noise to show that a priori information is not required to achieve accurate estimates for r0.

4 Simulation Results

The following results will demonstrate the utility of the convergence of variance technique and
compare the results to the algorithm developed by MacDonald for images with Poisson and

Fig. 4 Potential employment scenario for the convergence of variance technique, where the outer
loop is allowed to continually execute on recently collected images. The most recent estimate for
r 0 can then be fed to an iterative deblurring algorithm to provide rapid results to the user.

Fig. 5 In this demonstration, the true value for r 0 is 4.3 cm. However, the algorithm first converges
at 5 cm using a 1 cm∕step coarse search. It then accomplishes a 0.1 cm∕step fine search to con-
verge to the true value at 4.3 cm.
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negative binomial noise. The optical specifications listed in Table 2 and used for the simulations
were not limited to what could readily be obtained for experimentation. Rather, the specifications
were chosen to mimic what could potentially be incorporated into a targeting pod design based
on size limitations. The specifications will allow for properly sampled images according to
Eq. (5). We will first consider simulation results using a fully illuminated scene. We will
then simulate conditions for astrophotography where the scenes are only partially illuminated.

4.1 Fully Illuminated Scenes

In this section, we will present results from images that are fully illuminated. By fully illumi-
nated, we mean that the overwhelming majority of the scene is not dark and contains varying
levels of contrast. Recall that MacDonald’s algorithm defined a prior for r0 of exponential form
scaled by the total number of pixels in the detector as shown in Eq. (11).

In the following examples, the cameraman photo built into Matlab® is blurred using a total
OTF that is the product of the diffraction-limited OTF and an average short-exposure OTF with
various levels of r0. Multiple trials will be conducted with MCFA images composed of 1, 10, 20,
30, 50 and 100 individual frames with independent realizations of Poisson noise to demonstrate
the effects of SNR on each algorithm. The original, blurred and recovered images are shown in
Fig. 6. In order to implement MacDonald’s algorithm, we either need an initial estimate on the
average value for atmospheric seeing, ravg, or we can initialize it to the aperture diameter if no
estimate can be made. For purposes of fair comparison, we will assume that no prior estimates
are known for atmospheric seeing, and ravg will be initialized to the aperture diameter.

Table 3 shows that the convergence of variance technique and MacDonald’s algorithm pro-
duce nearly identical results with the only exceptions highlighted in bold. MCFA images con-
sisting of more frames take longer to converge due to the higher intensities at each pixel
associated with the summation of individual frames. When the algorithm does not always con-
verge to the true value of r0, the estimated value was always within 0.5 cm of the true value. The
estimates for r0 often appear to be lower than the true value, and this is likely due to the

Table 2 Simulated system specifications.

Parameter name Defined value

Mean wavelength (λ̄) 600 nm

Pixel size 5 × 5 μm2

Sensor focal length (f ) 3 m

Aperture diameter (D) 15 cm

Coherence Parameter (M) 30

Fig. 6 In this demonstration, the true image (a) is blurred with an average short-exposure OTF
with an r 0 of 2.6 cm. The blurred/noisy image (b) is the summation of 30 individual frames with
independent realizations of Poisson noise. The image estimate (c) was obtained using the best
estimate of r 0 ¼ 2.6 cm with the cap on the number of iterations set to 5000.
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algorithm’s attempt to remove minor focus errors that were not accounted for when assigning the
image as truth data. The PSF arising from minor focus error will have a similar shape to the PSF
arising from atmospheric turbulence.18 Therefore, minor focus error could contribute to the low
estimates for r0. This assessment is drawn from and supported by the fact that ideally simulated

Table 3 Results for fully illuminated image simulation with Poisson noise (true r 0 ¼ 2.6 cm).

Frames SNR (dB)

MacDonald’s
algorithm (cm)

Convergence of
variance (cm)

Result Error Result Error

Maximum iterations allowed—1000

1 41.48 2.4 −0.2 2.4 −0.2

10 51.47 2.7 0.1 2.7 0.1

20 54.49 2.8 0.2 2.8 0.2

30 56.24 2.9 0.3 2.9 0.3

50 58.44 3.0 0.4 3.0 0.4

100 61.47 3.2 0.6 3.1 0.5

Maximum iterations allowed—5000

1 41.48 2.1 −0.5 2.2 −0.4

10 51.47 2.4 −0.2 2.4 −0.2

20 54.49 2.5 −0.1 2.5 −0.1

30 56.24 2.5 −0.1 2.6 0

50 58.44 2.6 0 2.6 0

100 61.47 2.7 0.1 2.7 0.1

Maximum iterations allowed—10000

1 41.48 2.1 −0.5 2.1 −0.5

10 51.47 2.3 −0.3 2.3 −0.3

20 54.49 2.4 −0.2 2.4 −0.2

30 56.24 2.4 −0.2 2.4 −0.2

50 58.44 2.5 −0.1 2.5 −0.1

100 61.47 2.6 0 2.6 0

Maximum iterations allowed—20,000

1 41.48 2.1 −0.5 2.1 −0.5

10 51.47 2.3 −0.3 2.3 −0.3

20 54.49 2.3 −0.3 2.3 −0.3

30 56.24 2.3 −0.3 2.4 −0.2

50 58.44 2.4 −0.2 2.4 −0.2

100 61.47 — — 2.5 −0.1
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scenes using patterns and point sources as demonstrated in Sec. 4.2 never converge below the
true value regardless of the number of iterations the algorithm is allowed to perform provided we
have an adequate SNR.

The performance of the convergence of variance technique is based on the quality of the
blurred image and the amount of time available for processing. Provided enough time is allowed,
Eq. (12) will be satisfied for the best estimate of r0. However, allowing too much time does not
present a problem for this algorithm. By observing the difference between the left-side and right-
side of Eq. (12) at each iteration, we can update an estimate for the number of remaining iter-
ations required for convergence, EI, using

IVðnÞ ¼
X
u;v¼1

½iðu; vÞ − Iðu; vÞ�2 BV ¼
X
u;v¼1

Vðu; vÞ EI ¼ IVðn − 1Þ − BV

IVðn − 1Þ − IVðnÞ ; (16)

where n represents the iteration number, BV is the variance of the collected image, and IV is the
mean square error between the collected images and the non-noisy estimate. Essentially the
relationships in Eq. (16) are used to predict how long the algorithm will have to iterate
based on the current rate of convergence. Figure 7 demonstrates that when the value of r0 is
too low, the estimated number of remaining iterations diverges.

We now repeat this experiment in the presence of negative binomial noise to simulate the
expected results from laser illuminated imagery. Figure 8 again demonstrates the results using an
MCFA consisting of 30 frames and a cap on the maximum iterations set to 5000. A close inspec-
tion of the blurred/noisy image reveals a significant and visible increase in overall noise variance.
As expected, this does impact the final results. Table 4 summarizes the results obtained for the
convergence of variance technique, as well as MacDonald’s algorithm using the introduction of a
prior for the distribution of r0. However, in the case of negative binomial noise, the differences in
the results are more significant. By introducing the prior, the tendency to underestimate r0 is
more pronounced. This trend of underestimation of r0 was also noticed by MacDonald.19 Again,
it is expected that focus error in the original image is a contributing factor in the underestimation
of r0. This presents an interesting topic for potential future research.

At this point, the functionality of the convergence of variance technique has been demon-
strated for fully illuminated scenes. Further experimentation was conducted on simulated stellar
targets to identify the potential for measurement of atmospheric seeing on scenes where the
majority of the image consists only of background illumination and noise. Since these targets
are fully simulated, and thus inherently perfectly focused, underestimation of r0 was not
expected to be a problem for the convergence of variance technique. Provided the algorithm
is allowed enough time to iterate, convergence to the correct r0 should be achieved.

Fig. 7 Estimated iterations remaining for an motion compensated frame average (MCFA) image
composed of 30 independent frames. (a) Coarse estimation shows convergence for r 0 values
>3 cm, but divergence for values of 2 cm or less when the true r 0 ¼ 2.6 cm. (b) Fine estimation
with a cap of 5000 iterations shows convergence for r 0 values of 2.6 cm or greater. Based on
experience with this algorithm, it is expected that convergence will occur for an r 0 value of
2.4 cm due to the concave down nature of the curve as supported by the results in Table 3.
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However, the scaling factor of N2 in the prior Eq. (11) was expected to still cause some bias in
the estimates for r0 using MacDonald’s algorithm.

4.2 Partially Illuminated Scenes

Space situational awareness (SSA) is a key mission of the United States Air Force Space
Command. One aspect of SSA involves using both telescope networks and radars to detect,
identify, record, and track all man-made objects orbiting the earth. Knowing the exact locations
of these orbiting objects in space is crucial for future space operation safety. The SSA mission
has become even more important with recent events such as the Iridium and Cosmos satellite
collision and the Chinese antisatellite missile test in 2007, both of which created large swaths of
space debris. This debris will be an ongoing risk to US satellites for years to come as the orbits of
the debris degrade toward Earth. This is merely a single example and justification of the impor-
tance for deblurring techniques applicable to astronomical images.

The following simulations will consider three separate target configurations. We will look at
a single point source that could be representative of a star, a scene that has multiple point sources
arranged throughout the image and finally, we will look at a cross bar pattern, as in Fig. 9. We
will again consider both Poisson and negative binomial statistics with various SNR levels.

The testing in Sec. 4.1 revealed that both algorithms are impacted by SNR and focus error.
However, the simulations also revealed that no gain in performance was realized through the
introduction of the prior for r0 and that the convergence of variance technique exhibited promise
for estimation of r0 as well as a deblurred scene. The results that follow add support for the
hypothesis that the underestimation of r0 was a function of both SNR and focus error. The
SNR for the various MCFAs used in the following simulations is identified in Table 5. As
expected, the SNR for MCFAs with Poisson noise is higher than the SNR for MCFAs with
negative binomial noise.

Tables 6 and 8 demonstrate the utility of the convergence of variance algorithm on partially
illuminated scenes with Poisson and negative binomial noise, respectively. From these results,
we conclude that, provided enough frames are properly registered and averaged to provide
adequate SNR and enough time is allowed for convergence, the value of r0 can be estimated
to within 1 mm. In cases where we have low SNR, the algorithm will tend to underestimate, but
this is expected since the noise power in the images masks some of the high frequency content. If
insufficient time is allowed for convergence, the algorithm will produce a high estimate for r0, as
can be observed when the cap for iterations was limited to 1,000. Additionally, we notice that in
cases of adequate SNR, we do not have a problem of underestimation of r0 since focus error was
not present in these images.

For demonstration purposes, the algorithm was allowed a cap of 1,000,000 iterations. Even
under these conditions, underestimation was never a factor for images with adequate SNR using
the convergence of variance technique. At this point, it is unknown if it would be possible to

Fig. 8 In this demonstration, the true image (a) is blurred with an average short-exposure OTF
with an r 0 of 2.6 cm. The blurred/noisy image (b) is the summation of 30 individual frames with
independent realizations of negative binomial noise. The image estimate (c) was obtained using
the best estimate of r 0 ¼ 2.6 cm with the cap on the number of iterations set to 5000 for the con-
vergence of variance technique.
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Table 4 Results for fully illuminated image simulation with negative binomial noise (true
r 0 ¼ 2.6 cm).

Frames SNR (dB)

MacDonald’s
algorithm (cm)

Convergence of
variance (cm)

Result Error Result Error

Maximum iterations allowed—1000

1 14.7 0.9 −1.7 1.5 −1.1

10 24.7 2.1 −0.5 2.5 −0.1

20 27.7 2.4 −0.2 2.8 0.2

30 29.4 2.6 0 3.0 0.4

50 31.6 3.0 0.4 3.1 0.5

100 34.7 3.2 0.6 3.2 0.6

Maximum iterations allowed—5000

1 14.7 0.9 −1.7 1.4 −1.2

10 24.7 1.8 −0.8 2.0 −0.6

20 27.7 2.0 −0.6 2.2 −0.4

30 29.4 2.2 −0.4 2.4 −0.2

50 31.6 2.4 −0.2 2.4 −0.2

100 34.7 2.5 −0.1 2.5 −0.1

Maximum iterations allowed—10,000

1 14.7 0.9 −1.7 1.3 −1.3

10 24.7 1.8 −0.8 1.9 −0.7

20 27.7 2.0 −0.6 2.1 −0.5

30 29.4 2.1 −0.5 2.2 −0.4

50 31.6 2.2 −0.4 2.3 −0.3

100 34.7 2.3 −0.3 2.4 −0.2

Maximum iterations allowed—20,000

1 14.7 0.8 −1.8 1.3 −1.3

10 24.7 1.8 −0.8 1.9 −0.7

20 27.7 1.9 −0.7 2.0 −0.6

30 29.4 2.0 −0.6 2.0 −0.6

50 31.6 2.1 −0.5 2.2 −0.4

100 34.7 2.2 −0.4 2.2 −0.4
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predict the precise level of SNR at which the algorithm will converge to the correct value of r0
since the relationship appears to be scene or contrast dependent. However, we can conclude that
higher levels for SNR will yield better results. Additionally, even at low values of SNR, we
achieve reasonable estimations for the deblurred scene and r0 using the convergence of variance
method. On the other hand, by introducing a prior for the distribution of r0, underestimation is
more prevalent.

In Fig. 10, we demonstrate the performance of the convergence of variance technique for the
three target types in the presence of Poisson noise. Using the RL deconvolution algorithm with a
cap on the number of iterations set to 10,000 and an MCFA consisting of 30 frames, we were able
to recover the correct r0 in all cases. For the point source targets, the blurring effects of the
simulated atmosphere reduce the intensity to the point that it is difficult to visually identify
the various point sources. However, when deconvolution is completed, each of the sources
is easily identified. For the cross bar pattern, the process of deconvolution makes it much easier
to identify the structure of the target pattern. Although it may seem that a cap of 10,000 iterations
is unreasonable, the algorithm will only take as much time as needed to converge within this
upper bound. For instance, if the termination criteria is met before the upper bound on iterations

Fig. 9 (a) This scene is representative of a single star or point source. (b) This scene contains
multiple point sources with varying intensities and spacings. The spacing between the two point
sources in the center of the image is a single pixel. (c) This scene contains a cross bar pattern.

Table 5 Signal to noise ratio for simulation data.

Frames in MCFA Point source Multiple point sources Cross bar pattern

Signal to Noise Ratio (dB) for Poisson MCFAs

1 15.0 17.2 30.0

10 24.8 26.2 39.3

20 28.0 29.2 42.9

30 29.6 30.7 44.7

50 31.9 33.3 46.9

Signal to noise ratio (dB) for negative binomial MCFAs

1 11.8 13.1 14.4

10 22.6 23.7 25.7

20 26.3 27.0 29.3

30 27.5 28.1 30.5

50 29.4 30.0 32.7
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is achieved, the algorithm will terminate. Even with a standard home computer with a 2.7 GHz
Intel® Core™ i5 processor and 16 GB of memory, convergence was achieved in a reasonably
short period of time for all target types as shown in Table 7. Again, as indicated in Fig. 5, the
algorithm could be manually interrupted sooner if needed, at which point, the lowest value of r0
that has allowed convergence would be returned as the answer. For instance, in the example
shown in Fig. 10, if we interrupted the routine after 4.26 s for the cross bar pattern, we
would get an estimated r0 of 4 cm. After a total of 10 s, the estimate would be within
0.5 cm of the truth at 3.8 cm. The estimate continues to be refined until the best estimate is
achieved after 21.77 s. As demonstrated in Table 6, convergence at a value less than the
truth is not an issue provided we have adequate SNR, and the image is not further degraded
by optical aberrations such as focus error.

Table 6 Results for partially illuminated image simulation with Poisson noise (true r 0 ¼ 3.3 cm).

Frames

MacDonald’s algorithm (cm) Convergence of variance (cm)

Point Multipoint Cross bar Point Multipoint Cross bar

Maximum iterations allowed—1000

1 0.1 1.5 2.6 3.2 3.2 3.4

10 2.9 3.1 3.3 3.3 3.5 4.2

20 3.2 3.2 3.4 3.3 3.6 4.6

30 3.3 3.3 3.5 3.3 3.8 5.1

50 3.3 3.3 3.6 3.4 3.9 5.9

Maximum iterations allowed—10,000

1 0.1 1.3 2.6 3.2 3.2 3.2

10 2.9 3.0 3.2 3.3 3.3 3.3

20 3.1 3.2 3.3 3.3 3.3 3.3

30 3.2 3.2 3.3 3.3 3.3 3.3

50 3.2 3.2 3.3 3.3 3.3 3.4

Maximum iterations allowed—20,000

1 0.1 1.3 2.6 3.2 3.2 3.2

10 2.9 3.0 3.2 3.3 3.3 3.3

20 3.1 3.1 3.3 3.3 3.3 3.3

30 3.1 3.2 3.3 3.3 3.3 3.3

50 3.2 3.2 3.3 3.3 3.3 3.3

Maximum iterations allowed—1,000,000

1 0.1 1.3 2.5 3.2 3.2 3.2

10 2.8 3.0 3.2 3.3 3.3 3.3

20 3.1 3.1 3.3 3.3 3.3 3.3

30 3.1 3.2 3.3 3.3 3.3 3.3

50 3.2 3.2 3.3 3.3 3.3 3.3
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4.3 Extension of Convergence of Variance Technique for 3-D FLASH Laser
Radar Images

3-D LADAR technology is receiving an increased interest as the technology improves.
Currently, the commercially available sensors are severely undersampled and do not experience
the effects of diffraction from atmospheric turbulence. However, as the technology continues to
progress, it is expected that minimizing the effects of atmospheric turbulence will be important.

Fig. 10 Demonstration of the convergence of variance technique using the Richardson–Lucy (RL)
deconvolution algorithm with an MCFA consisting of 30 frames for the single point source (a),
multiple point sources (b), and the cross bar pattern (c).

Table 7 Convergence times for simulations shown in Fig. 10.

Target type

Course convergence Fine convergence

Total time (s)Iterations Time (s) Iterations Time (s)

Single point 627 1.66 968 2.49 4.15

Multiple points 800 1.90 1709 4.45 6.35

Cross bar 2123 4.26 8275 17.51 21.77
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Conversely, certain applications such as the imaging and tracking of space debris may require an
optics configuration where the current sensors would receive properly sampled images. In those
cases, the convergence of variance technique could easily be applied to identify the PSF para-
meterized by r0 that will deblur the scene.

A typical full-waveform 3-D LADAR image is comprised of multiple 2-D images or frames
separated by a small time delta. Therefore, the 3-D image can be flattened into a 2-D image by
simply removing the range information and accumulating the intensity information for each
pixel for the series of individual frames. Fortunately, the atmosphere can be considered static
for the laser illuminator pulse duration and subsequent detector integration times that are

Table 8 Results for partially illuminated image simulation with negative binomial noise (true
r 0 ¼ 3.3 cm).

Frames

MacDonald’s
algorithm (cm)

Convergence of
variance (cm)

Point Multipoint Cross bar Point Multipoint Cross bar

Maximum iterations allowed—1000

1 0.1 1.0 1.8 3.1 3.0 5.0

10 2.4 2.7 2.8 3.4 3.7 5.1

20 2.9 3.0 3.0 3.5 4.0 5.8

30 3.0 3.1 3.1 3.7 4.8 6.5

50 3.2 3.2 3.2 3.9 5.0 8.5

Maximum iterations allowed—10,000

1 0.1 0.5 1.7 3.1 2.9 3.4

10 2.3 2.6 2.7 3.3 3.2 3.4

20 2.7 2.9 3.0 3.3 3.3 3.5

30 2.9 3.0 3.1 3.3 3.3 3.7

50 3.0 3.1 3.3 3.3 3.3 4.0

Maximum iterations allowed—20,000

1 0.1 0.4 1.7 3.1 2.9 3.2

10 2.3 2.6 2.7 3.2 3.2 3.2

20 2.7 2.9 3.1 3.2 3.3 3.3

30 2.9 3.0 3.1 3.3 3.3 3.3

50 3.0 3.1 3.2 3.3 3.3 3.3

Maximum iterations allowed—1,000,000

1 0.1 0.4 1.7 3.1 2.9 3.2

10 2.3 2.5 2.7 3.2 3.2 3.2

20 2.7 2.8 3.0 3.2 3.3 3.3

30 2.8 3.0 3.1 3.3 3.3 3.3

50 3.0 3.1 3.1 3.3 3.3 3.3
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common to 3-D LADAR sensors.1,3 Based on this premise, this technique was originally
explored as a means of identifying the best PSF parameterized by r0 to be employed in algo-
rithms such as the multiple surface FLASH LADAR ranging algorithm.20

5 Experimental Results

The optical configuration shown in Fig. 11 was used to obtain properly sampled images. The
specifications for this setup are listed in Table 1. The camera used in this configuration allowed
for a 16-bit analog to digital conversion, and experiments show that it acts as a photon counting
device in lower intensity regions. This allows for utilization of the Poisson and negative binomial
statistical models without applying a conversion factor to the digitized images. However, as the
detector approached higher intensity thresholds, the conversion between digital counts and pho-
tons became nonlinear. For that reason, images were taken in low light conditions to ensure the
convergence of variance technique could be applied.

In order to create a turbulent atmosphere to image through, a heat source was directed in front
of the telescope aperture. This technique allowed for the generation of repeatable turbulent
atmospheres with r0 values in the subcentimeter range. Without the use of this heat source,
all of the images would likely have been at or near the diffraction limit making validation
of the convergence of variance technique difficult.

The experiments for fully illuminated scenes will use the image in Fig. 12 as a target. This
target will be placed indoors, 10 m from the sensor where turbulence and illumination can be

Fig. 11 Experimental sensor setup consists of a Celestron® NexStar® 6SE 1.5 m focal length
telescope with a mask to reduce the aperture to 5 cm, and an Orion® Starshoot™ G3 mono-
chrome camera.

Fig. 12 Scene used for each of the fully illuminated experiments below. The top portion of the
scene includes various characters of decreasing size. The bottom portion of the scene has a
step target to allow for measurement of the true r 0.
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controlled. The incorporation of a step in the bottom portion of the scene will permit the meas-
urement of the true r0 for comparison with the estimated values.

5.1 Fully Illuminated Scenes—Natural Light

In the following two experiments, the remote scene was fully illuminated by natural lighting.
Given that the light source was incoherent, the Poisson statistical model for the photon arrival
rate applies.3 We will use the RL deconvolution algorithm (7) with PSFs parameterized by a
range of r0 values from 0.1 cm up to the aperture diameter of 5 cm.

In Fig. 13, we demonstrate the ability to measure r0 by measuring the step response from the
collected MCFA. The impulse response is then found by taking the derivative of this measured
step response. Once we have the impulse response, we can vary r0 per the relationship in Eq. (2)
to find the theoretical total PSF, htot, that minimizes the error between the measured impulse
response and the theoretical impulse response. In the first experiment shown in Fig. 14, r0
was measured at 0.4 cm. Using the convergence of variance technique, we obtain an estimate
of r0 ¼ 0.5 cm for an error in estimation of only 1 mm. At this point, it is important to note that
the edges of the deblurred images are distorted due to the implementation of the RL algorithm
using the 2-D fast Fourier transform in Matlab. This implementation was chosen in order to
decrease the time required for execution. Therefore, when computing the variance per the rela-
tionship in Eq. (12), the edges were ignored. In the collected MCFA, it is difficult to discern the
smaller font sizes. However, when deconvolution is conducted with an OTF parameterized by
the r0 estimate, it is possible to identify each of the characters. In the second experiment shown

Fig. 13 Using the step in the bottom portion of the colected remote scene (a) we can compute the
mean step response for the collected MCFA (b). From this step response, we compute the exper-
imental OTF and find the theoretical short exposure OTF that minimizes mean square error
between the two (c).
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in Fig. 15, r0 was measured at 1.1 cm. Using the convergence of variance technique, we obtain
an estimate of r0 ¼ 1.1 cm. Although the blurring due to turbulence was less severe in this
experiment, improvement in sharpness of the characters is again noted when deconvolution
was conducted using the estimate for r0.

5.2 Fully Illuminated Scenes—Laser Illumination

In the following two experiments, the remote scene was illuminated using a laser with a wave-
length of 630 nm. Given that the light source was partially coherent, with a measured coherence
parameter, M ¼ 10, the negative binomial statistical model for speckle noise applies.3 We will
use the ML estimator developed by MacDonald (14) with PSFs parameterized by a range of r0
values from 0.1 cm up to the aperture diameter of 5 cm.

In the first experiment shown in Fig. 16, r0 was measured at 0.5 cm. Using the convergence
of variance technique, we obtain an estimate of r0 ¼ 0.5 cm. In the collected MCFA, it is dif-
ficult to discern the smaller font sizes and based on where the illumination spot was centered, the
top two rows of text are nearly illegible. However, when deconvolution is conducted with an
OTF parameterized by the estimate for r0, it is possible to identify most of the characters. It is
much easier to identify the row of Qs, and the top row of Es is faintly visible. In the second
experiment shown in Fig. 17, r0 was measured at 1.1 cm. Using the convergence of variance
technique, we obtain an estimate of r0 ¼ 1.1 cm. When the blurring due to turbulence was less
severe in this experiment, significant improvement is again noted when deconvolution was

Fig. 14 (a) Collected MCFA consisting of 100 registered frames, each with an exposure time of
0.001 s. (b) Deblurred image using the lowest r 0 for which convergence was achieved
(r 0 ¼ 0.5 cm).

Fig. 15 (a) Collected MCFA consisting of 100 registered frames, each with an exposure time of
0.001 s. (b) Deblurred image using the lowest r 0 for which convergence was achieved
(r 0 ¼ 1.1 cm).
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conducted using the estimate for r0. The results for the fully illuminated image experiment are
summarized in Table 9.

5.3 Correlation Technique for Measurement of Atmospheric Seeing

With the previous experimental setups, the true value of r0 could be measured by imaging a step
target and by taking the derivative to find the impulse response as shown in Fig. 13. The step
target could be placed in line with the desired remote scene such that the measurements were
made through nearly identical columns of turbulent air. However, when trying to measure the
true r0 of stellar images for comparison with the experimental results, this was not a viable
solution. We could average many short exposure images of a single star in order to get the aver-
age short-exposure OTF parameterized by r0; however, this requires precise tilt removal and any
shift estimation errors will appear as attenuation of the short-exposure OTF and underestimation
of r0. Trying to average enough frames to achieve the long-exposure OTF in order to find r0
would likely take thousands of images to converge upon the optimal solution. Based on the
frame rate of the experimental collection system, it is possible that the value for r0 would change
in the time required to gather this amount of data. Therefore, we considered an alternative tech-
nique for measuring the value of atmospheric seeing that considers the cross correlation of the
collected images.

By considering all possible combinations of the cross correlations between a series of indi-
vidual short exposure images, SK , taken of a star, we can find the cross power spectral density
(CPSD), PSðνx; νyÞ, where

Fig. 17 (a) Collected MCFA consisting of 100 registered frames, each with an exposure time of
0.005 s. (b) Deblurred image using the lowest r 0 for which convergence was achieved
(r 0 ¼ 1.1 cm).

Fig. 16 (a) Collected MCFA consisting of 100 registered frames, each with an exposure time of
0.005 s. (b) Deblurred image using the lowest r 0 for which convergence was achieved
(r 0 ¼ 0.5 cm).
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PSðνx; νyÞ ¼ EfF ½SK1
ðx; yÞ�F �½SK2

ðx; yÞ�g ∀K1 ≠ K2: (17)

In other words, the CPSD is the correlation between the normalized Fourier transforms of all
possible image combinations.21 For a sequence of K images, there are a total of KðK − 1Þ∕2
nonredundant cross correlations. Additionally, the CPSD of the blurred point source can be
shown to have the following relationship:

PSðνx; νyÞ ¼ E½jHðνx; νyÞj2�; (18)

where E½jHðνx; νyÞj2� is the speckle transfer function.22 Fortunately, the speckle transfer function
can also be parameterized by r0. Therefore, in order to obtain the true value for atmospheric
seeing, we can find the value of r0 that minimizes the error in Eq. (18). At this point, we
must keep in mind that this technique for measuring r0 is limited to cases where we are imaging
a point source. We will use this technique to demonstrate that the convergence of variance tech-
nique will in fact identify the correct r0.

5.4 Partially Illuminated Scenes

For the experiments involving partially illuminated scenes, we chose to image a star. Stars can
essentially be considered point sources of light, allowing us to use the technique presented in
Sec. 5.3 to obtain truth data for comparison with the convergence of variance results. Although
the resultant deblurred image is intuitive, the estimated values for r0 prove that the technique can
be successfully used to measure r0 for partially illuminated scenes. For the experiments, we
chose a relatively bright star near Polaris to image. This minimized the relative motion between
the field of view and the imaged portion of the sky. All individual images were taken using an
exposure time of 0.001 s to ensure that the short-exposure model was applicable.3 Additionally,
each of the MCFAs is a compilation of 20 individual frames. Some experimentation with MCFAs
consisting of more than 20 frames was accomplished. However, no increase in performance was
observed.

In Table 10, the estimated value for r0 was always within 0.2 cm of the measured value.
Initially, the cap on the number of iterations was set to 1000. In all cases, the algorithm

Table 9 Summary of results for fully illuminated image experiments.

Trial Estimated r 0 (cm) Measured r 0 (cm)

Natural light—low r 0 0.5 0.4

Natural light—high r 0 1.1 1.1

Laser illumination—low r 0 0.5 0.5

Laser illumination—high r 0 1.1 1.1

Table 10 Results for partially illuminated image experiments.

Trial Estimated r 0 (cm) Measured r 0 (cm)

1 2.3 2.1

2 2.4 2.2

3 2.3 2.2

4 2.4 2.1

5 2.4 2.1
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converged within the first 100 iterations for this scene. We then increased the number of iter-
ations to 10,000 and then 20,000 to see if it had an impact on the results, but it did not.

As described in Fig. 5, we first conduct a course search with a step size of 1 cm, revealing that
the minimum value of r0 that will allow convergence is 3 cm. We then step through with a
smaller step size and show that convergence can be achieved for values of r0 as low as
2.4 cm. For this image, convergence occurs after just 68 iterations for an r0 of 2.4 cm.
However, it is divergent for anything less than this value. In Fig. 18, we show the resultant
deblurred image when using this best estimate for r0 in conjunction with the RL deconvolution
algorithm and the average short-exposure OTF. As expected, the image estimate approaches
more of a point source than the original image.

6 Conclusions

The focus of this work was to develop a blind deconvolution technique that could be employed in
a tactical military environment where both time and computational power are limited. The con-
vergence of variance technique detailed above allows for rapid and accurate estimations of the
atmospheric OTF parameterized by the seeing parameter, r0. As shown in Fig. 4, the technique
can be interrupted after any amount of time, at which point the best available results would be
provided. If more time is provided, the results are simply enhanced. Additionally, the conver-
gence of variance technique reduces the possibility of noise amplification common with iterative
deconvolution algorithms by ceasing iteration once the statistically predicted variance is
achieved.

An interesting discovery was also made through the course of this effort and is highlighted in
Sec. 4.1. This technique will also attempt to recover from a minor focus error in the collected
images due to the similarity between the atmospheric OTF and the OTF that arises from a minor
focus error. As a result, the estimates for r0 may be lower than the true value. Therefore, if this
algorithm is to be used for atmospheric seeing measurement, the images must be in focus. A
potential topic for future research would be the relationship between the seeing parameter and
focus interaction for varying levels of focus error and atmospheric turbulence.
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Fig. 18 The collected MCFA consisting of 20 registered short exposure images (a) and the
deblurred image estimate when the average short exposure OTF with an r 0 of 2.4 cm is used
for deconvolution (b).
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