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Abstract. Military applications that use adaptive optics (AO) often require
a point source beacon at the target to measure and correct for wavefront
aberrations introduced by atmospheric turbulence. However, turbulence
prevents the formation of such a point beacon. The extended beacons
that are created instead have finite spatial extents and exhibit varying
degrees of spatial coherence. Modeling these extended beacons using
a Gaussian Schell-model (GSM) form for the autocorrelation function
would be a convenient approach due to the analytical tractability of
Gaussian functions. We examine the validity of using such a model by
evaluating the field scattered from a rough impedance surface using a
full-wave computational technique called the method of moments (MoM).
The MoM improves the fidelity of the analysis since it captures all the phys-
ics of the laser-target interaction, such as masking, shadowing, multiple
reflections, etc. Two rough-surface targets with different roughness statis-
tics are analyzed. The simulation results are verified with experimental
bidirectional reflectance distribution function measurements. It is seen
that for rough surfaces, in general, the scattered-field autocorrelation func-
tion is not of a GSM form. However, under certain conditions, modeling an
extended beacon as a GSM source is legitimate. This analysis will aid in
understanding the behavior of extended beacons and how they affect the
overall performance of an AO system. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.OE.52.3.038001]

Subject terms: Gaussian Schell-model; rough surface scattering; impedance
surface; method of moments.

Paper 121832P received Dec. 14, 2012; revised manuscript received Jan. 29, 2013;
accepted for publication Feb. 4, 2013; published online Mar. 4, 2013.

1 Introduction
Due to atmospheric turbulence and other factors, it is seldom
possible to create a point source beacon at a target. The
extended beacons that are created instead have intensity pro-
files with finite spatial extents and varying degrees of spatial
coherence. It is important to model these extended beacons
accurately, identify their key parameters, and develop an
understanding of how they affect the overall performance
of an adaptive optics (AO) system. Gaussian Schell-model
(GSM) beams/sources have been used extensively in the lit-
erature to represent partially coherent light sources.1–4

Techniques for simulating such fields have been discussed
by Gbur5 and Xiao et al.6 Further, it has been shown that
GSM beams retain their GSM form to a good approximation
even after propagation through atmospheric turbulence.7–9

GSM beams are described by an average Gaussian intensity
function and a Gaussian normalized autocorrelation func-
tion.10 The use of Gaussian functions makes the model
analytically tractable.

Korotkova et al.11 developed an analytical model for the
scattering of a Gaussian beam from a rough-surface target.
Their analysis followed two different approaches: the first
used Goodman’s technique12 of modeling the rough surface
as reflection coefficients, while the other used a rough-

surface phase screen model and Rytov perturbation theory.
Both models yielded identical results. At normal incidence,
for a surface characterized by a Gaussian height distribution
and a Gaussian autocorrelation function, the far-zone scat-
tered-field autocorrelation function followed a GSM form
in the paraxial regime. The physics of the laser-target inter-
action, such as masking, shadowing, multiple reflections,
etc., are not captured in an effects model such as those
employed by Korotkova et al. Given that the GSM form
is very convenient to use, it is worth investigating the validity
of the model for different scattering scenarios of interest,
such as non-Gaussian surfaces and off-normal illumination.
Only a full-wave computational technique, such as the
method of moments (MoM), can accurately evaluate the
scattered field by capturing all aspects of the laser-target
interaction.

The MoM technique has been used traditionally to predict
plane-wave scattering from rough surfaces.13–15 Scattering of
an incident Gaussian beam by a perfectly conducting rough
surface using full-wave methods was first investigated by
Collin.16 Jacobs et al.17 used the MoM to study the absorp-
tion, transmission, and scattering characteristics of a rough
resistive sheet when illuminated by a Gaussian beam. Wang
et al.18 used the Kirchhoff scalar scattering approximation
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and the plane-wave spectrum representation of electromag-
netic fields to study the characteristics of scattered radiation
from dielectric surfaces illuminated by a Gaussian beam.
The purpose of this work is to apply the MoM technique
to evaluate the scattered field from a rough impedance sur-
face when illuminated by a fully coherent Gaussian beam.
The simulations reveal several interesting features of the
scattered radiation that have not been discussed previously.
Two rough-surface targets with different roughness statistics
are analyzed. The simulation results are verified by experi-
mental measurements using the Complete Angle Scatter
Instrument (CASI).19 In this work, a one-dimensional (1-D)
rough surface model (i.e., the rough impedance surface and
illumination are assumed to be invariant in the z direction) is
considered for computational convenience. It should be
noted that light scattered from 1-D surfaces shows the
same physical behavior as light scattered from two-dimen-
sional (2-D) surfaces.20 The mechanisms that are not cap-
tured in 1-D analysis are cross-polarized scattering and
out-of-plane scattering.20 Note that for the real-world surfa-
ces analyzed in this research, the scattering measurements
showed that the cross-polarized scattering was negligible.

Section 2 discusses the mathematical formulation and
implementation of the MoM. The process of characterization
of the sample targets is described in Sec. 3. Section 4
discusses the validity of using the GSM form for extended
beacon studies based on the results from the simulations.
Finally, a summary of the findings and future research
directions are presented in Sec. 5.

2 Methodology
The scattering geometry assumed in the analysis is shown in
Fig. 1. The rough impedance surface is denoted by the func-
tion hðxÞ, with mean, standard deviation and correlation
length equal to 0, σh, and lh, respectively. Note that, in
this context, hðxÞ is one instance of a random surface
drawn from an ensemble of random surfaces. It is assumed
that the first and second derivatives of hðxÞ exist. The stat-
istical distributions of hðxÞ are discussed in Sec. 3. The sur-
face is illuminated by a fully coherent Gaussian beam and the
scattered radiation is observed in the far field. The incident
radiation is assumed to be TMz (s-polarized). The results for
the TEz polarization, not shown, are similar.

2.1 Derivation of Coupled Electric Field Integral
Equations

In accordance with the surface equivalence principle,21 the
original scattering problem can be replaced by equivalent
exterior and interior problems. In the equivalent exterior
problem, the boundary is replaced by equivalent electric
ðJ1 ¼ n̂ ×H1Þ and magnetic ðK1 ¼ E1 × n̂Þ surface cur-
rents, which reproduce the fields in region 1 in combination
with the original source. Note that the electric field in region
1 is E1 ¼ Einc þ Es, where Einc and Es are the incident and
scattered electric fields, respectively; and the magnetic field
is H1. Here, n̂ is the unit normal vector pointing into region
1. Null fields are produced in region 2, which allows that
region to be replaced with any desired material. It is conven-
ient to replace region 2 with a vacuum, thus yielding currents
that radiate in unbounded space (and permitting use of the
free-space Green’s function21–23). In the equivalent interior
problem (opposite the exterior problem), the boundary is
replaced with equivalent electric ðJ2 ¼ −n̂ ×H2Þ and mag-
netic ðK2 ¼ E2 × −n̂Þ surface currents, which reproduce the
fields E2 and H2 in region 2. Null fields are produced in the
exterior region, thus permitting region 1 to be replaced with
any desired material. It is convenient to replace region 1 with
ε and μ yielding currents that radiate in unbounded space.
The continuity of transverse electric and magnetic fields
at the rough interface implies that J1 ¼ −J2 ¼ J and
K1 ¼ −K2 ¼ K, yielding a system of coupled electric
field integral equations, namely

n̂×Einc ¼−K− n̂×
�
η0
jk0

ð∇t∇t ·A1þk20A1Þ−∇t×F1

�
Sþ

0¼K− n̂×
�
η

jk
ð∇t∇t ·A2þk2A2Þ−∇t×F2

�
S−
;

(1)

where the magnetic vector potential A and electric vector
potential F are

AβðρÞ ¼
1

4j

Z
C
Jðρ 0ÞHð2Þ

0 ðkβjρ − ρ 0jÞdρ 0

FβðρÞ ¼
1

4j

Z
C
Kðρ 0ÞHð2Þ

0 ðkβjρ − ρ 0jÞdρ 0:
(2)

Here,

kβ ¼
�
k0 β ¼ 1

k β ¼ 2
;

Sþ and S− denote that the bracketed expressions are evalu-
ated an infinitesimal distance above and below the rough
interface, respectively; η ¼ ffiffiffiffiffiffiffiffi

μ∕ε
p

, η0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ0∕ε0

p
, k, and

k0 are the intrinsic impedances and wavenumbers of the
medium below the rough interface and vacuum, respectively;
ρ 0 is a vector that points from the origin to any point on the
surface; and ρ is a vector that points from the origin to the
observation point. In the context of the above expressions,
ρ ∈ C, where C is the parameterized rough surface contour.
Note that the unknowns in Eq. (1) are J and K. The 2-D,

free-space Green’s function is Gðρjρ 0Þ ¼ 1
4j H

ð2Þ
0 ðkjρ − ρ 0jÞ,

where Hð2Þ
0 is the zeroth-order Hankel function of the second

kind.24

Fig. 1 Scattering geometry of a one-dimensional, rough impedance
surface (i.e., the surface and source excitation are invariant in the
z direction). The medium below the rough interface has a permittivity
of ε and a permeability of μ. The medium above the rough interface
is vacuum.
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2.2 Impedance Boundary Condition

The system of coupled electric field integral equations in
Eq. (1) can be solved using the MoM; however, this is
extremely prohibitive. Because the rough surfaces of interest
are very large compared to the wavelength of the field, the
size of the resulting matrix equation, formed by discretizing
Eq. (1), is extremely large, making computation of the sol-
ution very difficult. However, if Rmin ≫ δ (where R is the
radius of curvature and δ is the skin depth), then an approxi-
mate impedance boundary condition (IBC) can be used to
reduce Eq. (1) to a single equation with one unknown.
This reduces the size of the matrix equation by a factor of
4. The limits of applicability of the IBC can be found in
Yuferev et al.25 If the IBC is valid (which it is for the surfaces
analyzed in this research), the electric and magnetic surface
currents are related by

K ¼ ηJ × n̂: (3)

Substituting Eq. (3) into the first equation in Eq. (1), spe-
cializing the resulting expression to the TMz polarization
case, and simplifying yields the desired electric field integral
equation:

Einc
z ¼ ηJz þ jk0η0Az þ

�
∂Fy

∂x
−
∂Fx

∂y

�
Sþ
: (4)

Substituting in the simplified expressions for the electric
and magnetic vector potentials, we get

Einc
z ðx;yÞ¼ ηJzþ

k0η0
4

Z
C
Jzðx 0ÞHð2Þ

0 ðk0RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½h 0ðx 0Þ�2

q
dx 0

þk0η
4j

Z
C
h 0ðx 0ÞJzðx 0Þ

�
x−x 0

R

�
Hð2Þ

1 ðk0RÞdx 0

−
k0η
4j

Z
C
Jzðx 0Þ

�
y−y 0

R

�
Hð2Þ

1 ðk0RÞdx 0; (5)

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x 0Þ2 þ ðy − y 0Þ2

p
, Hð2Þ

1 is a first-order
Hankel function of the second kind, and hðx 0Þ is the first
derivative of the surface height function hðx 0Þ.

2.3 MoM Solution

In this analysis, the MoM is used to solve Eq. (4) for the
unknown electric current. The MoM consists of two steps—
expansion and testing. In the expansion step, a set of basis
functions with unknown weights are chosen to expand the
unknown current. The resulting system is then tested
using another set of functions to solve for the unknown
expansion weights. Note that at least first-order differenti-
ability is required for basis and testing functions to overcome

the Green’s function source-point singularity [Hð2Þ
1 ðxÞ ∼ 1∕x

as x → 0];21 thus, pulse (rectangular) basis and delta testing
functions will suffice. Substitute Jzðx 0Þ ¼ P

N
n¼1 αnfnðx 0Þ

into Eq. (5), where αn are the unknown, complex basis func-
tion weights and fn is a unit pulse defined over cell n,
namely

fnðxÞ ¼
�
1 if x ∈ cell n
0 else

: (6)

Then, testing the resulting equation [i.e.,
∫ Cδðx − xmÞf·gdx] and simplifying yields

Einc
z ðxm;ymÞ¼ηαnδmn

þk0η0
4

XN
n¼1

αn

Z
celln

Hð2Þ
0 ðk0RmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½h0ðx0Þ�2

q
dx0

−
k0η
4j

XN
n¼1

αn

Z
celln

cosϕmH
ð2Þ
1 ðk0RmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ½h0ðx0Þ�2

q
dx0;

(7)

where

Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm − x 0Þ2 þ ðym − y 0Þ2

q
cos ϕm ¼ ðym − y 0Þ − ðxm − x 0Þh 0ðx 0Þ

Rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½h 0ðx 0Þ�2

p ;
(8)

where δmn is the Kronecker delta function, and xm is the
midpoint of the m’th pulse basis function cell. Recall
that y ¼ hðxÞ, implying that ym ¼ hðxmÞ. Equation (7) is
a discretized version of Eq. (5). Note that the unknowns
(i.e., αn) are no longer inside the integrals. The incident
field, a Gaussian beam that is invariant in the z direction,
is derived using the techniques employed by Andrews
et al. for three-dimensional (3-D) Gaussian beams.26 The
incident field evaluated at the rough surface is given by

Einc
z ðxm;ymÞ

¼ exp

2
664−1

2

�
2
w2
0

þ j k0
F0

�
ðxm cos θiþ ym sin θiÞ2

1þ
�

1
F0
− j 2

k0w2
0

�
ðρsþ xm sin θi − ym cos θiÞ

3
775

×
e−jk0ρse−jk0ðxm sin θi−ym cos θiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

1
F0
− j 2

k0w2
0

�
ðρsþ xm sin θi − ym cos θiÞ

s ;

(9)

where θi is the angle of incidence, ρs is the distance from
the source plane to the rough surface origin, w0 is the 1∕e
radius of the beam in the source plane, and F0 is the phase-
front radius of curvature.

Equation (7) can now be written in matrix form as

½Zmn�½αn� ¼ ½Einc
m �: (10)

Note that because of the singularity in the Hankel functions
as R → 0 (Green’s function source-point singularity), the
diagonal terms of the impedance matrix ½Zmn� must be
handled carefully. This is done by using the small argument
approximations of the Hankel functions. Since the cell sizes
of the pulse basis functions are small compared to the wave-
length, a further simplification to the impedance matrix ele-
ments can be made by approximating the integrals with the
rectangular area under the appropriate cell.21,22 When these
steps are taken, the elements of the impedance matrix are
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Zmn

¼

8><
>:

k0η0
4
Hð2Þ

0 ðk0RmnÞΔn−
k0η
4j H

ð2Þ
1 ðk0RmnÞcosϕmnΔn m≠n

η
2
þk0η0

4
Δn

h
1−j2π log

�
γk0Δn
4e

�i
m¼n

;

(11)

where γ is the Euler constant and Δn is the width of the n’th
pulse basis function cell.

The elements of ½Zmn� are remarkably physical. For in-
stance, element m, n models how the source located in
cell n affects the field observed at point ðxm; ymÞ. Due to
electromagnetic reciprocity, the impedance matrix is sym-
metrical. Physical intuition dictates that the closer the source
and observation point are to each other, the more significant
the coupling between the two is. This intuition is captured in
the impedance matrix, which although generally full, is
highly diagonal, i.e., the “self” terms (source and observer
at same location) are dominant. If the surface is perfectly
reflecting (η ¼ 0) or perfectly conducting, the impedance
matrix contains only the terms involving η0. The terms
involving η are correction terms accounting for a surface
with a nonzero impedance. Note that for metals that are
highly reflective, the η terms are significantly smaller than
the terms involving η0.

The scattered field at an observation point ðx; yÞ in the far
zone can be expressed as

Es
z ¼

k0 exp

�
j

�
π
4
− k0ρ

�	
ffiffiffiffiffiffiffiffiffiffiffiffi
8πk0ρ

p

×
�
−η0

X
n

αnΔnejk0ðxn sin θrþyn cos θrÞ

þη
X
n

αn cos ϕnΔnejk0ðxn sin θrþyn cos θrÞ
	
; (12)

where θr is the observation angle, ðxn; ynÞ is the midpoint
of the n’th pulse basis function cell, ρ is the distance to the
far-field observation point ðx; yÞ, and Rn and cos ϕn are

Rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xnÞ2 þ ðy − ynÞ2

q

cos ϕn ¼
ðy − ynÞ − ðx − xnÞh 0ðxnÞ

Rn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½h 0ðxnÞ�2

p :
(13)

The interested reader is referred to Harrington,23 which
outlines the methodology used in the derivation of Eq. (12).

3 Characterization of Standard Targets Based
on Profilometer Measurements

In order to obtain a more practical set of simulation results,
roughness parameters of two standard rough-surface targets,
sandblasted steel and LabSphere Infragold (LabSphere,
North Sutton, New Hampshire),27 were used in this analysis.
These targets measured 5.08 × 5.08 cm2 and were highly
reflective. The targets were first cleaned with liquid nitrogen
and methanol. Using a KLA Tencor Alpha-Step IQ surface
profiler (Millice, Singapore),28 four scans were taken (each
1 cm in length) for each target in the manner depicted in

Fig. 2. The step size for the scans was 0.2 μm. This generated
four data sets of 50,000 surface points for both targets. The
data sets were then analyzed to determine the autocorrelation
and surface roughness statistics of the targets. A stretched
exponential (SE) function was used to fit the autocorrelation
data.29 This function is used extensively in lithography and
takes the following form:

RðτÞ ¼ σ2h exp

�
−
�jτj
lh

�
2α
	
; (14)

where σ2h is the variance of the surface heights, lh is the
correlation length of the surface, and α is the roughness
exponent. Figure 3 shows SE function fits to the autocorre-
lation data derived from the profilometer measurements.

For the surface height statistics, the following SE proba-
bility density function (PDF) was used:

pHðhÞ ¼ A exp

�
−
�jh − μjffiffiffi

2
p

σh

�
α
	
; (15)

where μ is the mean surface height and A is a constant that
ensures the PDF integrates to unity. Note that μ, σh, and α
were determined via curve fitting. Once the statistical param-
eters of the surfaces were determined, these parameters were
used to generate several independent SE-SE surface realiza-
tions in the manner outlined by Yura and Hanson.30 Figure 4
shows the results of this process comparing the simulated
SE-SE surface statistics with the measured profilometer data.

Fig. 2 LabSphere Infragold target with profilometer scan directions
annotated.

Fig. 3 SE nonlinear least-squares fits to measured autocorrelation
data. (a) LabSphere Infragold normalized autocorrelation function fit;
and (b) sandblasted steel normalized autocorrelation function fit.
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4 Simulation Results

4.1 Experimental Validation of Simulated
Scattering Data

Simulations were performed to compute the statistical scat-
tered radiation in the far field for the two rough targets when
illuminated at different angles of incidence. In these simula-
tions, the rough-surface statistics obtained from the charac-
terization procedure discussed in Sec. 3 were used. The
simulation results were verified against experimental mea-
surements from the CASI. To ensure a high-fidelity valida-
tion of the MoM simulation results, the CASI incident laser
beam parameters and the source-to-sample distance were
carefully determined and used in the simulations. From
this analysis of the CASI, a unit-amplitude, collimated
Gaussian beam at a source-to-target distance of 185 cm
and waist of 1.5 mm was determined to best match the inci-
dent field of the experimental apparatus. A photograph of
the CASI is shown in Fig. 5. The operating wavelength for
the measurements and simulations was 3.39 μm.

The CASI incident beam spot size on the samples under-
filled the field of view of its detector. Hence, one would
expect to observe a large number of speckles at the detector.
To handle this, the CASI uses an integrating lens that effec-
tively averages over the received speckle pattern. This was
realized in simulation by assuming that the spatial averaging
over one speckle pattern performed by the CASI was equiv-
alent to averaging over the speckle patterns predicted from
numerous statistically identical rough-surface realizations
(i.e., “spatial ergodicity”).31 For the simulation statistics to
converge to within 0.1%, 400 surface realizations were
required and used. Figure 6 shows the average scattered irra-
diances, or hEs

zðθijθrÞEs�
z ðθijθrÞi, and the measured scattered

powers from the LabSphere Infragold sample versus the

observation angle θr for incident angles θi ¼ 20 deg, 40 deg,
and 60 deg, respectively. Both the simulated (solid black
traces) and measured (solid gray traces) results are shown
on the same plots, but with different scales. The simulated
results trend well with the measured data, with specular
peaks in the same location and with roughly the same width.
It should be noted that the CASI measures the scattered

Fig. 4 Simulated and measured surface statistics results. (a) surface
height PDF; (b) surface slope PDF; and (c) normalized autocorrelation
function of surface heights.

Fig. 5 The experimental setup for the Schmitt Measurement Services
CASI. The white ray, from the lower right, represents the laser beam
path incident on the white sample (laser sources not shown). The
detector, positioned on a motorized rotating arm, is located at the
end of the white ray leaving the sample. Any incident and observation
geometry is possible by rotating the sample (either in azimuth or
elevation) in combination with the detector.

Fig. 6 Average scattered irradiance and measured scattered power
versus observation angle θr for the LabSphere Infragold sample. The
average scattered irradiance was calculated by averaging the scat-
tered irradiance, predicted using the MoM, over 400 independent
surface realizations generated using the LabSphere Infragold’s mea-
sured roughness statistics. The scattered power measurements were
taken using the CASI. The angles of incidence are (a) 20 deg,
(b) 40 deg, and (c) 60 deg.
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power from a 2-D surface, whereas the simulation predicts
the scattered power from a 1-D surface. In similar previous
work, Knotts et al.32 suggested that the difference between
the measured and simulated data can be attributed
to higher-order statistics of the rough surface that are not
accurately modeled in simulation. Despite these differences,
the simulated and measured results compare quite well.

4.2 Validation of the GSM Form for Surfaces with
Gaussian Height Distributions and Gaussian
Autocorrelation Functions Illuminated at Normal
Incidence

Earlier studies11 have shown that if a rough surface with
Gaussian statistics is illuminated at normal incidence, the
scattered field autocorrelation function follows a GSM
form. This implies the average scattered irradiance and
the normalized autocorrelation function are both Gaussian
and separable. Further, the normalized autocorrelation func-
tion depend on the difference of observation angles. In order
to validate this, MoM simulations were performed for very
rough and smooth-to-moderately rough surfaces.

4.2.1 Very rough surfaces

For these simulations, 1000 independent realizations of a
rough surface following Gaussian statistics were generated.
The surface height standard deviation and correlation length
for these simulated surfaces were 11 and 117 μm, respec-
tively, corresponding to the measured statistics of the
LabSphere Infragold target. The operating wavelength was,
again, 3.39 μm. Figure 7(a) shows the average far-field scat-
tered irradiance for normal incidence as the observation
angle is varied from −90 deg to 90 deg. The average scat-
tered irradiance is very near Gaussian. Figure 7(b) and 7(c)
shows the normalized autocorrelation functions calculated
around 0 deg (normal) and 30 deg observation directions,
respectively. The normalized autocorrelation function of
the scattered field is calculated as

μðθr; θr þ ΔθrÞ

¼ jhEs
zðθrÞEs�

z ðθr þ ΔθrÞijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihEs
zðθrÞEs�

z ðθrÞi
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihEs

zðθr þ ΔθrÞEs�
z ðθr þ ΔθrÞip ;

(16)

where the functional dependence on θi has been omitted for
convenience. Like the average scattered irradiance, the nor-
malized autocorrelation functions are very near Gaussian;
however, the two functions have different widths, suggesting
that μ is not a function of Δθr alone. Note that the scattered
field is correlated for small Δθr. An analytical model based
on the physical-optics approximation developed by Hyde
et al.33 shows that μ depends on the difference of the pro-
jected angles sin θr1 and sin θr2. Further, since the scattered
field is correlated over small angular separations, it was
shown that the normalized autocorrelation function can be
approximated as a function of only Δθr by dividing it by
cos θr. This finding verifies the work of Korotkova et al.,11

whose analysis, restricted to the paraxial regime, showed that
μ depended on the difference of observation-plane coordi-
nates. Nevertheless, since μ is not a function of Δθr alone,
the scattered field autocorrelation function does not adhere to
the GSM definition in general. Note that the widths of the

normalized autocorrelation functions are on the order of
λ∕D, where λ is the wavelength and D is the spot size on
the target. This is consistent with earlier theories developed
by Goodman12 and Korotkova et al.11

4.2.2 Smooth to moderately rough surfaces

The normalized autocorrelation function can no longer be
described by a Gaussian function as the surface gets
smoother with respect to wavelength. This behavior was
noted by Goodman for near-field scattering observed just
above the rough surface.34 Figure 8 shows the normalized
autocorrelation functions for observation around the specular
direction for a Gaussian surface at normal incidence when
the surface height standard deviation is varied. The correla-
tion lengths of the simulated surfaces were 8λ. When the sur-
face roughness is much smaller than the wavelength
(i.e., σh ¼ 0.05λ and 0.1λ), the normalized autocorrelation
functions are marked by non-Gaussian shapes and approach
an asymptotic value for large separation angles. This behav-
ior at large separation angles is due to a nonzero mean scat-
tered field hEs

zðθijθrÞi and physically denotes the existence
of a strong specular component in the scattered wave.34 As
the surface roughness increases to 0.25λ, the normalized
autocorrelation function starts assuming a Gaussian shape
and the horizontal asymptote disappears, implying that the
mean scattered field is zero, as in the very rough surface
analysis discussed previously.

Fig. 7 Average far-field scattered irradiance and normalized auto-
correlation functions at normal incidence for a simulated rough
Gaussian surface with a height standard deviation of 11 μm and
correlation length of 117 μm. (a) Average scattered irradiance;
(b) and (c) are the normalized autocorrelation function plots for
observation at 0 deg and 30 deg, respectively. The scattered irra-
diance profile and the normalized autocorrelation function plots
have a distinctive Gaussian shape. Note that the widths of the
traces in (b) and (c) are different, suggesting that μ is not a function
of Δθr alone.
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4.3 Validation of GSM Form for Scattering from
Sample Targets

For these simulations, the MoM was used to predict the scat-
tered radiation in the far field for 400 independent surface
realizations using the measured statistics of LabSphere
Infragold and sandblasted steel. Incident angles of 20 deg,
40 deg, and 60 deg were used in the simulations.
Figure 9 shows the far-field average scattered irradiances
for both samples for different angles of incidence.
Similarities are observed in the scattering from both samples.
The scattering is maximum in the specular direction even at
θi ¼ 60 deg. Masking, shadowing, and multiple scattering
effects do not appear to be significant in either target. The

Fig. 8 Normalized autocorrelation functions of the far-zone scattered-
field at normal incidence and normal observation for simulated rough
Gaussian surfaces as surface roughness is varied. For σh ¼ 0.05λ
and σh ¼ 0.1λ, the normalized autocorrelation functions are non-
Gaussian and approach an asymptotic value for large separation
angles. The normalized autocorrelation function is very nearly
Gaussian for σh ¼ 0.25λ.

Fig. 9 Average scattered irradiances for LabSphere Infragold and
sandblasted steel. Angles of incidence are (a) 20 deg, (b) 40 deg,
and (c) 60 deg.

Fig. 10 Normalized autocorrelation functions of the far-zone scat-
tered field of LabSphere Infragold and sandblasted steel in different
observation directions. In all the plots, the angle of incidence is
20 deg. The observation directions are (a) 0 deg (normal),
(b) 20 deg (specular), and (c) 40 deg. The normalized autocorrelation
functions are nearly Gaussian, with very similar angular widths for
both samples. Note that the angular widths are different depending
on the observation direction.

Fig. 11 Normalized autocorrelation functions of the far-zone scat-
tered field of LabSphere Infragold and sandblasted steel when obser-
vation is in the specular direction. The angles of incidence are
(a) 20 deg, (b) 40 deg, and (c) 60 deg. The angular widths for all
three cases are nearly identical.
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statistical analysis of the profilometer measurements sug-
gested that both LabSphere Infragold and sandblasted
steel had surface height distributions and correlation func-
tions that were non-Gaussian. Figure 9 suggests that the
non-Gaussian nature of the surfaces makes the angular
scattered irradiance also non-Gaussian. This non-Gaussian
behavior is more apparent at higher angles of incidence.

The behavior of the normalized autocorrelation functions
was also examined using the simulated data. The normalized
autocorrelation functions for an incident angle of 20 deg and
different observation directions are shown in Fig. 10. The
normalized autocorrelation functions have Gaussian shapes,
but the angular widths of the functions are different, sug-
gesting the same behavior of μ that was observed earlier
in Sec. 4.2.1. Figure 11 shows the normalized autocorrela-
tion functions for both samples in the specular direction for
three different angles of incidence. It is evident from the plots
that the angular width of the normalized autocorrelation
function for observation near the specular angle (being
nearly the same in all three plots) is independent of incident
direction. This finding is consistent with Goodman’s classic
result.12 Note that the width of the normalized autocorrela-
tion function physically denotes the average angular extent
of a speckle.

5 Conclusion
In this paper, the scattering of a fully coherent Gaussian
beam from a 1-D rough impedance surface was examined
using a full-wave computational technique known as the
MoM. The model used surface statistics derived from profil-
ometer measurements of two rough metallic surface targets.
The simulation results agreed well with scattering measure-
ments from a scatterometer.

The results of this analysis have revealed several interest-
ing aspects of scattering from rough surfaces. Contrary to the
existing effects models,11 which suggest a GSM form for the
scattered-field autocorrelation function, the full-wave model
showed several deviations from GSM behavior. The scatter-
ing behavior was different for surfaces that were very rough
compared to wavelength, as opposed to surfaces that were
smooth to moderately rough. For very rough surfaces, the
average scattered irradiances were not, in general, Gaussian
when the surface statistics were non-Gaussian. For near-
normal incident angles, the average scattered irradiances
were approximately Gaussian (consistent with previous lit-
erature valid only in the paraxial regime); however, for
large angles of incidence, the scattered irradiances deviated
significantly from Gaussian. The normalized scattered-field
autocorrelation functions were generally Gaussian in shape;
however, contrary to the GSM definition, they were not
functions of the observation angle separation Δθr alone.
When observation was in the specular direction, the widths
of the normalized autocorrelation functions showed very
good agreement with Goodman’s classic result. For smooth-
to-moderately rough surfaces, the full-wave model showed
non-Gaussian behavior for both the average scattered irradi-
ances and the normalized autocorrelation functions. The nor-
malized autocorrelation functions started assuming Gaussian
shapes when the surface roughness was approximately
0.25λ. Future work will include examination of the scatter-
ing behavior in the presence of atmospheric turbulence. The

scattering from 2-D surfaces, including polarimetric effects,
will also be investigated.
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