
Combined range ambiguity resolution
and noise reduction in lidar signal
processing

Gunnar Arisholm
Torbjørn Skauli
Stig Landrø

Gunnar Arisholm, Torbjørn Skauli, Stig Landrø, “Combined range ambiguity resolution and noise reduction
in lidar signal processing,” Opt. Eng. 57(7), 073103 (2018), doi: 10.1117/1.OE.57.7.073103.



Combined range ambiguity resolution and noise
reduction in lidar signal processing

Gunnar Arisholm,* Torbjørn Skauli, and Stig Landrø
FFI (Norwegian Defence Research Establishment), Kjeller, Norway

Abstract. When the interval between transmitted pulses is shorter than the time of flight, it is not straightforward
for a lidar to determine the distance uniquely. We present a method that uses varying pulse intervals, constructs
a set of tentative point positions for each received pulse, and exploits the clustering of such tentative points to
determine the correct distance with high probability. The clustering of true points also helps suppress noise
pulses, even in a regime where the number of noise pulses is far greater than the number of true return pulses.
It is then possible to use a detection threshold close to the noise level. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication,
including its DOI. [DOI: 10.1117/1.OE.57.7.073103]

Keywords: lidar; range ambiguity; noise reduction; algorithms.

Paper 180361 received Mar. 7, 2018; accepted for publication Jun. 15, 2018; published online Jul. 5, 2018.

1 Introduction
An imaging lidar (light detection and ranging) system based
on scanning a single beam needs to operate at high pulse
rate to record a point cloud quickly. However, if the lidar
transmits a new pulse before the last return pulse from the
previously transmitted pulses has arrived, the range measure-
ments will not be unique. The signal processing system has
to make some assumption to associate a return pulse with one
of the transmitted pulses and compute the correct distance.
One solution, which can work well for airborne sensors, is to
use a digital elevation model to obtain the approximate
distance.1 Another solution is to label the transmitted pulses.
This can be done by a sequence of micropulses within each
macropulse,2 or, in coherent systems, by frequency stepping3

or phase modulation.4 A third solution is to transmit pulses
with varying intervals between them. This principle has been
employed in radar (Ref. 5, Chapter 15 and Ref. 6, Chapter
4.4) and in many photon-counting lidar systems.7–9 These
lidars transmit multiple pulses for each point and apply
time correlation to find the correct distance. Varying pulse
intervals has also been used in classical lidars, which trans-
mit a single, relatively high-power, pulse for each direc-
tion,10,11 but the method was restricted to a single return
pulse for each transmitted pulse. That restriction may be
acceptable in the context of airborne laser scanning, but
in other cases, one may be interested in detecting multiple
return pulses from a single transmitted pulse. Furthermore,
in order to maximize the detection range, it is desirable to
set the detection threshold to a low level, where there will
also be some false detections. In this paper, we describe a
processing method that combines range ambiguity resolution
and noise reduction and also allows multiple return pulses
from each transmitted pulse. The method is not constrained
to a specific application or range of spatial resolutions, so it

should be applicable for a wide range of single-beam lidars
that operate with more than one pulse in the air.

2 Method
The process to extract a point cloud from a detector signal
consists of three main stages: filtering, pulse detection, and
point detection. Filtering handles saturated pulses and
reduces noise. Pulse detection finds all the pulses in the
filtered signal that exceed a threshold, and produces a list
with time and power for each detected pulse. The filtering
and/or pulse detection stages can also include measures to
suppress strong backscatter from common optics or from
the atmosphere close to the lidar, which can dominate the
received signal immediately after each transmitted pulse.
The topic of this paper is the point detection stage, which
takes as input of the list of detected pulses and the list of
times and directions for the transmitted pulses, and produces
a point cloud as output.

As in former work,7–11 our proposed point detector is
based on varying the interval between transmitted pulses.
For each received pulse, it constructs a set of point candi-
dates by associating the pulse with each of the N most
recently transmitted pulses, for some N determined by the
maximum likely delay of a returned pulse. In practice, N
may be limited by the scan speed and the receiver field
of view. A point candidate is represented by its spherical
coordinates (r; θ;ϕ), where r is the range and the angles
θ (pitch) and ϕ (azimuth) correspond to the direction of
the transmitted pulse. (The reason for using the transmitted
direction is that the divergence of the transmitted beam is
typically smaller than the field of view of the receiver, so
the transmitted beam defines the direction more precisely.)

Point candidates belonging to real objects tend to cluster
in space, whereas false point candidates tend to be scattered
because of the uneven pulse intervals. Therefore, each point
candidate is assigned a figure of merit (FOM) that depends
on the other point candidates in its neighborhood. In the
simplest form, which is used in most of the examples, the
FOM is just the number of point candidates found in a
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neighborhood in the (r; θ;ϕ)-space, chosen as described
below. A more general FOM measure, which takes the
power of the pulses into account, is discussed in Sec. 5.

After computing the FOM values, the algorithm selects
the point candidate with the highest FOM. This is taken
to represent the correct position of a return pulse, so it is
added to the output point cloud. All other point candidates
arising from the same pulse are removed and so are their con-
tributions to the FOM of neighbor points. The algorithm then
selects the next point candidate with the highest FOM, and so
on until no point candidate has FOM above some threshold
value. This FOM threshold reflects the assumption that a
point candidate with no or few neighbors is probably noise.

Figure 1 shows an example of how the point candidates
corresponding to four consecutive return pulses are distrib-
uted in the range-azimuth plane. The only place where the
neighborhood-boxes of multiple point candidates overlap
is at the correct range of 526 m, corresponding to the return
pulse delay of 3.51 μs. These points increase the FOM of
each other so the algorithm can resolve the ambiguity. In
practice, it is of course possible that some of the return pulses
fail to be detected. This loss can be compensated using a
greater number of pulses, but the figure shows only four
for the sake of clarity.

Because the method is based on finding clusters of point
candidates, an object too small to give rise to a cluster will
not be detected. Furthermore, if the shape and orientation of
an object is such that the lidar sees it as separate parts, then
only sufficiently large parts will be detected. The number of
point candidates required for detection depends on the
parameter settings. If the amount of noise is small, two cor-
rect point candidates will be sufficient to determine the range
correctly.

3 Choice of Parameters
We denote the pulse intervals Ti ¼ siΔt, where si are inte-
gers, 0 ≤ i < n, and Δt is the chosen minimum difference

between pulse intervals. The sequence of pulse intervals is
repeated periodically so that siþn ¼ si, and we call the peri-
odic unit of n pulses a pulse group. The pulse intervals
should be chosen so false point candidates have minimal
probability of forming clusters. For this purpose, it is not
enough that each si is unique; sums of m adjacent intervals
must also be unique for 1 ≤ m < n. The sums can cross pulse
groups, so the requirement can be stated as

EQ-TARGET;temp:intralink-;e001;326;380Sm;j ¼
Xjþm−1

i¼j

si; (1)

being unique for all 1 ≤ m < n and 0 ≤ j < n.
For small n, it is easy to find sequences satisfying this

condition by trial and error. If n is prime, it can be done
more rigorously by taking si ¼ iþ k for 0 ≤ i < n and
fixed k. This ensures that Sm;j ≠ Sm;j 0 for j ≠ j 0 [because
Sm;j − Sm;j 0 ≡mðj − j 0Þðmod nÞ]. To make the sums unique
for different m, the constant k can simply be taken large
enough to make Smþ1;j > Sm;i for all i; j.

For the method to be able to determine range uniquely, the
duration of a pulse group, Δt

P
n−1
i¼0 si, should be greater than

the maximum delay of a returned pulse. It is not straightfor-
ward to define a maximum range based on the transmitter
power and receiver sensitivity, because a strong reflector
somewhere in the scene can return a detectable pulse from
a distance much greater than the normal operating range of
the lidar. However, the maximum delay is eventually limited
by the time it takes to scan the receiver field of view past
the direction of a returned pulse.

The choice of Δt is a trade-off between performance of
the laser and the point detection algorithm. A pulsed laser
typically has a limited range of pulse rates where it can oper-
ate, and the pulse rate affects the energy and possibly other
properties of the pulses. Therefore, the difference between
the shortest and longest pulse interval cannot be too large,

Fig. 1 Distribution of point candidates in the range-azimuth plane. The crosses along the time axis indi-
cate the transmitted pulses. They have intervals of 0.8, 0.9, 1.0, 1.1, and 1.2 μs, giving a period time of
5 μs and a 750-m range where unambiguous distances can be determined. The other symbols along the
time axis indicate the times when four return pulses are received. They are marked by triangle pointing
up, square, triangle pointing down, and diamond, in chronological order. The same symbols are used to
indicate the range and azimuth of the point candidates when each received pulse is associated with the
last transmitted pulse, second last transmitted pulse, and so on up to the fifth. The box around a point
candidate shows the neighborhood where other point candidates can contribute to its FOM, 0.45 mrad by
10 m in this example. The neighborhood boxes overlap only for the point candidates at the correct dis-
tance of 526 m. The azimuth axis corresponds to the direction of the transmitted pulses. In this example,
the relation between time and azimuth is simple because the scan speed is set to be fixed at 100 rad∕s.
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and this places an upper limit on ½maxðsiÞ −minðsiÞ�Δt. On
the other hand, an object will give rise to both correct and in-
correct point candidates, and to avoid that the latter fall close
enough to reinforce the FOM of each other we must have

EQ-TARGET;temp:intralink-;e002;63;708 min
m≠m 0;j≠j 0

jSm;j − Sm 0;j 0 jt > 2Δz∕c; (2)

where Δz is the size of the point neighborhood in the range
direction and c is the speed of light. Δz must be greater than
the typical range difference between adjacent return pulses
from the same object, otherwise they will not be identified
as neighbors. The range difference between adjacent return
pulses depends on the scan angle increment, the range, and
the shape and orientation of the object. It is not possible to
account for any shape and orientation of an object, but the
important point is that Δz is large enough for a sufficient
number of return pulses to be classified as neighbors.
This is shown in Fig. 2.

There is no hard limit for the neighborhood size in the
angle directions, but some guidelines can be found based
on object size and density of noise points. If the probability
of a detecting a noise point (after suitable processing of
the raw signal) is independent of time, the number of noise
points within the neighborhood of a point candidate will be
approximately Poisson-distributed with mean proportional to
the neighborhood volume. Let Nn be a random variable
representing the number of such noise points. The mean
hNni ¼ ΩΔz A, where Ω is the solid angle of the neighbor-
hood, Δz is its size in the range dimension, and A is a con-
stant characterizing the noise. Let Nb be another random
variable representing the number of detected object points,
in the same solid angle Ω, from an object large enough to
fill this solid angle. We do not assume a specific distribution
for Nb, but we assume that the mean value hNbi ∝ Ω. hNbi
also depends on the distance and on the reflection properties
of the object. The quantity that the point detection algorithm
actually works with is the total number of point candidates in
the neighborhood, Nt ¼ Nb þ Nn.

For mathematical simplicity, we now take the FOM to be
the number of point candidates in the neighborhood. For the
FOM threshold T to distinguish between noise points and
true points, it should be set so that PðNn >¼ TÞ is small
and PðNt >¼ TÞ is large when a real object is present.
We define the signal-to-noise ratio (SNR) of the FOM as

EQ-TARGET;temp:intralink-;e003;63;264

hNbi
σðNnÞ

∝
Ωffiffiffiffiffiffiffiffiffiffi
ΩΔz

p ∝ Ω1∕2; (3)

where σðNnÞ denotes the standard deviation of Nn. The
equation shows that Ω should be large to maximize the
SNR, but this only holds as long as the object fills this
solid angle. Even a small object can fill a neighborhood
at close range, but since close objects are likely to be
detected anyway, the neighborhood size should be chosen
to optimize detection of typical objects of interest at the
maximum operating range of the lidar.

To set the FOM threshold automatically, we estimate the
density of noise points hNni and choose the threshold to
make the probability of accepting noise points suitably
small. Even if the field of view is completely filled by
objects, they will give rise to return pulses from only a
small fraction of the scanned volume, because the objects
are localized in the range direction. Thus, if we divide the
volume into small cells, we can assume that most of them
will be empty or contain only noise points, i.e., Nt ¼ Nn
for these cells. We assume, conservatively, that the 80%
of the cells with fewest point candidates do not contain
real objects and estimate hNni by fitting a Poisson distribu-
tion to this tail of the distribution of Nt. The approximation
here is that a few of these cells may in fact contain real return
pulses, and end up in the lower tail because they happen to
contain few noise pulses. If the noise level is low, it is pos-
sible that most of the point candidates arise from real objects,
and that the lower tail of the Nt distribution is all zero. In this
case, we cannot estimate hNni by fitting, so instead we find
an upper bound for it, based on the observed probability of
finding zero points in a cell. Once hNni has been estimated,
the cumulative distribution function can be used to set the
FOM threshold, TF, so the probability of accepting a
noise point has a desired value e

EQ-TARGET;temp:intralink-;e004;326;400PðNn > TFÞ ≈ e: (4)

In other words, e is the probability that a noise point has
enough noise neighbors to bring its FOM above TF. Because
of the approximations in the distribution and in the estimate
of hNni, this error probability cannot be taken literally, but it
is a useful way to parameterize the FOM threshold. In the
examples in the next section, we set e ¼ 10−5. Some experi-
ments with a more general FOM measure are described
in Sec. 5.

Although the threshold for pulse detection is not a param-
eter to the point detector, it must be taken into account
because it effectively determines the number of point candi-
dates. If the objects of interest are known to have high SNR
(defined as the ratio of return pulse amplitude to RMS noise),
the detection threshold can be set so high that noise points
are eliminated, and the task of the point detector is reduced to
solving the range ambiguity. In the more interesting case,
where it is desirable to maximize the range for a given trans-
mitted power, the detection threshold must be set to a low
value, where many noise pulses will appear. A method for
automatic setting should not make any assumption about
the number of true return pulses in the scene. However,
as explained above in the context of setting the FOM thresh-
old, true return pulses can be expected to appear in only a
small part of the scanned volume. Thus, if the detection
threshold is set to a value such that most of the scanned vol-
ume is filled by a relatively uniform density of point candi-
dates, then these can be assumed to represent noise. A large
number of noise points increase the run time of the point

Fig. 2 Lidar imaging of an L-shaped object oriented so it hides parts
of itself. Adjacent return pulses from the faces A or B will have small
range difference, but if A and B are separated by more than Δz they
will have to be detected independently, without contributing to each
other FOM. On face C, the range difference between adjacent pulses
is large because of the large angle of incidence. Faces with such slant
orientation are difficult to detect, but in practice, most objects also
present some faces with more favorable orientations.
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detector, so the actual setting of the detection threshold is a
trade-off between sensitivity and run time. A useful param-
eter is the number of detected pulses divided by the number
of transmitted pulses. Various detection thresholds, giving up
to five detected pulses per transmitted pulse, are tested in
the examples.

For comparison, we note that lidars that transmit multiple
pulses for each point7–9 often use a pseudorandom pulse
sequence and correlation detection. Our reason for not adopt-
ing that approach is that our method is designed for lidars
that transmit a single pulse for each point, and when the
beam is scanned the range difference between adjacent
pulses will often be too large for direct correlation with
the return signal to work well. The pulse sequence described
above is designed for minimum ambiguity in realistic scenes,
whereas a random or pseudorandom sequence might be
suboptimal.

4 Examples
Although the method has been used successfully in tests on
real data, we prefer to use simulated data in the examples
because they allow the results to be compared to the exactly
known scene under fully controlled conditions. The simula-
tor works in two stages. First, it propagates the beam from
the lidar to the target, assumes diffuse reflection, and prop-
agates back to the plane of the lidar receiver. This is repeated
for various distances and for multiple random realizations
of the diffuse reflecting surface, which give rise to different
speckle. The result is a catalog of realistic return beams,
represented as matrices of complex amplitudes, for various
ranges. The second stage traces each transmitted laser
pulse through the scene, and when a pulse hits an object,
it randomly draws one of the return beam realizations for the
corresponding range. The received power is calculated based
on the reflectance of the target and the integral of the inten-
sity of the selected return beam over the receiver aperture,
and a pulse with this power is added to the simulated
received signal. More complicated propagation effects,
such as beam distortion by atmospheric turbulence and
pulse distortion by reflection from surfaces not perpendicular
to the beam, are omitted because they are not important for
the short ranges considered in our examples. Thus, the shape
of the received pulse is identical to the shape of the trans-
mitted pulse.

In a real lidar, there are multiple noise sources such as
backscatter from the optics and the atmosphere, background
light, detector noise, and electronic noise. For the purpose
of this paper, it is not important to model these in detail,
so the simulator simply adds generic Gaussian noise to the
electronic signal. As mentioned in Sec. 2, scattering from
common optics (if the transmitter and receiver share the
same aperture), and from the close part of the atmosphere,
can dominate immediately after each transmitted pulse.
Instead of modeling this scattering, we make the worst
case assumption that the lidar has to discard the signal in
an interval after each transmitted pulse. In the examples,
we set this interval to 50 ns, which corresponds to 4.2%
of the mean interval between transmitted pulses.

In order to facilitate the analysis, the first scene simply
consists of nonoverlapping, rectangular planes. A more com-
plex scene, approximating two buildings partially obscured
by forest, is treated in Sec. 4.2.

4.1 Scene 1

This scene contains four rectangular planes: size 10 × 5 m at
200-m distance, 20 × 10 m at 380 m, 30 × 15 m at 650 m,
and 0.8 × 0.8 m also at 650 m. The three large objects have a
reflectance of 0.1 and the small one 0.8. The laser pulse inter-
vals are 1.0, 1.1, 1.2, 1.3, and 1.4 μs. The field of view,
which is 250 mrad in azimuth by 150 mrad in pitch, is raster
scanned with an azimuth scan speed of 300 rad∕s and a pitch
interval between adjacent scan lines of 0.5 mrad. Scanning
the whole field of view takes 253 ms, so the number of trans-
mitted pulses is about 2.1 × 105. The duration of the trans-
mitted pulses is 4 ns (FWHM), and the receiver sample rate
is 1 GHz. The signal from the detector is processed by a
matched filter for the laser pulse shape. The actual value
of the simulated transmitted power is not meaningful in
itself, so to compare examples with different power we sim-
ply define the highest power to be 0 dB and give the power in
the other examples as relative values. Similarly, we give
dimensionless, normalized values for the detector signal
and detection threshold.

The point clouds obtained under different conditions are
compared to the known scene to count the points on each
object, noise points close to objects, and noise points unre-
lated to objects. The point counts are compared to the
corresponding numbers for a reference point cloud from
a simulation without noise.

4.1.1 Simulation without noise

The pulse detection threshold in this case is set sufficiently
low to detect all the return pulses. Because the objects in the
scene do not overlap, it is convenient to display the point
cloud as a color-coded range image, as shown in Fig. 3.
With the chosen pulse intervals and scene, some of the return
pulses from object 1 happen to fall in the masked zones after

Fig. 3 Range image without noise. The distances to the three large
objects are, from left to right, 200, 380, and 650 m. For later reference,
we label these objects 1, 2, and 3, respectively. The small object,
which we label 4, is also at 650 m distance, and it is marked
by an arrow because of the small size. All the distances are
correctly identified by the proposed procedure. The field of view is
250 mrad × 150 mrad. The square in the lower right corner, which
is not an object, shows the 3 × 3 mrad total angular size of the neigh-
borhood used by the point detector. (a) Color-scale spans the whole
depth of the scene. The bar to the right shows the range in meters.
This color-scale is also used in the subsequent figures unless noted
otherwise. (b) Color-scale repeats at 23 m intervals to show details
better. The middle and right objects are tilted, which explains why
they do not appear exactly rectangular.
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some of the output pulses, and this explains why object 1
does not look dense. The neighborhood size (in either direc-
tion from a point candidate) is set to 1.5 mrad in each of the
angles and 5 m in range, and the FOM threshold automati-
cally determined from Eq. (4) is 4. FOM thresholds in the
range from 2 to 30 work well, although the small object
is lost when the FOM threshold exceeds 5. Table 1 summa-
rizes the number of points on each object, as well as the num-
ber of noise points, for this and the following examples. We
have verified that the point cloud is not very sensitive to
neighborhood size, provided that the FOM threshold is
adjusted correspondingly.

4.1.2 Transmitted power 0 dB

In this and the following simulations, noise is included. We
define the SNR for an object as the mean return pulse ampli-
tude in the absence of noise divided by the RMS noise after
the matched filter. For objects 1 to 4, as defined in Fig. 3,
the SNR is 37, 11, 3.5, and 28, respectively.

The detection threshold is first set to 1, which equals the
mean return pulse amplitude from the far object. This yields
about 75,000 detected pulses, ∼0.35 per transmitted pulse.
Figure 4(a) shows the range image for FOM threshold 8,
which is the value from Eq. (4). The small object is not vis-
ible in this case. Its angular extent is only 1.2 mrad, much
smaller than the total neighborhood size of 2 × 1.5 mrad, so

it does not give rise to enough point candidates to overcome
the FOM threshold. It can be recovered by reducing the FOM
threshold to 6, as shown in Fig. 4(b), but this also introduces
more noise points, as seen in Table 1. The detected parts of
the far object depend on speckle patterns and noise, so the
details will vary with different realizations of the simulated
signal.

To find more points on the far object, the detection thresh-
old is reduced to 0.8. The number of detected pulses rises to
4.7 × 105, or 2.2 per transmitted pulse, and Fig. 4(c) shows
the corresponding range image. As expected when the num-
ber of point candidates increases and the parameter for error
probability is fixed, the number of noise points increases, as
shown in Table 1.

For illustration of the noise suppression, Fig. 5(a) shows
the point cloud of a volume around the far object with the
same parameters as in Fig. 4(c). This can be compared to
Fig. 5(b), where the FOM threshold is 1 so all detected pulses
are identified as points. It is clear that the algorithm removes
most of the noise points. However, noise points close to the
object remain because they acquire a high FOM from
the neighboring, correctly detected, points on the object.
The number of such noise points can be reduced using
a smaller neighborhood size in the range direction, but as
explained in Sec. 3, this would also reduce the detection
performance for objects with a large variation in range.

Table 1 Summary of the number of correctly identified object points and the number of noise points in point clouds.P is the transmitted peak power
in dB, TD is the detection threshold (arbitrary units). Bin is the angular bin size in mrad, and TF is the FOM threshold. Values calculated from Eq. (4)
are marked by *. Total pulses are the number of detected pulses. Ni is 100 times the number of correct points on object i , divided by the cor-
responding number in the reference cloud. The objects are numbered as in Fig. 3. The tolerance for a point to be accepted as correct is 0.4 m.Ne;i is
100 times the number of noise points between 0.4 and 8 m from object i , divided by the number of points on the corresponding object in the
reference cloud. The number of such noise points can be relatively high because their FOM is increased by the real points on the close object.
Ne is the number of other noise points, that is, noise points that are not associated with one of the true objects. The first row of numbers corresponds
to the noiseless reference point cloud. The actual point counts for the reference cloud are given in the bottom row.

Parameters Total % Correct points % Noise points

Figure P TD Bin TF Pulses Points N1 N2 N3 N4 N1e N2e N3e N4e Ne

3 1.5 4* 17,944 17,944 100 100 100 100 0 0 0 0 0

4(a) 0 1 1.5 8* 74,451 15,302 100 100 53 0 1 1 1 0 0

4(b) 0 1 1.5 6 74,451 15,372 100 100 53 67 1 1 1 0 53

4(c) 0 0.8 1.5 20* 470,233 17,178 100 100 71 0 4 5 7 0 28

7(a) −3 0.8 1.5 20* 468,852 12,884 100 96 7 0 3 6 3 0 29

7(b) −3 0.7 1.5 34* 1,075,483 13,012 93 96 5 0 7 11 4 0 71

7(c) −3 0.7 1.5 30 1,075,483 15,826 97 98 13 0 8 12 8 0 1730

7(d) −3 0.8 3 50* 468,852 14,693 100 97 23 0 6 11 8 0 14

8(a) −4.8 0.8 3 50* 465,966 11,789 100 77 2 0 7 11 2 0 24

8(b) −4.8 0.8 3 44 465,966 12,915 100 77 5 0 7 12 4 0 725

8(c) −4.8 0.7 3 93* 1,074,982 13,500 100 85 3 0 12 22 3 0 72

10(a) 0 1 1.5 9 74,451 15,328 100 100 53 100 1 1 1 17 0

10(b) −3 0.7 1.5 42 1,075,483 14,138 100 98 7 0 10 15 5 0 13

3 Actual point counts in ref. cloud: 5383 6597 5958 6 0 0 0 0 0
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4.1.3 Transmitted power −3 dB

At this power level, the SNR for the return pulses from object
3 is 1.75, and they are almost indistinguishable from the
noise spikes, as shown in Fig. 6. Nevertheless, the proposed
method yields a point cloud where parts of the far object can
be seen, as shown in Fig. 7. The pulse detection threshold is
0.8 or 0.7, and the corresponding mean number of detected
pulses per transmitted pulse is ∼2.2 or 5, respectively. In
Fig. 7(d), the angular neighborhood size is increased to
3 mrad in azimuth and pitch. As expected from Eq. (3),
using a larger neighborhood improves the SNR, but com-
pared to Fig. 7(a), some more noise points appear along
the edges of objects. Furthermore, the small object is difficult
to recover in this case because it is much smaller than the
neighborhood size.

4.1.4 Transmitted power −4.8 dB

This power corresponds to an SNR of 1.2 for object 3.
Figure 8 shows corresponding range images with different
FOM thresholds. In Fig. 8(a), with detection threshold
0.8, only small patches of object 3 are detected. Reducing
the FOM threshold below the automatic value, in Fig. 8(b),
introduces a lot of noise while detection of object 3 is still
poor. In Fig. 8(c), the detection threshold is reduced to 0.7.
The result is not very much better than in Fig. 8(a), but never-
theless, the fact that a significant part of the far object is
correctly detected even under these conditions illustrates
the power of the algorithm.

4.2 Scene 2

In this section, we show a somewhat more realistic scene
consisting of two identical box-like “buildings,” in some
cases partially obscured by “forest.” Figure 9(a) shows the
point clouds of the buildings when the forest is absent.
The two long sides of the buildings are 20 m, and they
are 7 m high. The left and right buildings lie in the range
intervals 680 to 700 m and 650 to 670 m, respectively,
and the lidar looks down from an altitude of 100 m. The
reflectance of the buildings and the ground is 0.1. The
lidar field of view is 250 mrad in azimuth by 30 mrad in
pitch, and other parameters are the same as for scene 1.

Fig. 5 Point cloud of the far object with 0-dB transmitted peak power
and detection threshold 0.8. The size of the object is 30 m × 15 m.
(a) FOM threshold 20. (b) FOM threshold 1.

Fig 6 Typical return signal from the far object in the case with −3 dB
transmitted peak power. The dots above the graph mark the positions
of expected return pulses, and the dashed line shows the detection
threshold 0.8 used in Fig. 7(a).

Fig. 7 Range image with −3-dB transmitted peak power.
(a) Detection threshold 0.8, 1.5 mrad angular neighborhood size
and FOM threshold 20 (automatic). (b) Detection threshold 0.7 and
FOM threshold 34 (automatic). (c) As (b), but with FOM threshold
30. (d) Detection threshold 0.8, 3 mrad angular neighborhood size
and FOM threshold 50 (automatic).

Fig. 4 Range images with 0-dB transmitted peak power and 1.5-
mrad angular bin size. The color-scale and the field of view are
the same as in Fig. 3(a). (a) Detection threshold 1 (3.5 times the
RMS noise) and FOM threshold 8 (automatic). (b) FOM threshold
6. (c) Detection threshold reduced 0.8 and FOM threshold 20
(automatic).
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The transmitted power is 0 dB. The bin size is 1.5 mrad in
pitch and azimuth and 5 m in range.

The left building is deliberately placed at a distance where
some of the return pulses fall in the discarded intervals after
the transmitted pulses. Specifically, the range 690 to 697.5 m
corresponds to delays of 4.6 to 4.65 μs. Return pulses origi-
nating from the first pulse in a pulse group (the pulse
followed by the 1 μs interval) will fall in the interval
discarded after the fourth pulse (the pulse before the
1.4 μs interval). Thus, one in five return pulses from this
range interval will be discarded. Comparison of the two
buildings in Fig. 9(a) does indeed show that there are
fewer points on the left part of the left building. Because
of the large angle of incidence to the roof, this part of the
object has relatively few points even under the best condi-
tions, so it is sensitive to a few missing return pulses.

In Fig. 9(b), a partially transmitting “forest” is placed
between the lidar and the buildings. The forest is modeled

as a screen with holes such that the incident laser beam
has equal probability of being transmitted or reflected
(with reflectance 0.1). Furthermore, the reflected pulses
are given a random delay corresponding to a range variation
uniformly distributed in a 10-m interval. With only half of
the pulses reaching the buildings, the two walls facing the
lidar are still detected clearly, but the point clouds are sparse
on the other parts of the buildings. When the FOM threshold
is reduced below the automatic setting, as in Fig. 9(c), denser
point clouds are obtained.

5 Generalized Figure of Merit
The FOM measure described in Sec. 2 and used in Sec. 4,
which is simply equal to the number of point candidates in
the neighborhood, has the advantage of being mathemati-
cally simple so a threshold value can be calculated from
the statistics, Eq. (4). However, from a practical point of
view, it would make sense to give more weight to pulses
well above threshold than to pulses just above, which are
more likely to be noise. To implement this idea, each
point candidate is assigned a quality value Q ¼ Vp∕TD,
where Vp is the peak voltage of the pulse and TD is the detec-
tion threshold. To avoid that a very strong pulse overwhelms
a lot of weaker pulses, Q is clipped at an upper limit Qmax.
The new FOM is the sum of the Q-values from the point
candidate itself and its neighbors. It is much more compli-
cated to derive a distribution for the FOM values in this case,
so as a practical solution we calculate the threshold as before
and multiply it by a correction factor

EQ-TARGET;temp:intralink-;e005;326;432T 0
F ¼ TF × hQi; (5)

where the mean quality value hQi is calculated over the 80%
of the cells with fewest point candidates, that is, the same
cells that are used to estimate the density of noise points.
If there are only a few point candidates in these cells, hQi
is instead calculated from the set of cells which contain
a single point candidate each.

Consider again Fig. 4(b). The small object is visible, but it
is difficult to distinguish from the noise that also appears
when the FOM threshold was reduced. However, the
small object has higher reflectance than the other objects,
so when the pulse power is included in the FOM, it can
be recovered, as shown in Fig. 10(a). Qmax ¼ 3 and the
FOM threshold was increased to 9, by Eq. (5).

Similarly, Fig. 10(b) can be compared to Fig. 7(b). The
small object is not recovered, but for the other objects the
numbers of correct points and close noise points increase
while the number of other noise points decreases. To

Fig. 8 Range images with −4.8-dB transmitted peak power and
3-mrad angular neighborhood size. (a) Detection threshold 0.8 and
FOM threshold 50 (automatic). (b) As above, but FOM threshold
44. (c) Detection threshold 0.7 and FOM threshold 93 (automatic).

Fig 9 Point clouds of two buildings on a flat ground. To make the buildings clearly visible, only points
above the ground level are shown. (a) Obscuring forest absent, detection threshold 1 and FOM threshold
11 (automatic). (b) Forest present, same parameters as in (a). (c) Forest present, FOM threshold 4.
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suppress noise, the FOM threshold in Fig. 10(b) was man-
ually tuned to 42 instead of 39 from Eq. (5). Therefore, this
example illustrates the limit of the method rather than prac-
tical performance.

6 Discussion
The angular neighborhood size is a trade-off between sensi-
tivity for large objects and risk of suppressing smaller
objects. The improved FOM measure can help detecting
small objects, but only if they have relatively high reflectance
and not if they are too small compared to the neighborhood
size. Detection of both small and large objects could be
improved by running the algorithm multiple times with dif-
ferent parameters. Some of the processing could be common,
so the run time would not scale linearly with the number of
passes. It must be noted that the size of the neighborhood
boxes does not limit the resolution or accuracy of the
point cloud. The boxes are used to solve ambiguity, whereas
the actual point positions are entirely determined by the
input data.

As shown in Sec. 4.2, the automatic setting of the FOM
threshold can be too high in scenes where objects are parti-
ally obscured. The setting in such cases should include
application-specific information such as whether objects of
interest are likely to be obscured. It would also be possible to
detect obscuring objects such as trees and adjust the FOM
setting in their shadow adaptively, but this would be a topic
for future investigation.

The observed number of noise points outside the neigh-
borhood of any objects, Ne in Table 1, can be compared to
the expected number N̂e ¼ eNdn, where e is the error prob-
ability in Eq. (4), Nd is the number of detected pulses, and
n ¼ 5 is the number of different pulse intervals, i.e., the num-
ber of point candidates created for each detected pulse. For
detection threshold 0.7 or 0.8 and TF values calculated with
Eq. (4) (marked by * in Table 1), the observed Ne values are
indeed consistent with N̂e. For higher detection thresholds,
the number of noise points is too small to estimate hNni
accurately.

Operation with a very low SNR, as in some of our exam-
ples, may seem contrived. If the pulse energy from the laser
could be adjusted freely, only constrained by a maximum
average power, it would be better to transmit stronger pulses
at a lower rate. However, real lasers have a maximum pulse
energy and a limited range of pulse rates, so operation close
to the noise limit may be of interest in practical lidar
applications.

The method can of course also be used for noise suppres-
sion in a system with fixed pulse intervals. If the pulse inter-
val is long enough compared to the maximum delay of
a return pulse, there will be only one point candidate for
each pulse and no risk of placing an object at the wrong
distance.

It should be mentioned that an additional reason to use
varying pulse intervals is to ameliorate the problem with
scattering by common optics or by the atmosphere close
to the lidar. Such scattering can dwarf weak return pulses
arriving immediately after an output pulse. If the pulse inter-
val is fixed, all the lost return pulses will come from distan-
ces corresponding to multiples of the pulse interval, so there
will be more or less blind zones around these distances. On
the other hand, with varying pulse intervals, the lost return
pulses will be spread over different distances and not give
rise to blind zones.

The current implementation runs on a PC and can take
tens of seconds to process images with millions of initial
point candidates, such as Fig. 8, but this program has not
been optimized. In addition to improving the code, there
is potential to save time by simplification and parallelization.
One possible simplification is to group point candidates into
cells in a 3-D grid and work with the grid cells instead of
individual points. A disadvantage of this method is that
the ability to detect an object will depend on how it is placed
and aligned with respect to the grid. For parallelization, the
3-D grid could be partitioned into blocks, which could be
processed almost independently.

7 Conclusion
We have demonstrated that a method based on clustering of
point candidates can resolve range ambiguity and suppress
noise pulses. The efficient noise suppression makes it pos-
sible to push the detection threshold close to the noise level
and still obtain relatively clean point clouds.

Acknowledgments
We thank our colleague Gunnar Rustad and the reviewers for
valuable suggestions to improve the paper.

References

1. H. Lu et al., “An automatic range ambiguity solution in high-repetition-
rate airborne laser scanner using priori terrain prediction,” IEEE Geosci.
Remote Sens. Lett. 12, 2232–2236 (2015).

2. G. Kim and Y. Park, “Lidar pulse coding for high resolution range im-
aging at improved refresh rate,” Opt. Express 24, 23810–23828 (2016).

3. P. Lindelöw and J. J. Mohr, “Coherent lidar modulated with frequency
stepped pulse trains for unambiguous high duty cycle range and velocity
sensing in the atmosphere,” in IEEE Int. Geoscience and Remote
Sensing Symp., IEEE (2007).

4. M. U. Piracha et al., “Range resolved lidar for long distance ranging
with sub-millimeter resolution,” Opt. Express 18, 7184–7189 (2010).

5. G. W. Stimson et al., Introduction to Airborne Radar, 3rd ed., SciTech
Publishing, Mendham, New Jersey (2014).

6. M. Skolnik, Radar Handbook, 3rd ed., McGraw-Hill, New York (2008).
7. R. E. Warburton et al., “Subcentimeter depth resolution using a single-

photon counting time-of-flight laser ranging system at 1550 nm wave-
length,” Opt. Lett. 32, 2266–2268 (2007).

Fig. 10 Range images with modified FOM measure and Qmax ¼ 3.
(a) 0-dB transmitted power, detection threshold 1, and FOM threshold
9. This can be compared to Figs. 4(a) and 4(b). (b) −3 dB transmitted
power, detection threshold 0.7, and manually tuned FOM threshold
42. The result can be compared to Fig. 7(b).

Optical Engineering 073103-8 July 2018 • Vol. 57(7)

Arisholm, Skauli, and Landro: Combined range ambiguity resolution and noise reduction in lidar signal processing

https://doi.org/10.1109/LGRS.2015.2461441
https://doi.org/10.1109/LGRS.2015.2461441
https://doi.org/10.1364/OE.24.023810
https://doi.org/10.1109/IGARSS.2007.4423421
https://doi.org/10.1109/IGARSS.2007.4423421
https://doi.org/10.1364/OE.18.007184
https://doi.org/10.1364/OL.32.002266


8. P. A. Hiskett et al., “A photon-counting time-of-flight ranging technique
developed for the avoidance of range ambiguity at gigahertz clock
rates,” Opt. Express 16, 13685–13698 (2008).

9. N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambi-
guity in a photon counting depth imager operating at kilometer distan-
ces,” Opt. Express 18, 9192–9206 (2010).

10. P. Rieger and A. Ullrich, “Resolving range ambiguities in high repeti-
tion rate airborne lidar applications,” Proc. SPIE 8186, 81860A (2011).

11. P. Rieger, “Range ambiguity resolution technique applying pulse-posi-
tion modulation in time-of-flight scanning lidar applications,” Opt. Eng.
53, 061614 (2014).

Gunnar Arisholm received his BSc degree in computer science from
University of Strathclyde in 1987 and joined FFI the same year. At FFI
he changed subjects to lasers and nonlinear optics, and in 2000 he
received his PhD in physics from the University of Oslo. His current
interests include optical frequency conversion, lidar and atmospheric
beam propagation.

Biographies for the other authors are not available.

Optical Engineering 073103-9 July 2018 • Vol. 57(7)

Arisholm, Skauli, and Landro: Combined range ambiguity resolution and noise reduction in lidar signal processing

https://doi.org/10.1364/OE.16.013685
https://doi.org/10.1364/OE.18.009192
https://doi.org/10.1117/12.898551
https://doi.org/10.1117/1.OE.53.6.061614

