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bstract. A novel detection method for infrared �IR� point
argets based on eigentargets is presented. The conception
f eigentargets is proposed by making reference to eigen-

aces in the field of face recognition. After creating the target
raining images using the Gaussian intensity function, we
efine our method and obtain eigentargets that are a group
f eigenvectors of the training set. These eigenvectors are

hen used to calculate the target map, defined by a target
ap function, at every location in the image to be detected.
he large values in the target map image indicate the pres-
nce of targets. In comparison with other commonly used
etection methods, our method has better performance with
etter receiver operating characteristics, and larger signal-

o-noise ratio �SNR� and background suppression factor.
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Introduction

or infrared �IR� point targets, the background is usually
ontaminated by unknown noise, and the target-to-
ackground contrast is very low, so it is very difficult to
etect them. The issue of detecting targets can be viewed as
two-class pattern recognition problem.1 An image to be

etected consists of a target class and a background class.
e can use the pattern recognition algorithms to detect

argets. In Ref. 1, the authors detected targets with the
ukunaga Koontz transform �FKT�, which is a two-pattern
ecognition algorithm based on principal component analy-
is �PCA�. Moreover, Chan et al.2 use neural networks to
etect targets. Turk and Pentland applied PCA to face rec-
gnition and detection.3 In this letter, we make reference to
his method to detect IR point targets.

Eigentargets for Detection

onsider a set of N training target images �x1 ,x2 , . . . ,xN�
hat are m�m in size. We convert them to column vectors
�1 ,�2 , . . . ,�N�. The average target is defined by �
�1/N��n=1

N �n. Then the covariance matrix can be calcu-
ated by

091-3286/2007/$25.00 © 2007 SPIE
ptical Engineering 110502-
C =
1

N
�
n=1

N

��n − ����n − ��T. �1�

C is factorized into the form

C = ���T, �2�

where � is a matrix with the eigenvectors of C, and � is a
diagonal matrix with the corresponding eigenvalues as ele-
ments of its main diagonal. We assume that the eigenvec-
tors in � have been sorted into �= ��1 ,�2 , . . . ,�N� by de-
scending order of corresponding eigenvalues �
= ��1 ,�2 , . . . ,�N�. Then the first M eigenvectors

�t = ��1,�2, . . . ,�M� , �3�

in � are used to construct a subspace �the target space�. We
call �t eigentargets. Eigentargets �t represent the main fea-
ture of targets.

Given an image to be detected, at every pixel location
�x ,y�, an image vector ��x ,y� is constructed whose size is
equal to the size of the training images. This vector is pro-
jected into the target space by the following operations:

�k = �k
T�� − �� . �4�

�= ��1 ,�2 , . . . ,�M� describes the contribution of each
eigentarget in representing the input target image ��x ,y�.
Then we can obtain the reconstructed target image by

�rt = �
k=1

M

�k�k. �5�

Ordinarily, the Euclidian distance 	�x ,y� between the un-
known image vector ��x ,y� and the reconstructed target
image is used to detect faces in Ref. 3. It is formulated by

	�x,y� = �� − � − �rt� 
 � , �6�

where � is a chosen threshold. The value of 	�x ,y� is a face
map in Ref. 3. The small values indicate the presence of
faces. In this letter, we design a new map function to com-
plete our detection task. It is defined by

��x,y� = exp�	�x,y�2/2
2� . �7�

The preceding map, the target map, can let all component
values of ��x ,y� be elements of �0,1� for allowing mean-
ingful comparisons across widely varying conditions.
Moreover, Eq. �7� makes the large values indicate the pres-
ence of targets. This is more consistent with our intuition
than Eq. �6�, whose small values indicate the presence.

Apparently, eigenfaces and our eigentargets methods are
supervised learning methods. For all supervised learning
methods, the selection of the training set is very important
for their performance. There are two approaches to generate
the target training images. One is cropping from the real IR
images to be detected. The other is using the synthetic im-
ages generated by the Gaussian intensity function.4 Two
reasons support our using synthetic target images to con-
struct the training set. The first reason is that cropping the
real target images is difficult and troublesome because we
do not know the location of targets before detection. The
November 2007/Vol. 46�11�1
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econd reason is that the real images generally are contami-
ated by noise. Thus, they cannot precisely and correctly
epresent the feature of targets. The form of the Gaussian
ntensity function is

�x,y� = Imax exp	
−
1

2� �x − x0�2


x
2 +

�y − y0�2


y
2 �
� . �8�

he pixel spread characteristics of simulated point targets
re defined by the maximum intensity Imax, horizontal
pread parameter 
x, and vertical spread parameter 
y.
x0 ,y0� is the center location of the target, and its intensity
alue is Imax. �x ,y� is the location of other pixels. In Ref. 4

ig. 1 The two experimental IR images and the comparison of the
arget map. �a1� and �b1� are the IR images to be detected. �a2� and
b2� are the target maps of eigentargets. �a3� and �b3� are their plots,
espectively. �a4� and �b4� are the target maps of FKT. �a5� and �b5�
re their plots, respectively.

Fig. 2 The ROC curves of eigentargets and FK
ROC curve of detecting Fig. 1�b1�.
ptical Engineering 110502-
�Fig. 3�, some simulated point targets are shown.

3 Experiment and Results

We first compare the detection performance of the Fuku-
naga Koontz transform �FKT�1,5 with that of eigentargets
proposed by us under the same experimental conditions.
Figure 1 shows the two experimental images to be used in
this letter. The targets in Fig. 1 are very dim, so it is diffi-
cult to detect them from the background.

Generally speaking, the size of IR point targets is less
than 100 pixels, so the size of training images is set as 11
�11 in our experiments. For detecting potential targets
from Fig. 1�a1� and Fig. 1�b1�, 100 target training images
are created randomly by the Gaussian intensity function
�Eq. �8��. The number of eigentargets in Eq. �3� is M =10.
The parameter in Eq. �7� is experientially set as 
=0.25.
FKT detection is executed according to the contents of
Refs. 1 and 5.

From Figs. 1�a4�, 1�a5�, 1�b4�, and 1�b5�, we can see that
FKT has some large response points in the background be-
cause of the existence of the clutter. That means that its
capability of suppressing the background is not strong.
Moreover, the peaks at target locations are not distinct. The
main cause of these disadvantages is that FKT cannot pre-
cisely capture the features of targets and backgrounds so
that the shift-version targets and backgrounds also have
strong responses, while we expect detection methods have
a large response only at the pixel located at the center of the
target. Figures 1�a2�, 1�a3�, 1�b2�, and 1�b3� show the re-
sults of eigentargets proposed by us. We can see that the
outputs corresponding to the background pixels are small.
That means that eigentargets have a better capability of
suppressing the background. Furthermore, eigentargets
make distinct peaks at the center location of every target.
Thus, we can easily and precisely find the correct locations
of targets.

The receiver operating characteristic �ROC�1 curve is a
good tool for evaluating the performance of a detection
method. Figure 2 shows ROC curves of eigentargets and
FKT for detecting targets from two images of Fig. 1. The
ROC curves are constructed by varying the detection
threshold �ROC operating point�. In Figs. 2�a� and 2�b�,
when the false alarm is close to 0%, the lowest detection
rate of eigentargets is 80%, while that of FKT is 0%. More-

The ROC curve of detecting Fig. 1�a1�. �b� The
T. �a�
November 2007/Vol. 46�11�2
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ver, the false alarm rate of eigentargets is much smaller
han that of FKT, when the detection rate approached
00%, so the ROC curves indicate that eigentargets have a
etter performance than FKT.

To present further validation of the performance of
igentargets, we compare eigentargets with other detection
ethods such as FKT, max-median �MMed�, max-mean

MMean�,6 and two-dimensional LMS �TDLMS�7 by nu-
erical values. Three metrics for small target detection,

ignal-to-noise ratio �SNR�, signal-to-noise gain �SNRG�,
nd background suppression factor �BSF�, are used to
valuate the detection performance. They are defined by:
NR=S /N, SNRG=SNRout /SNRin, and BSF=Cin /Cout. S is
he maximum amplitude of target signal �intensity�, and N
s the maximum amplitude of background signal. Cin is the
tandard deviation of the original background, and Cout is
hat of the target map background. Obviously, the larger the
hree metrics, the better the performance of the detection
ethod is. Table 1 lists the values of three metrics for de-

ecting the targets of Figs. 1�a1� and 1�b1�. From Table 1,
e can see that the eigentargets �ET� proposed in this letter
ave larger SNR and BSF than other methods for every
arget, which means thateigentargets has the best detection
erformance.

In conclusion, the experiments executed in this section
alidate that the eigentargets method can be used success-
ully to detect IR point targets.

Table 1 The performance comparison of the different detec
ptical Engineering 110502-
4 Conclusions

Referring to the concept of eigenfaces, we propose a novel
detection method for IR point targets based on eigentargets.
The Gaussian intensity function is used to generate the
training images. Moreover, we design a target map function
that can normalize the Euclidian distance but not directly
use the Euclidian distance. In comparison with other detec-
tion methods, the eigentargets method outperforms other
detection methods with larger SNR and BSF.
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