
T

S
O
P

B
D
H

1
T
i
l
r
t
p
b
c
T
o
u
p

2
2
T
T
p
t
p
a
a
s
u
h
a

2
T
e
d
t

A
D
0
p
n
2

Journal of Biomedical Optics 13�4�, 041302 �July/August 2008�

J

utorial on diffuse light transport

teven L. Jacques
regon Health and Science University
ortland, Oregon 97239

rian W. Pogue
artmouth College
anover, New Hampshire 03755

Abstract. A tutorial introduction to diffuse light transport is presented.
The basic analytic equations of time-resolved, steady-state and modu-
lated light transport are introduced. The perturbation method for han-
dling slight heterogeneities in optical properties is outlined. The treat-
ment of boundary conditions such as an air/tissue surface is described.
Finite mesh-based numerical methods are introduced to calculate the
diffuse light field in complex tissues with arbitrary boundaries. Appli-
cations in tissue spectroscopy and imaging illustrate these theoretical
and computational tools. © 2008 Society of Photo-Optical Instrumentation Engineers.
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Introduction
his report is a tutorial introduction to diffuse light transport

n biological tissues. Section 1 presents the basics of diffuse
ight transport, showing the simple equations for time-
esolved, steady-state, and modulated light transport. The per-
urbation method for handling slight heterogeneities in optical
roperties is introduced. The treatment of an air/tissue surface
oundary condition is considered. Section 2 describes numeri-
al methods for simulating light transport in complex tissues.
he goal of this work is to provide the novice in biomedical
ptics with an introduction to diffuse light transport, and the
nderpinnings of how basic approaches to solving light trans-
ort problems can be solved.

Analytic Modeling of Diffuse Light Transport
.1 Optical Properties and Transport Parameters
his tutorial follows the notation of Welch and van Gemert.1

he tissue optical properties are shown in Table 1. These
roperties yield the transport properties used in diffusion
heory, as given in Table 2. In discussing light transport, the
arameters given in Table 3 are used. The units of power P
nd light transport T differ for a point source, a line source,
nd a planar source, but the fluence rate �= PT always has the
ame units. For a point source, P has units of W and T has
nits of cm−2. For a line source, P has units of W/cm and T
as units of cm−1. For a planar source, P has units of W /cm2

nd T is dimensionless.

.2 Diffuse Versus Nondiffuse Regimes
he movement of light can be discussed in several ways. For
xample, 1. light moves as an electromagnetic wave in a me-
ium �used in interferometry�, 2. light moves as ballistic pho-
ons, each with a direction of travel that can be redirected by

ddress all correspondence to Brian W. Pogue, Thayer School of Engineering,
artmouth College, 8000 Cummings Hall, Dartmouth College, Hanover, NH
3755, USA; Tel: 603-646-3861; Fax: 603-646-3856; E-mail:
ogue@dartmouth.edu and Steven L. Jacques, Department of Biomedical Engi-
eering, Oregon Health and Science University, Oregon Graduate Institute,
0000 N.W. Walker Rd., Beaverton, OR 97006, E-mail: jacquess@ohsu.edu.
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scattering �used in Monte Carlo simulations�, or 3. light can
be treated as a concentration of optical energy that diffuses
down a concentration gradient �used in diffusion theory simu-
lations�. This work is devoted to discussing the third example,
the movement of optical energy by diffusion down concentra-
tion gradients.

Before proceeding, it is important to understand when dif-
fusion theory is not appropriate. Diffusion assumes that the
quantity that is diffusing, in our case optical or radiant energy,
does not have a preferential direction of travel. Hence, the net
movement of that quantity is by diffusion down a concentra-
tion gradient, following Fick’s first law of diffusion �discussed
later�. When photons are delivered as a collimated beam into
a medium, they definitely have a direction of movement. As
the photons are scattered by interaction with a tissue,
they lose their directionality and hence become eligible for
diffusion.

Monte Carlo simulations provide a method for specifying
the movement of ballistic photons.2 Figure 1 compares the
Monte Carlo and diffusion theory descriptions of the distribu-
tion of light in an infinite medium where light is delivered as
a collimated beam by an optical fiber submerged in the light-
scattering medium. The figure illustrates that in a local region
near the source, diffusion theory fails to accurately describe
the light distribution. However, distant from the source, dif-
fusion theory is quite good, as if the collimated photons had
been thrown forward by the optical fiber and the diffusion
process had emanated from this location, a distance 1 / ��a

+�s�1−g�� in front of the fiber. This distance is called the
transport mean free path, or MFP� �sometimes called l*�. The
figure illustrates diffusion theory and the Monte Carlo ap-
proach agreement at distances exceeding one MFP� from the
tip of the fiber and exceeding one MFP� from the apparent
source of diffusion located one MFP� beyond the fiber tip.

The idea of a hybrid Monte Carlo/diffusion theory has
been introduced, in which a Monte Carlo simulation launches
the photons and diffusion theory propagates them after they
have multiply scattered.3 A Monte Carlo simulation launches

1083-3668/2008/13�4�/041302/19/$25.00 © 2008 SPIE
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hotons into a scattering medium and propagates the photons
ccording to probability density functions for the step size
etween photon/tissue interaction sites and the angles of de-
ection. As the photon propagates initially, the fluence rate in
esponse to a 1-W incident power rate is recorded in an array,

MC�x ,y ,z� �W /cm2 per W�, which is the transport

MC�x ,y ,z� �1 /cm2� When a photon reaches a depth z that
xceeds MFP�, the Monte Carlo simulation of that photon
ovement is halted and the photon power is deposited into

he local voxel of an array that accumulates the photons as a
istributed source P�x ,y ,z� �W per voxel�. After launching
any photons, the Monte Carlo simulation yields both a

MC�x ,y ,z� and a distributed source P�x ,y ,z�. A point spread
unction or Green’s function, G�x� ,y� ,z� ,x ,y ,z�, based on
iffusion theory is convolved against P�x� ,y� ,z�� to yield the
uence rate, �DT�x ,y ,z�=G � P, throughout the medium due

o diffusion. The final answer is �=�MC+�DT.
If one ignores the region near a source, then diffusion

heory is a very useful and reasonably accurate method for
escribing the distribution of light in a light-scattering light-
bsorbing medium. If the observation point is more than one
r two transport mean free paths from a source, diffusion

able 1 Tissue optical properties.

uantity Symbol Units

bsorption coefficient �a cm−1

cattering coefficient �s cm−1

nisotropy of scattering g dimensionless

efractive index n dimensionless

ig. 1 Monte Carlo simulation of photons launched as collimated
eams from optical fibers. The light appears to diffuse from a central
oint located one MFP�=1/ ��a+�s�1−g�� in front of the delivery fiber
red dot at r=0, z=0.3 cm�. Iso-concentration contours based on

onte Carlo are drawn as black dots and black line. Dashed red
ircular lines centered around the center of diffusion indicate the pre-
iction of diffusion theory. Near the source, diffusion theory does not
gree with the Monte Carlo simulation, but distant from the source
greement is good. The mismatched air/medium boundary at z=0
lightly distorts the iso-concentration curves of the Monte Carlo simu-
ation, so Monte Carlo and dashed lines of diffusion theory do not
xactly match. �Optical properties: �a=0.1 cm−1, �s=100 cm−1, g
0.90, n=1.4.� �Color online only.�
ournal of Biomedical Optics 041302-
theory is usually accurate to within a few percent. Typically in
the visible or near-infrared wavelength range, a distance of
one MPF� corresponds to less than 1 or 2 mm. So diffusion
theory is quite appropriate and useful when discussing light
transport over several millimeters or more.

Diffusion theory also assumes that photons are able to par-
ticipate in a random walk. Hence, photons should be able to
undergo several scattering events before being absorbed. The
commonly cited criterion, which is only a rough rule of
thumb, is that the ratio �s�1−g� /�a should exceed 10. If
there are sufficient scattering events before an absorption
event occurs, then the average photon propagation after many
scattering events becomes dependent on �s�1−g� rather than
on the specific values of �s and g. The total diffuse reflec-
tance from a tissue that has �s�1−g� /�a=10 is 0.252 �based
on Monte Carlo simulations�, where the mismatched tissue/air
surface boundary has ntissue /nair=1.4. A study of reflectance
versus �s�1−g� /�a where �s and g were varied but �s�1
−g� was conserved, indicated that reflectance becomes inde-
pendent of g when reflectance exceeds �0.40 ��s�1
−g� /�a equal�20�.4 So the reflectance of a tissue should
exceed at least 25% and preferably 40%, or �s�1−g� /�a
should exceed 10 and preferably 20, if one wishes to use
diffusion theory reliably. Fortunately, this is usually the case
for tissues when using visible to near-infrared wavelengths of
light. In tissues with lower reflectance or ratio �s�1−g� /�a,
diffusion theory can still be useful but caution as to the accu-
racy of diffusion theory is advised.

Table 2 Transport properties used in diffusion theory.

Quantity Symbol Units

Reduced scattering coefficient �s�=�s�1−g� cm−1

Transport mean free path MFP�=1/ ��a+�s�� cm

Diffusion length D=MFP�/3 cm

Optical penetration depth �=�D/�a cm

Table 3 Parameters for light transport.

Quantity Symbol Units

Radiant power P W, W/cm, W/cm2

Radiant energy Q J

Transport T cm−2, cm−1, dimensionless

Fluence rate �=PT W/cm2

Fluence �=QT J/cm2

Speed of light in tissue c=c0/n cm/s

Concentration of radiant
energy

C=�/c J/cm3
July/August 2008 � Vol. 13�4�2
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In summary, diffusion theory is very quick and useful. It is
ot good near sources. This caution extends to locations near
oundaries between regions of differing optical properties, es-
ecially the air/tissue surface, and to locations near strongly
bsorbing objects. Diffusion theory is not so good in tissues
ith strong absorption, where �s�1−g� /�a�10. For much
ork in the visible to near-infrared wavelength range, diffu-

ion theory is quite good, and should be understood by every
tudent of biomedical optics.

.3 Diffusion Theory

.3.1 Fluence rate and concentration of optical
energy

he fluence rate � �W /cm2� is proportional to the concentra-
ion of optical energy C �J /cm3�:

� = cC , �1�

here c is the speed of light in the medium, c=co /n �cm/s�,
o=2.998�1010 cm /s, and n is the refractive index of the
edium. For example, consider a uniform beam of 1 W /cm2

rradiance passing through a 1-cm3 cube of water �see Fig. 2�.
f the fluence rate � in the nonscattering water �n=1.33�
quals 1 W /cm2 at 500-nm wavelength, then the correspond-
ng concentration of photons is 0.18 pM �0.18

10−12 moles / liter�:

�
n

c0

�

hc0

1000

NAv
= �1 W/cm2�

�
1.33

�3 � 1010 cm/s�2

�500 � 10−7 cm�
�6.63 � 10−34Js�

�
1000 cm3/liter

�6.02 � 1023 mole−1�

= 0.18 � 10−12M. �2�

he factor � /hc, where � is wavelength, h is Planck’s con-
tant, and c is the in vacuo speed of light, indicates the num-
er of photons per J energy. The factor 1000 indicates the
onversion 1000 cm3 / liter, and NAv is Avagadro’s number
or the molecules per mole.

.3.2 Flux and concentration gradients
luence rate can be regarded as a measure of concentration,
nd the diffusion of light as the movement of photons down

ig. 2 The concentration of photons in a cube of water irradiated with
W/cm2 is 0.18 pM.
ournal of Biomedical Optics 041302-
concentration gradients. This gradient-driven movement of
light is described by Fick’s first law of diffusion, in which the
flux J �W /cm2� down a concentration gradient �C /�x
��J /cm3� /cm� is

J = − �
�C

�x
= − D

��

�x
, �3�

where � is the diffusivity �cm2 /s� equal to cD for light, with
the diffusion length D=MFP� /3 �cm�. In general, � can refer
to the diffusion of heat, molecules, etc., or radiant energy. For
light, C=� /c and �=cD, and the product �C= �cD��� /c�
=D�. Therefore, the speed of light is canceled in Eq. �3�.

The description of the flux of optical energy down a gra-
dient of fluence rate along the dimension x follows Fick’s law,
which relates the local gradient to the local flux �Eq. �3��. The
description was originally developed to describe neutron scat-
tering in nuclear reactor cores, where the role of absorption
was neglected. Consider a small incremental window of cross
sectional area dA at x=0, z=0, oriented such that the normal
to the window is aligned with the z axis. The flux of light
through the window is due to the scatter of light from two
small hemispherical regions on either side of the window,
which scatter light through the window from both directions.
For this example, isotropic scatterers are assumed, described
by the reduced scattering coefficient �s� �cm−1�. The fluence
rate upstream from the window along the gradient encounters
the scatterers within an incremental volume dV and a power is
scattered �s��dV �W�. A fraction cos�	�dA / �4
r2� of this
scattered power is directed toward the window, which is a
distance r from the volume dV, where 	 is the angle between
the normal of the window and the direction of scatter toward
the window. The fraction of this power aimed at the window
that reaches the window is exp�−r /MFP��, since scattering
and absorption attenuate the light. This attenuation limits the
radius of the hemispheres from which the window accepts
scattered light. The balance between these two fluxes through
the window, the downstream flux minus the upstream flux,
yields the net flux through the window. Normalizing the net
flux by dA yields the net flux density J �W /cm2� passing
through the incremental window:

J =�
z=−�

0 �
x=0

�

�s���x,z�
cos�	�
4
r2 exp�− r/MFP��

�sign�− z�2
xdxdz . �4�

The factor 2
xdxdz is the incremental volume dV expressed
as an annular ring. The factor sign�−z� causes the integrand to
be positive when z�0 �upstream of the gradient� and to be
negative when z
0 �downstream of the gradient�. This ex-
pression yields a value for the flux density J given a particular
gradient �� /�z. The diffusion length is thereby specified as
D=J / �−�� /�z�, using Fick’s first law.

Fick’s first law holds if the gradient of fluence rate is linear
within the two hemispherical regions of integration, i.e.,
��z�=��0�+az, where z is the position along the axis per-
pendicular to the window and a is a constant. This situation is
called diffusion theory, and is sometimes called the P1 ap-
proximation. If, however, there is too much curvature in the
gradient of �, then the � near the window must be described
July/August 2008 � Vol. 13�4�3
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y higher order terms, ��z�=��0�+az+bz2+ . . .. An example
f this is the so-called P3 approximation. Such curvature oc-
urs when the point of interest is close to a source of light or
sink for light �an absorber�, or near a boundary of mis-
atched optical properties. Hence, diffusion theory does not
ork well near discontinuities, and the P3 approximation is a
ore appropriate method to describe the transport. However,

f the source and point of observation are separated by more
han a MFP�, the P1 approximation is usually sufficient. The
resence of a boundary is discussed later �see Boundaries in
ee Sec. 2.5�.

The use of Fick’s law has two important consequences that
hould always be kept in mind. First, there is continuity of the
uence rate across any boundary, even if the tissues on either
ide of the boundary have different optical properties. Second,
he flux incident on a boundary equals the flux leaving the
oundary, in other words photons do not accumulate on a
oundary surface. If two tissues with differing absorption and
cattering properties are in contact and light diffuses through
heir common boundary, the fluence rate � across the bound-
ry will be continuous, although the rate of energy deposition

a� can be discontinuous.

.3.3 Time-resolved diffusion
ow that photon movement is understood as a diffusion pro-

ess, consider the standard time-resolved diffusion equation,
hich is applicable to anything that can diffuse but is now

pplied to the diffusion of radiant energy. The generic solution
o the diffusion equation, for diffusion from a point source, or
elta function source, in both space and time is:

C�r,t� = Q
exp�− r2/�4�t��

�4
�t�3/2 . �5�

he Q is the point source of whatever substance or energy
units� that will diffuse, for example heat, molecules, photons,
tc., which is deposited at the origin �r=0� at time zero �t
0�. The second factor has units of cm−3 and is referred to as
reen’s function. Hence, the concentration C at a distance r

rom the source at a time t after the initial deposition of Q is
xpressed as �units /cm3�.

To describe the diffusion of fluence rate � after deposition
f a point source of radiant energy, Q �J�, the speed of light is
ntroduced, since �=cC. Also, the diffusivity � is replaced by
D. Finally, the role of absorption is added by including the
erm exp�−�act�, where ct is the path length of individual
hotons at time t after the impulse, and �a �cm−1� is the
bsorption coefficient. The result is:

��r,t� = cQ
exp�− r2/�4cDt��

�4
cDt�3/2 exp�− �act� . �6�

his is the time-resolved 3-D diffusion equation for light in a
edium with scattering and absorption. Figure 3 gives an

xample of time-resolved diffusion of light from an impulse.

.3.4 Steady-state diffusion
ntegration of the prior time-resolved ��r , t� in Eq. �6� over
ll time yields the radiant exposure ��r� �J /cm2�, which does
ot depend on time. The direct integration of Eq. �6� using
ournal of Biomedical Optics 041302-
rules of integration is not immediately obvious. Intuition in-
dicates that � should fall exponentially with distance from a
source. A numerical integration of ��r , t� over all time at each
position r �not shown here� confirms that at large r, the radi-
ant exposure ��r� falls as exp�−r /constant�. The constant is
given the symbol � �cm� and is called the optical penetration
depth. The factor 1 /� is called the effective attenuation coef-
ficient �eff. The integration becomes easier by considering
conservation of energy. The proper form of � is such that the
integral of energy deposition over an infinite volume equals
the total energy deposited Q. The energy deposition �a�
�W /cm3� is integrated over the infinite spatial domain:

�
�

�a��r�dV =�
r=0

�

�a
exp�− r/��

factor
4
r2dr = Q , �7�

where dV is expressed as an incremental shell volume
4
r2dr. The denominator called factor needs to be specified.
The factor needs the term 1 /Q to yield the final value Q. The
factor needs �a to cancel the �a in the numerator. The factor
needs 4
 to cancel the 4
 in the numerator. The factor needs
r to reduce the r2 in the numerator to simply r, so that
exp�−r /��rdr can be integrated by parts. A factor �2 is gen-
erated by this integration, so the factor needs a �2 to cancel
this term. In summary, the factor must equal 4
�a�2r /Q to
allow conservation of energy in Eq. �7�. Therefore, the expres-
sion for the radiant exposure ��r� in response to an impulse of
energy Q at r=0 and t=0 is

��r� =�
t=0

�

��r,t�dt = Q
exp�− r/��
4
�a�2r

= Q
exp�− r/��

4
Dr
. �8�

The factor �a�2 is identical to D �derivation not shown here�,
and the expression using D is also shown in Eq. �8� and is
commonly used.

Fig. 3 Time-resolved diffusion of light from an impulse of light, Q
=1 J, delivered as a point source at r=0, t=0. The time-resolved flu-
ence rate ��r , t� is shown at t=0.1, 0.2, and 0.5 ns.
July/August 2008 � Vol. 13�4�4
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This ��r� is the impulse response of radiant exposure to an
mpulse of energy deposition Q �J�. If one has a repetitive
equence of impulses at a frequency f , �1 /s� the time aver-
ged power is P= fQ �W�. In the limit of f → infinity and
→0 such that P is maintained at a constant average power,

he superposition of the time-resolved responses ��r , t� to
ach impulse Q blurs into a steady-state fluence rate propor-
ional to ��r�, with Q replaced by P:

��r� = P
exp�− r/��

4
Dr
. �9�

his equation describes steady-state diffusion of light from a
oint source of power P. Figure 4 gives an example of steady-
tate diffusion of light.

The transport factor T equals � / P and characterizes the
ight transport in a tissue independent of the strength of the
ource. The following equations list the transport T for 1-D
lanar diffusion from a planar source Pplanar �W /cm2�, for
-D cylindrical diffusion from a line source P �W/cm�, and

ig. 4 Steady-state diffusion of light from a point source P=1 W at r
0. The dashed line indicates diffusion with no absorption. The data
ear r=0 are not correct because diffusion theory is inaccurate near

he source where the gradient of fluence rate has significant curvature
��2� /�r2��0�. �Top� Fluence rate, �. �Bottom� Residual error ex-
ressed as �MC-DT� /DT, where MC is the Monte Carlo result and DT

s the diffusion theory result.
cyl

ournal of Biomedical Optics 041302-
for 3-D spherical diffusion from a point source, Psph �W�,
derived as outlined before from conservation of energy:

Tplanar�z� =
exp�− z/��

2�a�
,

Tcyl�r� ��2�


r

exp�− r/��
2
�a�2 ,

Tsph�r� =
exp�− r/��
4
�a�2r

. �10�

2.3.5 Modulated diffusion
If the power of a point source is modulated sinusoidally, then
a population of photons will be periodically injected into the
medium. The time-resolved source is:

P�t� = Po�1 + Mo sin��t�� , �11�

where Mo is the modulation of the source, 0�Mo�1 �di-
mensionless�, and � is the angular frequency of modulation
�radians/s�, �=2
f , where f is the frequency in �Hz�.

These injected photons will diffuse down the gradient from
the source toward some point of observation at a detector. The
diffusion theory expression for transport from such a time-
resolved modulated source �a point source within a medium
with no nearby boundaries� is

��r,t� = P0	Tss�r� + Mo
exp�− rk��

4
Dr
sin��t − k�r�
 ,

=P0Tss�r��1 + Mo exp�− r�k� − 1/���sin��t − k�r�� ,

�12�

where Tss�r� �1 /cm2� is the steady-state transport:

Tss�r� =
exp�− r/��

4
Dr
, �13�

the factors k� and k� are defined:

k� =
1

��2
�	1 + � �

�ac

2
1/2

+ 1�1/2
=

a

�
cos�b� ,

k� =
1

��2
�	1 + � �

�ac

2
1/2

− 1�1/2

=
a

�
sin�b� , �14�

where

a = 	1 + � �

�ac

2
1/4

,

b =
1

2
arctan� �

�ac

 . �15�

These above expressions are consistent with the appendix of
Svaasand et al.5 The consequence of these expressions is that
July/August 2008 � Vol. 13�4�5
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he fluence rate seen at the detector has a steady-state compo-
ent PoTss�r�, plus a modulated component characterized by a
odulation M �dimensionless� and a phase � �radians�:

Modulation M = Mo exp�− r�k� − 1/��� ,

Phase � = k�r . �16�

f the angular frequency of modulation � is swept over a
road range, then the values of M and � versus frequency
onstitute a frequency domain description of light transport.

For very low frequencies of modulation as �→0, the fac-
or a approaches 1 and the factor b approaches 0. Therefore,
� approaches 1 /� and k� approaches 0. M approaches Mo,
nd � approaches 0. So the transport becomes

��r,t� = PoTss�r��1 + Mo sin��t�� = P�t�Tss�r� , �17�

hich is simply the steady-state response to the slowly vary-
ng light source P�t�.

For very high frequencies of modulation as ���ac, the
actor a approaches �� / ��ac��1/2, and the factor b approaches
/4. Since cos�
 /4�=sin�
 /4�=1 /�2, the values k� and k�

pproach the same limiting value:

k� = k� =
1

��2
� �

�ac

1/2

. �18�

n the intermediate regime where � is a little below or a little
bove �ac, the behavior of M and � varies versus �, each in
unique manner, and therefore M and � observed at a par-

icular distance r from the source encode the optical proper-
ies �a and �s�1−g�. At very low ���ac, the phase � is too
ow to reliably measure. At high �
�ac, the � becomes
nsensitive to �a. So the use of modulated light is typically in
he intermediate region where � is a little less than �ac. For a
issue with n=1.37 and �a=0.1 cm−1, the value �=�ac0 /n
s 1.65�10−9 �rad /s�, and the frequency f =� / �2
� is
62 MHz. Typically, modulated diffusion measurements are
ade with frequencies in the range f =25 to 1000 MHz,
hich correspond to �a=�n /c0=0.007 to 0.29 cm−1, re-

pectively. Figure 5 shows M and � versus r for a series of
odulation frequencies. Figure 6 shows M and � versus
odulation frequency for a series of r positions.

.4 Modeling Heterogeneities by the Perturbation
Method

iffusion theory can often provide a quick assessment of the
nfluence of a perturbing object within a tissue. Such a per-
urbing object can be a region of tissue with different absorp-
ion and/or scattering properties, perhaps a tumor with an el-
vated density of blood vessels due to angiogenesis, a
ortwine stain lesion with abnormal vasculature, a fibrous
rowth with increased scattering, or a fluid-filled cyst with
ecreased scattering.

The perturbation method can use the Green’s function of
iffusion theory to assess the influence of a perturbing object
n a distant point of observation. The method is introduced
sing the steady-state diffusion equation, but the method can
e developed using frequency-domain transport, as shown in
ournal of Biomedical Optics 041302-
Ref. 6, or time-resolved transport. The method need not be
based on diffusion theory, any transport function will suffice.

Consider the example in Fig. 7. If a power P of light is
launched isotropically at a position xs ,ys ,zs, the transport to a
detector at position xd ,yd ,zd over a distance rs→d is

Ts→d =
exp�− rs→d/��

4
Drs→d
, �19�

and the fluence rate at the detector is �d= PTs→d. The back-
ground optical properties are �ao and �so� , yielding a back-
ground diffusion constant D= �1 /3� / ��ao+�so� �, and a back-
ground optical penetration depth �= �D /�ao�1/2.

Now consider the presence of a small absorbing object of
volume V at position xp ,yp ,zp with an extra absorption ��a,
such that its absorption is �a=�ao+��a. The fluence rate at
the object is �obj= PTs→p, where Ts→p is computed using a
source-object distance rs→p= ��xp−xs�2+ �yp−ys�2+ �zp
−zs�2�1/2. The extra energy deposition in the absorbing object,
above the background absorption, is ��a�obj �W /cm3�. The
total extra power deposited in the object is ��a�objV �W�,
which has the units of power. Because the object is absorbing,
the object behaves as a source of negative power P :

Fig. 5 Modulation �M �dimensionless�� and phase �� �radians�� versus
distance �r �cm�� of observation point from source, for various fre-
quencies �f �Hz�� of full source modulation, Mo=1. Optical properties
of medium are absorption �a=0.1 cm−1, and reduced scattering
�s�1−g�=10 cm−1.
p
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Pp = − ��a�objV . �20�

his perturbing negative power propagates in a spherically
ymmetric manner throughout the tissue and reaches the de-
ector, and yields a perturbing fluence rate at the detector,
PpTp→d. The net fluence rate at the detector is

�d = PTs→d + PpTp→d. �21�

he first term on the right is positive. The second term on the
ight is negative for an absorbing object with ��a
0. If
�a�0, then Pp is positive and the perturbation PpTp→d is
ositive.

This is the basic idea of perturbation theory. More details
an be found in Ref. 6.

If one has many real sources and many virtual sources due
o many perturbing objects, the process is treated as a matrix
roblem. A vector P j lists all sources. A vector Pi lists only
he virtual sources, and is a subset of P j. All the N0 real
ources are called P j�j=1:N0�, and the Ni virtual sources due
o the perturbing objects are called Pi�i=1:Ni�=P j�j=N0
1 :Nj�. A perturbation matrix M is defined with Nj columns

o match P j and Ni rows to match Pi. The M matrix consists
f elements that scale each source in P j to yield a contribution
o an updated value of Pi:

Pi = MP j , �22�

r

ig. 6 Modulation �M� and phase ��� versus frequency of modula-
ion, observed at r=1, 2, and 3 cm from source. The source modula-
ion and tissue properties are the same as in Fig. 5.
ournal of Biomedical Optics 041302-
�
P1

P2

. . .

PNi

� = �
M1,1 . . . MNO,1 MNO+1,1 . . . MNj,1

M1,2 . . . MNO,2 MNO+1,2 . . . MNj,2

. . . . . . . . . . . . . . . . . .

M1,Ni
. . . MNO,Ni

MNO+1,Ni
. . . MNj,Ni

�
��

P1

. . .

PN0

PN0+1

. . .

PNj

� .

The values of the real sources are constant. Initially, the val-
ues of the virtual sources are set to zero. A new set of values
for the virtual sources Pi is calculated by Pi=MP j. This first
calculation of Pi is called the Born approximation. The values
of Pi are used to update the virtual source values in P j:

P j�j = N0 + 1:Nj� = Pi�i = 1:Ni� . �23�

Now the process of sequentially using Eqs. �22� and �23� is
iterated, until the values of Pi no longer change. This occurs
rapidly for an absorbing object, usually less than nine itera-
tions. For a scattering object �see later�, convergence usually
takes more iterations, perhaps 20 to 50, but is still rapid. For
scattering objects, it is usually very helpful to let each update
be a partial update, for example only a 1 /3 step toward the
calculated update value, in other words:

Fig. 7 A 0.2-cm-diam. absorbing object perturbs the field of light from
a source, as seen by a detector. The transport of light from the source
to the perturbing object Ts→p is absorbed by the volume �V� of the
sphere, which has an incremental absorption ��a above the back-
ground tissue optical properties, but the same scattering properties as
the background tissue. The power absorbed by the sphere, ��aTs→pV,
has units of power �W�, and acts as a negative optical power, Pp
=−��aTs→pV, that propagates throughout the tissue and subtracts
from the background light supplied by the source. The detector sees a
local fluence rate �d=PTs→d+PpTp→d. Hence, the signal at the detec-
tor slightly drops in the presence of the perturbing object.
July/August 2008 � Vol. 13�4�7
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P j�j = N0 + 1:Nj� = Pi�i = 1:Ni� + �MP j − i�i = 1:Ni��/3.

�24�

his makes convergence smoother and more robust.
If an object is rather large, then it is better to subdivide the

bject volume into smaller subvolumes, each acting as an
ndependent virtual source. For a scattering object, virtual
ources, some positive and some negative, are placed on the
urface of the object to create an effective dipole that mimics
he behavior of the scattering object. The following discussion
utlines these procedures. Figure 8 illustrates the virtual
ources described, Fig. 8�a� showing the absorbing subvol-
mes and Fig. 8�b� showing the surface scattering sources that
ield a dipole with positive sources on the hemisphere facing
pstream into the gradient of fluence rate toward the real
ource, and negative sources on the hemisphere facing down-
tream down the gradient of fluence rate away from the real
ource.

There are two kinds of perturbation that contribute to the
ource vector S and the elements in the M matrix. One is due
o absorption and one is due to scattering. Consider a spheri-
al object of radius R that is both absorbing and scattering.
he volume of the object can be subdivided into a set of Na
ubvolumes that fill the object’s volume, and each is called a

ig. 8 The virtual sources for perturbation by an object. �a� Subvol-
mes within an object, accounting for object absorption and
cattering-enhanced absorption. �b� Surface sources on the object’s
urface, creating a dipole oriented along the gradient of fluence rate.
ournal of Biomedical Optics 041302-
“virtual absorbing volume source.” The vector Pj�j=N0
+1:N0+Na� is filled with these virtual absorbing volume
sources, in this example expressed as small spheres, each of
radius a and subvolume Vi= �4 /3�
a3. The radius a is usually
chosen to approximately equal MFP� /2, which sets the num-
ber of small spheres required to fill the object’s volume Na,
but the total volume of all the small spheres must equal the
volume of the object V=Na�4 /3�
a3, so a= �3V / �4
Na��1/3.
The elements of the M matrix for i=1:Na are specified for
each j’th source by:

M�j,i� = − 	��a�i� + ��s��i�
�ao

�so�

V�i�T�j,i� . �25�

The factor −��aiViTj,i denotes the effect of the j’th source on
the i’th virtual source, and is the same as the introductory
example presented earlier �see Eq. �20��. The second term,
−��si� ��a0 /�s0� �ViTj,i is a scattering-enhanced absorption due
to the extra scattering ��si� that causes light to be trapped
within the object, thereby extending its path length within the
object.

The surface of the object is studded with point sources
called “virtual scattering surface sources,” which mimic the
scattering of the object due to its ��si� . The surface is divided
into a set of Ns incremental surfaces, each with a surface area
�Ai. The sum of the incremental surfaces equals the total
surface area of the object. The vector P j�j=N0+Na+1:Nj�,
where Nj =No+Na+Ns, is filled with these virtual scattering
surface sources. The elements of the M matrix for i=Na
+1:Ni, where Ni=Na+Ns, is specified for each j source by:

M�j,i� =
��a + ��s�

�so�
�A�i�

D

d
�T1�j,i� − T2�j,i�� , �26�

where T1�j , i� is the transport from the j’th source to a posi-
tion d /2 just outside the object at the i’th virtual source po-
sition, and T2�j , i� is the transport from the j’th source to a
position d /2 just inside the object at the i’th virtual source
position. The distance d is usually chosen to equal MFP�,
such that these two sources inside and outside the object’s
surface are sufficiently distant from each other to interact us-
ing diffusion theory. Positions 1 and 2 are aligned along the
normal to the surface. Consequently, the factor �D /d��T1
−T2� is the flux crossing into the object normal to the surface
at the incremental area. The strength of the virtual surface
scattering source is proportional to this flux. If flux gradient is
driving light into the object, as occurs on the upstream side of
the object closest to the real source, then the value of Pi is
positive. If the flux gradient is driving light out of the object,
as occurs on the downstream side of the object away from the
real source, then the value of Pi is negative. The positive and
negative surface sources on the object create a dipole that
radiates a dipolar perturbation oriented along the gradient of
flux. Light scatters upstream toward the true light source, and
a shadow is cast downstream behind the object.

In the matrix M, a special case occurs when i equals j, and
the self-perturbation by a virtual source must be evaluated.
This term is here called M j,j. For the scattering surface
sources, the value of M is zero, because a point source
j,j

July/August 2008 � Vol. 13�4�8
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annot exert a gradient across itself. For the absorbing volume
ources of radius a, the value of M j,j is calculated:

M j,j =�
r=0

a

��a
exp�− r/��

4
Dr
2
r2dr

=
��a

�a0
	1 − �1 +

a

�

exp�− a/��
 . �27�

fter iterating the matrix calculation �Eqs. �22� and �23��, a
table vector P j is achieved. The fluence rate �d at any obser-
ation point, for example at a detector, can now be calculated:

�d = �
j=1

Nj

P jTj→d, �28�

here Tj→d is the transport from the j’th source to the point
f observation. All the sources P j, both real and virtual, con-
ribute to the observed fluence rate.

Figure 9 shows an example of a 0.4-cm-diam. spherical
bject with adding absorber ���a=1 cm−1, ��s�=0, �a0

0.1 cm−1, �s�=10 cm−1�. The background light field �0 is
hown in Fig. 9�a�. The light source is located at �x ,y ,z�
�−1,0 ,0�. The perturbation itself, �p, is shown in Fig. 9�b�.
he object casts a spherical zone of negative perturbation
round the object, about −10 cm−2 effect �W /cm2 per W of
he source� within the object and −5 cm−2 effect in the region
urrounding the object. Figure 9�c� shows the fractional per-
urbation, �p /�0 �dimensionless�, illustrating that the pertur-
ation is about −0.30 within the object and cases a shadow of
erturbation about −0.10 to −0.20 behind the object, down-
tream from the source. The object’s perturbation can signifi-
antly affect the light field downstream from the object, but it
annot overcome the strong light field upstream toward the
ource.

Figure 10 shows the same spherical object, this time with
dded scattering ���s�=10 cm−1, ��a=0, �a0=0.1 cm−1,

s�=10 cm−1�. This time, the object backscatters a positive
erturbation upstream toward the source and casts a negative
hadow downstream behind the object. Figure 10�c� shows
hat the fractional perturbation �p /�0 is a little different than
he absorption only example �Fig. 9�c��, but essentially pre-
ents the same behavior of casting a shadow downstream be-
ind the object away from the source. These examples illus-
rate that both increased absorption and increased scattering
ast shadows downstream, but have marginal effect upstream.

detector is more sensitive to the presence of a perturbing
bject if the detector is placed in the shadow cast by the
bject.

In summary, the perturbation method is rather simple and
uick, and provides a good estimate of the effect of a perturb-
ng object on the field of light at some distant point of obser-
ation, such as a detector. The perturbation method has been
sed to interpret the gastric endoscopic images of reflectance
o determine the size and depth of a subsurface blood vessel,
o aid the decision about how to handle a gastric bleeding
ite,7 and to assess the ability to measure the oxygen satura-
ion of a neonatal brain while still in the birth canal by deliv-
ournal of Biomedical Optics 041302-
ery of light to and collection of escaping optical flux from the
maternal abdomen, to aid the decision to deliver the neonate
by Caesarean section.8

2.5 Boundaries

A word on boundaries is worthwhile, since most biophotonic
applications involve delivery and/or collection of light
through an air/tissue surface. The boundary condition is mod-
eled using the method of images adapted to solve the relation-
ship between fluence rate at the surface and flux escaping the
surface. The air/tissue boundary is replaced by an infinite tis-
sue with a source of negative light located above �or outside�

Fig. 9 An object with increased absorption ��a0=0.1 cm−1, �s0�
=10 cm−1, ��a=1cm−1, ��s�=0�. �a� The background fluence distri-
bution �0�x ,z� at y=0 �W/cm2�, diffusing from the source. �b� The
perturbing fluence �p due to the object. �c� The fraction perturbation
�p /�0. The object asserts a spherical zone of negative perturbation,
which casts a perturbing shadow downstream but has little effect up-
stream toward the source of light.
July/August 2008 � Vol. 13�4�9



t
t
d

a
f
z
a
m
t
t
z
�
r
o

F
=
F
l
d
w

Jacques and Pogue: Tutorial on diffuse light transport

J

he original tissue boundary, which serves to draw light out of
he original tissue region, thereby mimicking the loss of light
ue to escape from the tissue.

Figure 11�a� schematically depicts light diffusing toward
n air/tissue surface, labeled as a J flux, and diffusing away
rom the surface, labeled as an I flux. The light is shown as a
ig-zag trajectory, at 60 deg relative to the z axis, because on
verage each photon travels a distance L=2�z for every �z
ovement along the z axis. Consider a test point just below

he surface within the tissue, z=0. The fluence rate ��z=0� at
his test point will be twice the value of flux passing along the
axis contributed by both the I and J fluxes, in other words
�0�=2�I+J�. As the light hits the surface, there is internal

eflectance ri of about half the light �ri�0.50�. So the value
f I is r J. Hence, ��0�=2�I+J�=2�r J+J�=2�1+r �J. The

ig. 10 An object with increase scattering ��a0=0.1 cm−1, �s0�
10cm−1, ��a=0, ��s�=10 cm−1�. �a�, �b�, and �c� are the same as in
ig. 9. The object asserts a dipole pattern of perturbation, in which
ight is scattered upstream toward the source, and a shadow is cast
ownstream. However, the perturbation has little effect upstream to-
ard the source of light.
i i i

ournal of Biomedical Optics 041302-1
escaping flux is the observable reflectance R= �1−ri�J.
Hence, J=R / �1−ri�. Therefore, the fluence rate at the surface
is

��0� = 2�I + J� = 2R
1 + ri

1 − ri
. �29�

This is the first key equation. Next, consider Fick’s first law of
diffusion. The escaping flux is R=−D��� /�z� evaluated at z
�0. However, the boundary condition is mimicked by assum-
ing an infinite medium and placing a surface of symmetry
outside the true tissue surface at a position z=zb, where zb is
a negative value. For each true source of light within the
tissue, one places a negative image source at a position sym-
metrically opposite the true source, outside the original tissue
above this plane of symmetry. For example, if a 1-W point
source of light is located at a depth zs within the tissue, then a
negative point source of equal power is placed at a position
zi=2zb−zs.

The example situation illustrated in Fig. 11�b� uses 1-D
planar diffusion theory Tplanar�z�=exp�−z /�� / �2���� to bet-
ter illustrate the gradient of � between a real source at zs and
a negative image source at zi. When 3-D diffusion theory is
used to consider the response to a point source that is close to
the surface, the � gradient in the region near the point of light
delivery may not be perfectly linear, and the solution may not
be accurate in this region. However, the solution yields an

Fig. 11 Schematic explanation of mismatched boundary condition.
�a� The photons diffuse in a J flux toward the surface and an I flux
away from the surface, and on average travel a distance L=2�z per
�z movement along the z axis. The internal reflectance ri at the sur-
face yields I= riJ. The escaping reflectance R= �1− ri�J. Hence, the flu-
ence rate at the surface is ��0�=2R�1+ ri� / �1− ri�, Eq. �29�. �b� The
1-D fluence rate distribution due to a planar source at z=zs and an
air/tissue boundary at z0. A surface of symmetry is placed as zb. If a
true positive source of light is present at zs within the tissue, a negative
image source is placed at zi=2zb−zs outside the tissue. The gradient
of light between z0 and zb drives a flux out of the surface, R
=D��z0� / �zb�, Eq. �30�. Combining Eqs. �29� and �30� yields the posi-
tion zb=−2�1+ ri� / �1− ri�D, which is Eq. �31�.
July/August 2008 � Vol. 13�4�0
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ccurate solution distant �1 MFP�� from the point source, and
he boundary condition discussed here is applicable to 3-D
iffusion from a point source at zs.

The choice of zb is such that the gradient from the tissue
urface to this virtual surface of symmetry is −�� /�z
��0� /zb. Therefore, the escaping flux is equal to

R = − D
��

�z
= D

��0�
zb

. �30�

his is the second key equation. Combining Eqs. �29� and
30� and eliminating R yields

zb = − 2
1 + ri

1 − ri
D . �31�

quation �30� describes the boundary condition. The value of
nternal reflectance ri specifies the value zb. The value ri can
e calculated:

ri =�
	=0


/2

RFresnel�	�2
 sin�	�d	 , �32�

here RFresnel is the Fresnel reflectance as a function of the
ngle of incidence 	 relative to the surface normal and the
efractive index mismatch at the boundary. The calculation of

i is 0.4722 for an air/water interface �nwater=1.33� and ri
0.5278 for an air/tissue interface �ntissue=1.4�. A very good

pproximation is

ri = 0.6681 + 0.0636n + 0.7099/n − 1.4399/n2, �33�

here n is ntissue, calculated by Egan and Hilgeman9 as cited
y Groenhuis Ferwerda, and Ten Bosch.10 It is very good for
.0�n�2.2.

Therefore, for a generic air/tissue interface, the value of ri
s �0.5, and the value of �1+ri� / �1−ri� is �3. Therefore,

b�−�2��3��zs /3��−2zs. Hence, the position of the negative
mage source is placed at zi�−5zs.

Once the positions zs and zi have been specified, the super-
osition of the two sources yields the net fluence rate in the
issue:

��r,z� =
exp�− r1/��

4
Dr1
−

exp�− r2/��
4
Dr2

, �34�

here

r1 = ��r − rs�2 + �z − zs�2�1/2,

r2 = ��r − rs�2 + �z − zi�2�1/2.

inally, if one takes the gradient of the fluence rate due to the
eal and image sources that is normal to the tissue surface,
valuated at z=0, this gradient will drive a flux out of the
issue that predicts the escaping reflectance as a function of
adial position R�r�:
ournal of Biomedical Optics 041302-1
R�r� = � − D
��

�z
�

z=0
=

1

4

zs�1

�
+

1

r1

 exp�− �r1�/��

4
Dr1
2 + �zs + 2zb�

��1

�
+

1

r2

 exp�− �r2�/��

4
Dr2
2 . �35�

This boundary condition works rather well at locations

1 MFP� distant from the source at zs.

11

A common situation is a narrow collimated beam of light
illuminating a tissue. The collimated beam launches light into
the tissue, and the light acts as if there is a point source at
zs=1 MFP�. Equations �34� and �35� yield good approxima-
tions to the fluence rate ��z ,r� and escaping flux R�r� at
locations greater than 1 MPF� distant from the origin at �r
=0� and greater than 1 MPF� from the source at �r=0, z=zs�.
Monte Carlo simulations are recommended for regions close
to the source.

3 Diffusion Implementation in Numerical
Methods

3.1 Partial Differential Equation Representation
of Diffusion

Solution to the diffusion problem can be accomplished
through formalized approaches to solving the partial differen-
tial equation itself. This can be done numerically or analyti-
cally, and the solutions can be derived from the time-domain
equation:

1

c

���r,t�
�t

− � · D � ��r,t� + �a��r,t� = S�r,t� , �36�

where each term on the left is a loss of photons, and the term
on the right-hand side describes the source of light. This can
also be the frequency domain version of this equation, ob-
tained by Fourier transforming each term of the previous
equation:

− � · D � ��r,�� + ��a +
i�

c

��r,�� = S�r,�� . �37�

In the latter equation, if the frequency is zero, then the equa-
tion results in the steady-state or continuous wave diffusion
equation:

− � · D � ��r� + �a��r� = S�r� . �38�

Analytic solutions for the diffusion equations are readily
available and can easily be integrated into numerical algo-
rithms to provide Green’s-function-based discrete sum solu-
tions to more complex problems.11–13 However, the validity
and ease of analytic methods tend to break down where the
exterior or interior boundaries become complex, thereby re-
quiring more elaborate region integral approaches. Addition-
ally, if the goal of the problem is the combination of clinical
or biological imaging tissue volumes where both the bound-
aries are complex and the interior property values vary, then
the optimal choice may transition away from hybrid analytic/
numerical solutions toward purely numerical approaches.

Numerical methods to solve the diffusion equation are nu-
merous, including finite difference, finite element and bound-
ary element approaches.14–17 The major difference between
July/August 2008 � Vol. 13�4�1
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hese approaches is in the formalized approach to solving the
artial differential equation; however, the choice also leads to
ajor differences in how the solution must be calculated.
rom a practical standpoint one of the key differences sepa-
ating the numerical methods is the shape and origin of the
esh of points on which the region to be simulated is dis-

retized. These differences can be seen in the representative
eshes displayed in Fig. 12.
Often the trickiest part of solving the solution in these

omains is how to deal with the boundary between the diffus-
ng regime, and what is outside this domain. Boundary con-
itions can make solving for analytic solutions more complex,
nd also the conditions must be validated against either mea-
urements or a Monte Carlo type of simulation.

The choice of numerical approach is often driven by the
xperience with the method, as each requires an expert to
reate the code, yet often applications of the codes are better
uited to different applications. In Table 4, a summary of how

able 4 The three major numerical methods for solving the diffusion
ow they scale as the problem gets larger. Here, N is the number of
emory and size of FEM and FDM assume that the mesh is banded �i
atrix solver is used in 3-D.

ethod Mesh/grid Memory

ntegrated
nalytic
ethod

Arbitrary Small memory

inite
ifference
ethod

Cartesian 2-D: B*N
3-D: N

inite element
ethod

Arbitrary
�triangular elements
in 2-D; tetrahedrons

in 3-D�

2-D: B*N
3-D: N

oundary
lement
ethod

Arbitrary
�line segments in
2-D; triangular

elements in 3-D�

N2

(a) (b) (c)

ig. 12 Example meshes are shown for �a� finite difference solver in
artesian coordiates with adaptive mesh refinement in each of the
,y ,z directions; �b� finite element solver using triangular elements in

wo dimensions or tetrahedral elements in three dimensions; and �c� a
oundary element solver where the mesh is just composed of nodes at

he boundaries outlining homogeneous regions.
ournal of Biomedical Optics 041302-1
the mesh and memory used scales with the size of the prob-
lem is shown. Additionally, the key advantages and weak-
nesses of each method are listed briefly.

3.2 Numerical Methods to Solve the Diffusion
Equation

3.2.1 Finite difference method

Finite difference methods �FDM� approaches are routinely
solved on a discretized Cartesian mesh, where the volume is
arbitrary. However, since the mesh is Cartesian, then the vol-
ume must be discretized finely enough to allow accurate rep-
resentation of the tissue boundaries. Usually this regular Car-
tesian grid used in discretization is the major limitation of
finite difference methods, in that most complex boundaries
cannot be discretized finely enough to represent smooth
curved boundaries. The finite difference solution is obtained
by solving the numerical molecule for a diffusive term, on the
nodes given in the mesh.14,15 The time-domain diffusion equa-
tion has a major limitation in this approach, in that the finite
difference approach has large time requirements due to the
iterative approach to converging on the solution, and so the
added need to iterate each time step makes this method intrac-
table for very large discretizations. Nonetheless, for highly
complex partial differential equations, and very large prob-
lems, the finite difference approach has always been the stan-
dard to initiate test solutions, mainly because of its ease of
construction and intuitive approach to discretization. The dif-
fusion equation is simply discretized into points i , j ,k for the
x ,y ,z coordinates, and the fluence at each location calculated
by a straightforward approximation of the derivative by a
finite difference, such that it becomes:

ion are listed with associated advantage and disadvantage interms of
�unknowns� in the mesh, and B is the bandwidth of the mesh. The
a banded solver such as LU decomposition is used,14,15 and a sparse

me Advantages Disadvantages

Fast,
conceptually the
easiest approach

Integration over highly
shaped regions and

heterogeneties are difficult

B2*N
: N

Ease of construction
and discretization,

sparse/banded
matrices

Difficult to handle
irregular boundaries

B2*N
: N

Arbitrary shapes,
flexible,

sparse/banded
matrices

Volume meshing in 3-D
can be difficult for
arbitrary shapes

3 Arbitrary shapes,
nodes only on

boundary

Full matrices;
assumption of piece-
wise constant regions
equat
nodes

n 2-D�,

Ti

N

2-D:
3-D

2-D:
3-D

N
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Di,j,k��i+1,j,k − �i−1,j,k

�Li
2 +

�i,j+1,k − �i,j−1,k

�Lj
2 +

�i,j,k+1 − �i,j,k−1

�Lk
2 


+ 	 �Di+1,j,k − Di,j,k���i+1,j,k − �i,j,k�
�Li

2

+
�Di,j+1,k − Di,j,k���i,j+1,k − �i,j,k�

�Lj
2

+
�Di,j,k+1 − Di,j,k���i,j,k+1 − �i,j,k�

�Lk
2 
 + �a�i,j,k = Sijk.

�39�

his equation assumes a forward differencing approach �note
hat other differencing methods can be assumed,7 and that the
ptical properties D and �a vary spatially and so must be
iscretized as well as the fluence�. This finite difference mol-
cule can then be solved sequentially at each node, and by
terating this over the entire mesh until there is little change
etween iterations, the solution is reached. This is the most
ntuitive manner to solve this, called the Jacobi method. Since
he Jacobi finite difference method is plagued by slow con-
ergence issues, many alternative methods have been pro-
uced to speed up the convergence. Most notable is the im-
licit solution, where the problem is solved as a matrix
nversion, rather than iterative relaxation approach. This re-
uires developing a full matrix representation of how each
ode in the mesh affects all other nodes and summing up
hese contributions numerically into a matrix that can be
olved. Then the solution is reached simply by inverting this
arge matrix. This approach obviously has large memory de-

ands for reasonably complex problems, and in contrast the
xplicit solver requires little memory. Several hybrid ap-
roaches have been used, with one notable one being called
he Crank-Nicholson alternating difference implicit method.
his approach cycles between explicit steps and implicit so-

ution steps to speed up the convergence of the solution, but
equires more work to create the initial solution. Most finite
ifference solvers for regular equations are freely available
hrough academic shareware libraries on the Internet.

Multigrid solver methods have been developed as more
laborate approaches to solving the finite difference method
aster.18 The central concept in these approaches is to solve
he relaxation on a very coarse grid, and then allow rapid
xtrapolation of the solution from a coarse grid to a finer grid.
he optimally designed approach will actually use several dif-

erence mesh grid resolutions, and start out solving the most
ourse grid, then systematically solve the solution on further
nd further refinements of the mesh. Then, accurate solutions
ill typically require cycling back and forth on the course
rid and fine grid a few times to allow rapid convergence with
aximal efficiency. A uniquely high speed solver was devel-

ped by the researchers at National Oceanic and Atmospheric
dministration �NOAA� and used for diffuse spectroscopy for
ore than a decade.19–21

.2.2 Finite element method
he FEM approach to solve partial differential equations is
ased on solving the equation as integrated on arbitrary dis-
rete elements, called basis functions �i, which map pieces of
he entire domain between discrete points, called nodes,15,16 as
ournal of Biomedical Optics 041302-1
shown in Fig. 12�b�. This is often called the Galerkin method,
and is developed in a formalized approach to discretizing any
partial differential equation, resulting in a linear system of
equations, which can then be solved by matrix methods. The
diffusion equation is usually solved in this approach, in what
is called the weak formulation, which is a theoretical frame-
work simplifying the solution found, such that it can be
solved in the linear formulation.

In the finite element formalism, the frequency domain so-
lution ��r ,�� can be discretized onto the basis functions mul-
tiplied by weighting coefficients �=� j=1

N � j� j, where � is the
discrete fluence at each node j with weights �, which are
linear mapping functions. The discrete values of the fluence
are determined as part of the solution process, given simple
fixed weight functions. In the Galerkin method of weighted
residuals, Eq. �37� is multiplied by an identical set of weight-
ing functions �i and integrated over the entire problem
domain to give:

�− � · D � ��i� + ���a +
i�

c

��i� = �S�i� , �40�

where the notation �uv� simply denotes integration, such that
�uv�=��uvdx, and � is the entire region of the imaging field
over which the integrand is calculated. To avoid the need for
second order differentiation of the basis functions, this equa-
tion is manipulated further through Green’s theorem to arrive
at a form without second derivatives:

�D � � · ��i� − � ŝ · D � ��ids + ���a +
i�

c

��i�

= �S�i� . �41�

Here ŝ is the surface normal from the surface being integrated
by � ds. This representation has two advantages: �1� the sec-
ond derivative terms have been eliminated, and �2� the surface
integral provides a vehicle for implementing the boundary
conditions. In fact, its integrand is exactly the normal compo-
nent of the flux through the boundary surface. At all node
points within the finite element mesh that are not on its outer
boundary, this term will be zero. In solutions of the prior
equation, the integrand in this flux term has been typically
approximated by:

ŝ · D � � = �� , �42�

with the proportionality factor � therefore defined as:

� =
ŝ · D � �

�
=

D

�
� ��

�r
�

r=R
, �43�

where r is the normal direction from the surface, along the
direction of ŝ, at all boundary locations R. In this derivation,
� has a theoretical value near ��0.177, for a tissue-air
interface.22 While analytical forms of � can be determined, it
must be recognized that this coefficient is, at best, a rough
estimate of the relative fluence rate gradient proportionality.
In reality, diffusion theory may not match the measurements
near the source or at the boundaries, due to the irradiance
being highly anisotropic. So with the limitations in the accu-
racy of diffusion theory at the boundary, this parameter may
July/August 2008 � Vol. 13�4�3
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ot have any meaningful physical value that would allow a
ood match to measured data of photon transport in tissue. In
ractice, this coupling parameter is often chosen to allow a
ood match between the forward simulations and measured
ata from tissue phantoms.

Using the weak form of the earlier equation, and discretiz-
ng the diffusion coefficient �D=�Di�i� and the absorption
oefficient ��a=��ai�i� in the same manner as was done
ith the fluence, then the equation becomes:

�D��k � � j · ��i� + ��a��l�i� = �S�i� + ���i. �44�

he indices i, j, and k denote the different weighting func-
ions for fluence and tissue properties. The approach is used to
reate a numerical matrix map A of the diffusion connectivity
etween the basis functions, where each element of A is given
y:

aij = �− � Di�k � � j � �i − � �ai�i�l� , �45�

here � � signifies the integration over the entire field. Typi-
ally, the basis functions � are linear or nearly linear interpo-
ation functions between neighboring nodes �i.e., linearly
arying from 1 at the node to 0 at all neighboring nodes�, so
hat all significant interactions only take place between neigh-
oring nodes in this integration. Thus, the resulting matrix is
hen a continuous map of the diffusion equation, with values
epresented at the discrete node points, and with only local
onnectivity between nodes. The basis functions are used to
nterpolate the values to all points between the nodes. More
omplex basis function representations exist, but are often not
sed in simpler solvers.15

The approach to simplifying this equation is too lengthy to
xplain here, but is well described in Refs. 16, 17, and 23. The
alerkin method results in a forward solution that reduces to
matrix equation representation of the diffusion equation:

�A�� = S , �46�

here � is the vector of fluence values at all nodes N and S
s the vector of sources at each node, driving the predicted
uence. This fluence is then solved simply by inverting the
onnectivity matrix A:

� = �A�−1S . �47�

he diffusion matrix A is always a banded matrix with many
ero elements, and so this can be solved quite efficiently using
specialized banded matrix solver. They key to efficiency

ere is then using a mesh that has the lowest bandwidth pos-
ible. The bandwidth is simply a measure of the node num-
ering, and indicates the maximum difference between the
ode numbers that are attached to one another, via being in
he same triangular or tetrahedral element. Bandwidth reduc-
ion of a generated mesh is often required for efficient solu-
ion with a banded matrix solver. However, in 3-D, sparse

atrix storage schemes are used for efficiency, and the com-
utational burden increase is usually formidable. Yet several
orking solutions are freely available and commonly used.
enerally though, mesh resolutions above 20,000 to 40,000
odes can become too large to solve on a single computa-
ional engine, and must be solved with parallel computer pro-
ournal of Biomedical Optics 041302-1
cessor implementation or via commercially optimized solvers.
The boundary conditions are applied by adding to the dis-

cretized version of this equation into the �A� �=S matrix
equation.24–27 This only has additive values at the boundary
nodes, and is equal to zero at all internal nodes. Zero fluence
boundary conditions are often used only in the simplest of
simulations, and are easily implemented by setting the off-
diagonal matrix elements to zero along the rows correspond-
ing to boundary nodes, and then allowing the diagonal value
to be unity. Extrapolated boundary conditions are imple-
mented by adding additional nodes to the mesh exterior and
having measurement surface points within the mesh at the
location of the true boundary.

Once the source and boundary conditions are set up in the
A matrix and S vector, the result from inversion of A is a
discretized map of the optical fluence pattern �, which is
accurate if the domain has been discretized finely enough.
Again, this approach has strict limits on the discretization and
can run into memory problems for arbitrarily large sized
domains.

3.2.3 Boundary element method
The boundary element method �BEM� is a less explored area
of numerical methods, but is quite useful for problems where
the interior properties are known to be homogeneous. This
method provides a unique approach where the exterior shape
can be complex, and the fluence at the boundaries can then be
estimated given knowledge of the homogeneous interior re-
gions. Because of the homogeneity constraints of this ap-
proach, it is best implemented when the exterior shapes of
tissues and the boundaries of interior organs are well known a
priori from some structural imaging modality, and then the
light fluences at the boundaries of these tissues can be calcu-
lated. This has been shown to be fundamentally useful in elec-
trical impedance problems,28 and has been extended to optical
diffusion problems in shape recovery,29 fluorescence
prediction30 and spectral region estimation.31 The type of
mesh used is simply the exterior boundary mesh of points to
discretize the region, as shown in Fig. 12�c�.

The boundary element solution is actually quite similar to
the method of analytic integration, in that its derivation begins
by assuming that there is a Green’s function solution for the
partial differential equation to be solved, and that this solution
could then be used to solve for an arbitrary solution by inte-
gration over the boundary shape. Under homogeneity condi-
tions, the diffusion equation is simplified into the modified
Helmholtz equation for which the Green’s function can be
found to be:

Gi�r,ri� =

exp�− kl�r − ri�
�Dl



4
Dl�r − ri�

, in 3-D, �48�

where ��a�r�+ i� /c�=kl
2, and kl is constant in subdomain l.

The final version of this expansion for the diffusion equa-
tion leads to:31

�A�� − �B��D���/�n�� = S , �49�

where the matrices A and B in this equation have elements:
July/August 2008 � Vol. 13�4�4
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aij = ��/4
��i +� Di��Gi/�n��ids ,

bij =� Gi�ids ,

S =� s0Gids , �50�

here s0 is the source distribution ds is the discrete integral
ver the boundary angular space, and � is the solid angle
nclosed by the boundary at node i. The complete context of
he BEM equation derivation is beyond the scope of this re-
iew, but can be found in the papers referenced earlier. The
EM provides a major benefit in obtaining the discretization
f the domain, especially in 3-D by requiring only surface
eshes. Its main weakness is the use of full matrices, which

re required, as compared to the banded or sparse matrices
sed for FEM calculations.

Applications of Diffusion Modeling of Light
Transport

.1 Estimation of Tissue Properties

here are several classes of image or property recovery prob-
ems that are solved with these forward diffusion models. The
ommonality in them is that usually there is some measured
ataset yd, which is a function of the fluence at the boundary
. This can be simulated by a diffusion theory calculation

d= f����a ,�s
/��, such as the phase, logarithm of the inten-

ity, relative intensity, intensity ratio, mean transit time, etc.
hese measurements are then used to predict the properties
ithin some unknown region of the tissue. The terminology

ommonly used is that the forward problem involves obtain-
ng the fluence given a known set of optical properties. The
roblem of predicting the optical properties given some mea-
ure of the fluence is then called the inverse problem. In the
nverse problem, regions to be recovered could be:

1. the entire region, assumed to be homogeneous
2. layers of tissue
3. locally embedded regions within the bulk
4. recovery of properties at every point in the tissue.

uch effort has been devoted to all of these problems, and the
ain issue is one of matrix inversion given the dataset. One

ommon approach to solving this inverse problem is to con-
ider this estimation as a Newton-type problem, where the
olution is found by nonlinear iteration to the forward model.
he forward model can be analytic or numerical in this case,
nd the reason for iteration is because the forward diffusion
roblem is not linear and as such cannot lead to a direct ma-
rix solution for estimating optical properties. Exact linear in-
ersions exist for infinite media situations, and these can be
xtremely useful as initial guess estimates of bulk tissue.32,33

owever, inversion with models that are not for infinite media
o not lead to an explicit inversion formula.

The mathematical formulation would be as follows. As-
uming that the initial guess is close to the true vector of
ournal of Biomedical Optics 041302-1
property values, the Newton method would assume that the
goal is to minimize the square difference between the mea-
sured and calculated datasets:

minimize f��a,�s
/� = �y − yd��a,�s

/��2. �51�

Taking the derivative of this and setting it equal to zero leads
to:

J�y − yd��a,�s
/�� = 0, �52�

where J is the matrix with elements defined by the derivative
of y at each measurement point with respect to the property
values �a or �s

/ at each node, giving matrix elements:

jik = ��ydi/d�ak;�ydi/d�sk
/ � . �53�

The way to turn this into an iterative problem is to instead of
equating this to zero, rather use a Taylor’s expansion about
some initial value set, ��a0 ;�s

/0�, such that:

0 = �y − yd��a0,�s0
/ �� + J���a,��s

/� + ¯ , �54�

which leads to the update equation:

J���a,��s
/� = �y − yd��ai,�si

/ �� . �55�

That is solved by inversion of �J�; however, since J is rarely
a square matrix �i.e., the number of nodes is almost never
exactly equal to the number of measurements�, then the up-
date equation becomes:

���a,I,��si
/ � = �JTJ�−1JT�y − yd��ai,�si

/ �� . �56�

The standard Levenberg-Marquardt rationale for inverting the
matrix JTJ is to allow it to be regularized, using a scalar
regularization parameter �, which is either empirically or al-
gebraically derived:

���a,I,��si
/ � = �JTJ + �I�−1�JT��y − yd��ai,�si

/ �� . �57�

The theoretical approaches to solving this inversion are quite
well developed and vary considerably; however, this descrip-
tion provides the basic Newton approach. The methods for
matrix inversion of �JTJ+�I�−1 largely depend on the size
and how well posed the matrix is. In the smallest case, this
could be a single region problem with multiple measurements
NM, leading to a J matrix that is 1�NM, and readily solved
without regularization. In situations where the regions are in
layers or where there are “lumps” to be recovered, then the
matrix is still small, and may or may not require regulariza-
tion. An example of this is shown in Fig. 13, where the inte-
rior of a rat cranium is being imaged with NIR light. Figure
13�a� shows the MRI image of the cranium, where the brain is
visible at the bottom as a lighter gray region, the skull is seen
as dark black regions, and the muscle is seen as darker gray
through the cranium. Figure 13�b� is a FEM mesh created to
allow diffusion simulation of this tissue, separating the muscle
and brain into two distinct regions. The diffuse reconstructed
values of the tissue absorption coefficient are shown in Fig.
13�d� where the differences in absorption between brain and
muscle tissue are apparent, even in this ill-posed diffuse to-
mography image. In the full image reconstruction problem,
July/August 2008 � Vol. 13�4�5
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here there are NN nodes and NM measurements, the matrix
is NN�NM and can require considerable effort to regular-

ze and invert, and still will lead to diffuse blurry images, of
he type shown in Fig. 13�d�. Diffuse tomography always
eads to these low resolution types of images, because the
orward diffusion transport process makes the image recon-
truction problem highly ill-posed and nonunique. Virtually
ll diffuse tomography imaging is limited in this manner, in
hat the abilty to recover sharp features is significantly dimin-
shed. Resent work in NIR imaging has been in the area of
sing diffuse spectroscopy as an adjuvant to standard imaging
ystems, such as MRI or CT. An example of how this would
e done is shown in Fig. 13�c�, where the same rodent brain
s before is recovered as a predefined region in the absorption
oefficient. In this approach, it is possible to obtain quantita-
ively accurate bulk tissue values, because the inversion prob-
em is no longer one dominated by image reconstruction,
ince the recovery only involves two regions instead of NN
egions. It has been shown that image-guided recovery of NIR
easurements allows much more accurate spectroscopy of

issue, if there is a meaningful way to combine NIR with an
maging system to give the prior information.

Recovery of tissue values at a single wavelength are
eadily achieved, and computer codes such as TOAST �Uni-
ersity College London34� and NIRFAST �Dartmouth College
nd University of Exeter35� are freely available for this
roblem.

.2 Absorption Spectroscopy
iffuse spectroscopy of tissue is often the primary goal in
iffuse optics, and the nature of the problem can be transmis-
ion spectroscopy for absorption or scatter, or luminescence
pectroscopy for bioluminescence, fluorescence, or phospho-
escence. Any problem that requires multiple wavelength fit-
ing to a predetermined extinction or absorption spectrum can
all into the secondary inversion problem of spectroscopy.

In absorption spectroscopy, the goal is to then fit the mea-
ured or computed absorption coefficients �e.g., from solving
he inverse problem in previous section� to the known molar
bsorption spectra of the features that absorb in tissue, such as
emoglobins, breakdown products of heme, water, lipids, cy-
ochromes, and potentially other absorbers that are endog-
nous or exogenous. The problem is formulated as:

(a) (b) (c) (d)
0.025

0.020

0.015

0.010

ig. 13 Recovery of absorption coefficient at 830 nm is shown for a
at brain region,58 as shown by �a� the coronal MRI image. �b� The
rain and muscle tissues can be segmented into two material proper-

ies, and then the property recovery problem can either be done as
nly two regions �i.e., Jacobian matrix size 2�NM� as shown in �c�,
r as a full diffuse image reconstruction �i.e., Jacobian matrix size
N�NM� as shown in �d�.
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�a = ���C , �58�

where spectral fitting is ideally achieved by simple inversion
of matrix �, with elements of molar absorption for each wave-
length. The inversion is then:

C = ��T��−1�T�a. �59�

Since the absorption relationship to concentration is linear,
this is a well-posed problem with little need for regularization.
In the regular tissue spectroscopy problem, the number of
absorbers may be less than six, and the number of measure-
ments can be high, leading to an overdetermined problem,
although noise in the data is known to lead to inaccurate mea-
surements. Most of the major endogenous absorbers of soft
tissue in the diffuse transport regime are shown in Fig. 14�a�,
to show the trough in absorption between hemoglobin and
water, bounding the diffuse regime on the red and NIR re-
gions, respectively. Outside the range of 600 to 1100 nm, it is
difficult to believe that diffusion theory would be an accept-
able approximation, because in many tissues the absorption
coefficient is of similar value to the transport scattering coef-
ficient, as seen in this graph.

Spectroscopy of tissue with this approach to fitting the
spectra has been shown to be enormously successful in breast
tumor spectroscopy,36 brain tissue monitoring,37 and muscle
physiology,38,39 to name a few applications. Image-guided dif-
fuse optical spectroscopy has recently been established as a
useful tool to image cancer tumors, and uses the principles of
region-based estimation to reduce the size of the Jacobian and
allow more accurate recovery of the interior regions. Addi-
tionally, incorporating the spectral inversion into the image
recovery problem has been demonstrated to allow more accu-
rate estimation of the tissue values.40–42 It is generally as-
sumed that addition of any constraints into the inversion prob-
lem, in the way of spectral or spatial prior knowledge, will
allow a well-posed inverse problem and potentially more
accurate estimation of tissue properties.

4.3 Elastic Scatter Spectroscopy

In scatter spectroscopy, the nature of the scatter is elastic scat-
tering, and known to fit to Mie theory under certain circum-
stances. Several research groups have shown the ability to fit
the scattered spectrum to the effective particle size and num-
ber density, under the assumption of a Mie-like scattering
model. Alternatively, the spectra is thought to fit to a Mie-like
spectra with some Rayleigh scatter influence, which has been
shown to be near:

�s
/��� = a�−b + c�−4. �60�

Since this is a nonlinear equation, it is again not easily in-
verted for a or c, and ultimately these parameters are not
intuitive, as the values for a and b are arbitrary from an ana-
lytic approximation to the Mie theory. The important spectra
to fit comes from the Mie theory:
July/August 2008 � Vol. 13�4�6
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�s���� = No�
i=1

p

f�ai��
ai
2�Qscat�m,ai,���1 − g�m,ai,��� ,

�61�

here f�ai� is the particle size histogram, with diameter ai
nd index ratio m, with scattering efficiency Qscat from Mie
heory43 and calculated anisotropy parameter g.44 An illustra-
ion of the change in the scattering spectrum with size of the
catterer is shown in Fig. 14�b�.
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ig. 14 �a� The absorption spectra of the major chromophores in tis-
ue are shown along with a typical reduced scattering spectra. The
hanges to the reduced scattering spectra with Mie-like scatterer size
hange are shown in �b�.59 The luminescence spectra for several
nown endogenous emitters is shown in �c�.
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Fitting remitted or transmitted scatter spectra to models of
the scatterer particle size has become an extremely active area
of research, with extensive preclinical and clinical data indi-
cating that scattering spectra can be used to estimate scatterer
composition and size in certain cases.45–50

4.4 Luminescence Spectroscopy: Fluorescence,
Phosphorescence, and Bioluminescence

Fitting of luminescence spectroscopy is less common, but be-
coming increasingly important for recovery of a unique con-
centration value,51 and for applications where the spectral
shape is altered on remission from the tissue, providing some
measure of depth from which the signal is coming.52 This
fitting is identical to the absorption spectra fitting, although
often there is need for addition of a background spectrum or
contaminant spectra that must be included to allow accurate
fitting. Examples of fluorescence spectra from relevant fluo-
rophores, which are used routinely in tissue imaging, are
shown in Fig. 14�c�. The amplitudes of each are normalized to
unity at their maximum, but the yield of fluorescence is di-
rectly proportional to �1� the molar extinction coefficient at
the excitation light wavelength, �2� the intensity of the exci-
tation light, �3� the fluorescence quantum yield of the fluoro-
phore within tissue, and �4� the concentration of the fluoro-
phore present. A reduction in any of these four things will lead
to reduced fluorescence from the tissue sampled.

Fluorescence tomography for small animal imaging has
been largely established by Zacharakis et al. and by Ntziach-
ristos et al.53–56 in recent years. Yet the majority of small
animal luminescence imaging with commercial instrumenta-
tion is done without much consideration of diffusion issues or
compensation for diffusion, which can suffice for relative
comparisons of fluorophore production or uptake. However,
when the location of the fluorophore changes, or when the
tissue shape change is relevant, then more extensive modeling
is required. Additionally, it has become well established in
recent years that if surface measurements are sufficient, then
the reflectance geometry of having the source and detector on
the same side of the tissue is good enough for imaging. How-
ever, if the fluorophore is deeper in the tissue, then the trans-
mission geometry provides a superior signal-to-background
value.57 This transmission-based measurement for uptake of
fluorophores in tumor tissue will become more utilized as this
mode of measurement becomes standard in commercial small
animal imaging systems.

5 Conclusion
This work focuses on the fundamental concepts leading to the
mathematical and numerical estimations of light diffusion in
tissue. While the theory can be developed from a number of
different perspectives, the focus here is on phenomenological
description, allowing physical insights into the problem. Ana-
lytic derivations are kept to a minimum while outlining the
overall concepts. In the numerical methods presented, the fo-
cus is on providing a practical outlines of the strengths and
weaknesses of the different methods. This review is a brief
introduction to what has become a well developed mature
field of diffuse light transport modeling. The references listed
are a good introduction to the fundamentals and applications
that have emerged in the past few decades of work.
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