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Abstract. We deal with light diffusion in N-layered turbid media. The
steady-state diffusion equation is solved for N-layered turbid media
having a finite or an infinitely thick N’th layer. Different refractive
indices are considered in the layers. The Fourier transform formalism
is applied to derive analytical solutions of the fluence rate in Fourier
space. The inverse Fourier transform is calculated using four different
methods to test their performance and accuracy. Further, to avoid
numerical errors, approximate formulas in Fourier space are derived.
Fast solutions for calculation of the spatially resolved reflectance and
transmittance from the N-layered turbid media ��10 ms� with small
relative differences ��10−7� are found. Additionally, the solutions of
the diffusion equation are compared to Monte Carlo simulations for
turbid media having up to 20 layers. © 2010 Society of Photo-Optical Instrumen-
tation Engineers. �DOI: 10.1117/1.3368685�
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Introduction

any different parts of the human body exhibit a layered
tructure, e.g., the head or the extremities. To calculate the
ight propagation in these layered tissues, which is important
or the application of light in therapeutical and diagnostic
edicine, fast and accurate forward solutions are required.
Usually, it is assumed that the radiative transfer theory

orrectly describes light propagation in biological media.1,2

ost often, the Monte Carlo method is used to solve the
adiative transfer equation numerically. To obtain faster solu-
ions describing the light propagation in biological tissue, the
iffusion equation, which is an approximation to the radiative
ransfer theory, is applied.1

Several solutions of the layered diffusion equation have
een reported in literature. Dayan et al. applied a Fourier for-
alism to solve the two-layered diffusion equation. However,

o be able to obtain analytical solutions several approxima-
ions were introduced in the inverse Fourier calculations.3 We
erived exact solutions for the two-layered geometry in the
teady-state, frequency, and time domains4–6 by numerically
erforming the inverse Fourier transform and introducing ap-
ropriate boundary conditions. Subsequently, different groups
ave used these solutions for further investigations.7,8 Addi-
ionally, the solutions have been extended, for example, to a
ybrid Monte Carlo/diffusion scheme,9 to a tilted interface
etween the layers,10 or to diffusing wave spectroscopy.11

Supplementally, different approaches to solve the layered
iffusion equation have been made. Tualle et al. applied the
ethod of images to derive solutions of the two-layered
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ournal of Biomedical Optics 025003-
geometry,12 whereas Martelli et al. used the eigenfunction
method together with the separation of variables technique to
solve the time-dependent diffusion equation for two and three
layers.13–15 Barnett solved the N-layered diffusion equation
via a finite-difference method.16 Recently, an approach based
on the solution of a single layer to obtain the solutions for
many layers using convolution was proposed.17

Building on our earlier work we solved the diffusion equa-
tion for N-layered turbid media in the steady-state, frequency,
and time domains and compared the results with Monte Carlo
simulations. The solutions were derived for a semi-infinite
layered and for a finite layered geometry, i.e., the bottom layer
has an infinite and finite thickness, respectively. Recently, in-
dependently of us, solutions of the N-layered diffusion equa-
tion have been published based on our earlier work for the
special case of semi-infinite turbid media.18,19 Whereas the
extension of the Fourier formalism to N layers is straightfor-
ward, the decisive point is the numerically correct and effi-
cient 2-D inverse Fourier transform. To this end, we imple-
mented four different methods to obtain the solutions in real
space. Additionally, approximate solutions for the fluence rate
in Fourier space were derived to avoid numerical errors due to
the inverse Fourier transform.

In this paper, the light diffusion in turbid media is consid-
ered in the steady-state domain, whereas in the accompanying
paper20 the light diffusion in the frequency and time domains
is analyzed. Turbid media consisting of up to 20 layers having
matched and mismatched refractive indices are studied, show-
ing good agreement between the solutions of the diffusion
theory and Monte Carlo simulations. The four methods for
calculating the inverse Fourier transform are analyzed to op-
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imize the performance of the solutions. Explicit solutions are
iven in the appendix for turbid media having two, three, and
our layers for both the semi-infinite and the finite bottom
ayer. In addition, an executable program for calculation of
he reflectance from an N-layered turbid medium is provided
n the Internet.21

Theory
n this section, the steady-state diffusion equation for an
-layered turbid medium having laterally infinite extensions

s derived using the Fourier transform formalism. A pencil
ight beam is incident in the z direction perpendicular to the
nterface between the first layer and the nonscattering sur-
ounding �see Fig. 1�.

The origin of the coordinate system is the point of light
mpact on the turbid medium. As in our earlier paper, it is
ssumed that the light beam can be characterized by an iso-
ropic point source at a depth z=z0=1 / ��a1+�s1� � in the first
ayer, ��x ,y ,z−z0�, where �a1 and �s1� are the absorption and
educed scattering coefficients of the first layer, respectively.4

or this geometry, the diffusion equation becomes

D1��1�x,y,z� − �a1�1�x,y,z� = − ��x,y,z − z0�, 0 � z � l1,

�1�

Dk��k�x,y,z� − �ak�k�x,y,z� = 0, �
j=1

k−1

lj � z � �
j=1

k

lj,

k = 2,3, . . . ,N , �2�

here lk is the thickness of layer k, �k is the fluence rate,

k=1 / �3��sk� +�ak�� is the diffusion coefficient, and �sk� and

ak are the reduced scattering and absorption coefficients of
ayer k, respectively.

l1

l2

lN

x
y

z

µa1, µ's1, n1

µa2, µ's2, n2

µaN, µ'sN, nN

z0

zb2

zb1

ig. 1 Scheme of the N-layered turbid medium including the position
f the source and the extrapolated boundaries.
ournal of Biomedical Optics 025003-
We solved this system of equations using the Fourier trans-
form approach and extrapolated boundary conditions. First,
the equations are two-dimensionally Fourier transformed from
the real space into the Fourier space with respect to the x and
y coordinates. The boundary conditions depending only on
the z coordinate are applied in the Fourier space. The resulting
system of equations is solved, yielding the solutions in the
Fourier space. Finally, these solutions are two-dimensionally
inverse Fourier transformed, delivering the solutions in the
real space.

We start by applying the 2-D Fourier transform:

�k�z,s1,s2� =�
−�

� �
−�

�

�k�x,y,z�exp�i�s1x + s2y��dxdy ,

�3�

to Eqs. �1� and �2�, and obtain

�2

�z2�1�z,s� − �1
2�1�z,s� = −

1

D1
��z − z0�, 0 � z � l1,

�4�

�2

�z2�k�z,s� − �k
2�k�z,s� = 0, �

j=1

k−1

lj � z � �
j=1

k

lj,

k = 2,3, . . . ,N , �5�

with s= �s1
2+s2

2�1/2 and �k
2= �Dks2+�ak� /Dk. The fluence rate

in the Fourier space in layer k is denoted by �k�z ,s�. The
following boundary conditions are used in the Fourier space
for an N-layered turbid medium having a finite thick N’th
layer:

�1�− zb1
,s� = 0, �6�

�1��z0,s� = �1�z0,s� , �7�

� ��1�z,s�
�z

�
z=z0

− � ��1��z,s�
�z

�
z=z0

=
1

D1
, �8�

�k�Lk,s�
�k+1�Lk,s�

= 	 nk

nk+1

2

, Lk = �
j=1

k

lj, 1 � k � N − 1, �9�

Dk� ��k�z,s�
�z

�
z=Lk

= Dk+1� ��k+1�z,s�
�z

�
z=Lk

, Lk = �
j=1

k

lj,

1 � k � N − 1, �10�

�N�LN + zb2
,s� = 0, �11�

where �1�z ,s� and �1��z ,s� are the fluence rate in the first
layer in the Fourier space above the � source and below the
delta source, respectively. The refractive index of layer k is
denoted by nk, and Lk is the total thickness of the turbid me-
dium. Equations �7� and �8� describe the fluence rate and its
March/April 2010 � Vol. 15�2�2
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erivative at the position of the � source, and Eqs. �9� and
10� at the interfaces of the different turbid layers. In Eqs. �6�
nd �11�, zb1

and zb2
are the positions of the extrapolated

oundaries above the first and below the N’th layer, respec-
ively �see Fig. 1�, where the fluence rate is set to zero.22

hese quantities are obtained using

zb1 =
1 + Reff,1

1 − Reff,1
2D1, zb2 =

1 + Reff,N

1 − Reff,N
2DN, �12�

here Reff,k represents the fraction of photons that is inter-
ally diffusely reflected at the boundary to the nonscattering
ournal of Biomedical Optics 025003-
surrounding at the top or at the bottom layer. We calculated
Reff,k by solving the integrals derived by Haskell et al.22

In the case of an N-layered turbid medium having an infi-
nitely thick N’th layer, Eq. �11� becomes

�N��,s� = 0. �13�

We solved the resulting equation system for N layers hav-
ing a finite and semi-infinitely thick N’th layer by applying
Cramer’s rule. The general solution for N layers was obtained
by induction using the solutions for two, three, and four lay-
ers. In the first case, we obtain for the fluence rate in the first
layer �above the delta source�
�1�z,s� =
sinh��1�z0 + zb1

��

�1D1

�1	3D1 cosh��1�l1 − z�� + �2
3D2�n2
2/n1

2�sinh��1�l1 − z��
N�z,s�

−
sinh��1�z0 − z��

�1D1
, �14�

nd for the fluence rate in the N’th layer

�N�z,s� =

�
k=2

N−1

�kDk�nN/n1�2 sinh��1�z0 + zb1��sinh��N�LN + zb2 − z��

N�z,s�
, �15�

here N�z ,s� is

N�z,s� = �1	3D1 cosh��1�l1 + zb1
�� + �2
3D2	n2

2

n1
2
sinh��1�l1 + zb1

�� . �16�

The quantities 	3 and 
3 in Eqs. �14� and �16� are obtained by using recursion formulas. By applying 	N and 
N,

		N


N

 = �N−1DN−1 sinh��N�lN + zb2���cosh��N−1lN−1�

sinh��N−1lN−1�  + �NDN	 nN
2

nN−1
2 
cosh��N�lN + zb2��� sinh��N−1lN−1�

cosh��N−1lN−1�  , �17�

s start terms the quantities 	3 and 
3 are obtained for an N-layered turbid medium by iteratively using

		k−1


k−1

 = ��k−2Dk−2 cosh��k−2lk−2� �k−1Dk−1	nk−1

2

nk−2
2 
sinh��k−2lk−2�

�k−2Dk−2 sinh��k−2lk−2� �k−1Dk−1	nk−1
2

nk−2
2 
cosh��k−2lk−2� �		k


k

 , �18�
or k=N, N−1, . . . ,4, i.e., until 	3 and 
3 are obtained. This
eans that for N=3, Eq. �17� can be directly applied without

sing Eq. �18�. We give the fluence rate of the first and N’th
ayers, because we are interested in the reflectance from the
rst and the transmittance from the N’th layer, which are cal-
ulated from the fluence rates of these layers.

In the second case, the semi-infinite N-layered turbid me-
ium �LN→��, the fluence rate �1�z ,s� is again calculated
ith Eq. �14�, but the start terms for computing 	3 and 
3 are
ow
		N


N

 = �N−1DN−1�cosh��N−1lN−1�

sinh��N−1lN−1�  + �NDN	 nN
2

nN−1
2 


�� sinh��N−1lN−1�
cosh��N−1lN−1�  . �19�

The recursion formula is the same as for the finite
N-layered turbid medium, see Eq. �18�. For the semi-infinite
N-layered turbid medium we give only the fluence rate in the
first layer, because the transmittance is zero. With these equa-
tions, the analytical formula of the fluence rate in the Fourier
space is obtained for N-layered turbid media for N�3. In the
appendix, we also give the solutions for two-layered turbid
media for the finite and infinite cases. In addition, the explicit
March/April 2010 � Vol. 15�2�3
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ormulas for three and four layers are also presented for the
nite and infinite thick bottom layer.

Next, the 2-D inverse Fourier transform of ��z ,s� must be
alculated to obtain the fluence rate in real space ��x ,y ,z�.
e performed these transforms numerically as no general

nalytical solution was found up to now. For the accuracy of
he calculation of the fluence rate in real space, this step is
ecisive. To minimize the numerical errors, we first used ap-
roximate solutions for large s values �see Sec. 5.2�. Second,
e programmed and compared four different methods to ac-

omplish the 2-D inverse Fourier transform:

�k�x,y,z� =
1

�2�2�
−�

� �
−�

�

�k�z,s�exp�− i�s1x + s2y��ds1 ds2.

�20�

In method A, Eq. �20� was solved numerically by evaluat-
ng it at discrete s1 and s2 values using a DFT �discrete Fou-
ier transform�. The FFT �fast Fourier transform� algorithm
as applied to accelerate the calculations.23 Due to the rota-

ional symmetry, it is sufficient to calculate the fluence rate in
ne direction.

In method B, we expressed �k�x ,y ,z� in a 2-D Fourier
eries:

�k�x,y,z� =
�s1�s2

�2�2 �
m=−�

�

�
n=−�

�

�k�m�s1,n�s2�

�exp�− i�m�s1x + n�s2y�� . �21�

By accurate sampling of �k in the Fourier space and by
egarding only the central solution of the resulting periodic
unction, �k�x ,y ,z� is obtained without significant aliasing.
quation �21� can be simplified by using the rotational sym-
etry of the considered geometry:

�k�x,y,z� =
�s1�s2

�2�2 �
m=−�

�

�
n=−�

�

�k�m�s1,n�s2�

�cos�m�s1x�cos�n�s2y� . �22�

Again, it is sufficient to evaluate �k in one direction �e.g.,
=0�. By simplifying the evaluation of the sums and assum-

ng the same sampling rate in both directions ��s1=�s2
�s� we finally get

�k�x,0,z� = 	�s

2

2��k�0,0� + 2�

m=1

�

�k�m�s,0�

+ �k�m�s,0�cos�m�sx�

+ 2�k�m�s,m�s�cos�m�sx�

+ 4�
m=1

�

�
n=m+1

�

�k�m�s,n�s��cos�m�sx�

+ cos�n�sx��� . �23�
ournal of Biomedical Optics 025003-
To obtain similar accuracy as for the other methods, we
typically used 400 terms in the sums and a sampling rate in
the range of �s�20�s� /400. Note that the implementation of
method B is the easiest of the four methods.

In the other two methods the rotational symmetry is used
to obtain from Eq. �20� the 1-D inverse Hankel transform:

�k��,z� =
1

2
�

0

�

�k�z,s�sJ0�s��ds , �24�

where J0 denotes the Bessel function of first kind and zero
order.

In method C, the integral is solved numerically by apply-
ing Gauss integration using typically 2 times 480 points.23 For
the upper limit of the integral, we used values in the range of
30��s�. In our original paper concerning the solution of the
two-layered turbid medium, this method was used to calculate
the inverse Fourier transform.4

In method D, Eq. �24� is transformed into a correlation
integral, which is then represented by a discrete correlation.24

This can be evaluated efficiently with an FFT algorithm,
which delivers the fluence rate at many �e.g., 512� distances.
However, the distances are exponentially distributed. Alterna-
tively, the discrete correlation can be evaluated at one distance
without using the FFT algorithm.

By applying one or several of the four methods, the fluence
rate �1�� ,z� is obtained. Then, the spatially resolved reflec-
tance R��� from the first layer is computed using

R��� =�
2

d��1 − Rf����
1

4
��1��,z = 0�

+ 3D1� ��1��,z�
�z

�
z=0

cos���cos��� , �25�

where Rf��� is the Fresnel reflection coefficient for a photon
having an incident angle � relative to the normal to the bound-
ary. The use of the combined fluence rate and flux term in Eq.
�25� is important to match better Monte Carlo simulations that
use the Henyey-Greenstein function as a phase function with
anisotropy factors typically found for biological media25

�0.7�g�1�. For the finite, thick N-layered tissue the trans-
mittance is calculated with

T��� = − DN� ��N��,z�
�z

�
z=LN

. �26�

To determine the transmittance, it is sufficient to use only
the flux term to approximate the Monte Carlo simulations.

The solutions of the diffusion equations are compared with
Monte Carlo simulations. The Monte Carlo method has been
described in detail in the literature.26 The salient features of
our code are as follows. A pencil beam is incident in z direc-
tion perpendicular onto the turbid medium at the origin of the
coordinate system. The Henyey-Greenstein function with an
anisotropy factor of g=0.8 is applied as phase function. At the
boundaries, the Fresnel reflection and transmission coeffi-
cients are used to consider the different refractive indices.
Both the Monte Carlo simulations and the solutions of the
March/April 2010 � Vol. 15�2�4
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iffusion equations were programmed in Delphi �Pascal�. Ex-
ended variables �19 to 20 significant digits; 10 bytes� are
sed to minimize numerical errors.

Results
n this section, we first show the results for the solutions of
he diffusion equation obtained with the different methods for
omputing the inverse Fourier transform. Second, the solu-
ions of the diffusion equations are compared to Monte Carlo
imulations.

.1 Comparison of Different Methods for Calculation
of the Inverse Fourier Transform

he spatially resolved reflectance from N-layered turbid me-
ia was calculated using the four methods for computing the
nverse Fourier transform, which are explained in the theory
ection. In general, we found that all four methods agreed
xcellently. Of course, the accuracy depends on the numerical
fforts that have been applied. We chose the number of points
sed in the series or integral evaluations in the four methods
uch that the accuracy for calculation of ��� ,z� was similar.
s an example, we show the spatially resolved reflectance

rom a two-layered turbid medium calculated with method C
solid curve� and method D �circles� in Fig. 2.

No differences can be seen in the figure between the results
btained from the two methods. To distinguish both curves we
alculated the relative difference between them, which is
hown in Fig. 3.

The differences are �10−7 for distances �40 mm from
he incident source. These are typical differences that we
ound by comparing all four methods. In most cases, the dif-
erences are smaller for small distances compared to large
istances from the incident source. Note that a high accuracy
or the calculation of ��� ,z� is especially necessary for re-
onstruction problems, i.e., the determination of the optical
oefficients with, e.g., nonlinear regression routines.

As the numerical accuracy of the four models is similar, it
s interesting to compare their execution times. For a layered
urbid medium having typical optical properties found in bio-
ogical media we got following typical calculation times for
he reflectance or transmittance in real space using a state-of-

0 10 20 30 40

10
−6

10
−4

10
−2

distance [mm]

re
fl
e

c
ta

n
c
e

[m
m

−
2
]

ig. 2 Comparison of the reflectance from a semi-infinite two-layered
urbid medium calculated with method C �solid curve� and method D
circles�. The parameters are �s1� =1.0 mm−1, �a1=0.02 mm−1,
s2� =1.5 mm−1, �a2=0.005 mm−1, l1=5 mm, l2=� mm, and
1=n2=1.4.
ournal of Biomedical Optics 025003-
the-art computer. With methods A, B, C, and D computation
times of �3 s �for �1000 distances; by using the FFT one
obtains many distances in one calculation�, �100 ms �for one
distance�, �35 ms �for one distance�, and �10 ms �for one
distance� were needed, respectively. When the FFT was used
to evaluate the correlation in method D �see Sec. 2� even
�1000 distances could be evaluated in �10 ms. The disad-
vantage of using the FFT in methods A and D is that the
fluence rate cannot be obtained for arbitrarily chosen dis-
tances. In method A, the distances are equidistant, and in
method C, exponentially distributed.

3.2 Comparison of the Solutions of the Diffusion
Equation with Monte Carlo Simulations

Figure 4 shows the influence of different refractive indices of
the first layer on the spatially resolved reflectance. A two-
layered semi-infinite turbid medium was considered having
�1� a refractive index of 1.4 for both layers �green �lighter�
curve and circles� and �2� a refractive index of 1.8 for the first
and 1.4 for the second layer �black curve and circles�. For the
nonscattering surrounding, a refractive index of 1.0 was as-

0 10 20 30 40
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Fig. 3 Relative difference of the curves shown in Fig. 2 ��|method C
−method D|�/method C�.
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Fig. 4 Comparison of the solution of the semi-infinite two-layered
diffusion equation and Monte Carlo simulations. The parameters are
�s1� =1.3 mm−1, �a1=0.04 mm−1, �s2� =0.8 mm−1, �a2=0.005 mm−1,
l =3 mm, and l =� mm.
1 2

March/April 2010 � Vol. 15�2�5



s
t
s

M
h
r
�
s
C
T
T
s
m
d

F
c
s
w
1

F
C

Liemert and Kienle: Light diffusion in N-layered turbid media: steady-state domain

J

umed. A good agreement between the Monte Carlo simula-
ions �circles� and diffusion theory �solid curves� can be ob-
erved.

Figure 5 shows a comparison of diffusion theory and
onte Carlo simulations for reflectance from a turbid medium

aving 20 layers. The optical properties of the layers were
andomly chosen in the range between 0.5 mm−1��s�

1.5 mm−1 and 0.0 mm−1��a�0.04 mm−1, but were the
ame for the solution of the diffusion equation and Monte
arlo simulation. The thickness of each layer was 1 mm.
hus, the thickness of the whole turbid medium was 20 mm.
he refractive index of each layer was 1.4, that of the non-
cattering surrounding media was 1.0. Again, a good agree-
ent between the two solutions can be stated except for small

istances where the diffusion approximation is not valid.
Figure 6 gives the relative difference of both curves to
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ig. 5 Comparison of the solution of a 20-layered turbid medium cal-
ulated with the diffusion equation �solid curve� with Monte Carlo
imulations �circles�. Optical coefficients were randomly chosen but
ere the same for both methods. The refractive index of all layers was
.4.
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ig. 6 Relative difference of the curves shown in Fig. 5 ��Monte
arlo−diffusion�/Monte Carlo�.
ournal of Biomedical Optics 025003-
better visualize the performance of the diffusion solution
compared to the Monte Carlo simulation.

At small distances ���1 mm� the differences are large,
for intermediate distances the differences are about 5%, and
for large distances ���8 mm� the differences are smaller
than 1% when the noise in the Monte Carlo simulations is
accounted for. In general, the differences are even smaller for
turbid media having larger thicknesses, because the diffusion
approximation is better fulfilled.

Finally, Fig. 7 shows the transmittance from a four-layered
turbid medium having a finite fourth layer. The solution of the
diffusion equation �solid line� calculated with Eqs. �26�, �24�,
and �15�–�18� was compared to Monte Carlo simulations
�circles�. The total thickness of the four layers was 24 mm.

Figure 7 shows good agreement between the two calcula-
tions for all distances because in transmission, the diffusion
approximation is valid also for small � values due to the large
value of the product �s�L4, i.e., the transmitted photons have
experienced a high number of scattering interactions in the
turbid medium. The relative differences between the Monte
Carlo simulation and the solutions from the diffusion equation
are shown in Fig. 8. The differences are largely caused by the
statistics of the Monte Carlo simulations. The systematic dif-
ferences due to the diffusion approximations are smaller than
about 1% for all distances.
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Fig. 7 Comparison of the solution of the semi-infinite four-layered
diffusion equation �solid curve� with Monte Carlo simulations
�circles�. The parameters are �s1� =1.6 mm−1, �a1=0.005 mm−1,
�s2� =0.9 mm−1, �a2=0.015 mm−1, �s3� =0.7 mm−1, �a3=0.01 mm−1,
�s4� =1.2 mm−1, �a4=0.02 mm−1, n1=1.4, n2=1.3, n3=1.5, n4=1.4,
l1=4 mm, l2=5 mm, l3=3 mm, and l4=12 mm.
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the curves shown in Fig. 7.
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Discussion
he solutions of the N-layered diffusion equation were calcu-

ated in the steady-state domain for turbid media having a
nite and an infinitely thick N’th layer. Analytical solutions
ere derived for the fluence rate in the Fourier space. The
ecisive point for obtaining precise values in real space is the
ccurate evaluation of the 2-D inverse Fourier transform. To
his end, we first derived approximations of the analytical
olutions in the Fourier space for large s values �see Sec. 5.2�.
econd, we investigated four different methods for calculation
f the inverse Fourier transform. Subsequently, we could es-
imate the errors of the obtained values for the reflectance and
ransmittance from the N-layered turbid media by comparing
he results of the four methods. We found relative differences
hat were typically smaller than 10−7. These values are a com-
romise between accuracy and speed of the solutions. Al-
hough we emphasized the accuracy in the calculations, we
ould achieve short calculation times in the range of 10 ms
ven for a large number of reflectance or transmittance values
t different distances from the source.

We compared the solutions of the N-layered diffusion
quation having an infinite and finite thick N’th layer with
esults from Monte Carlo simulations. The relative differences
etween both methods were in the same range as those found
or homogeneous turbid media having a semi-infinite or slab
eometry.25

Note that the derived solutions can be easily altered to
btain solutions of the heat conduction equation in an
-layered material. Also, different boundary conditions, for

xample, the partial boundary condition, can be implemented
ith our method.22

In future work, the derived solutions will be used to study
he inverse problem. For example, the determination of the
ptical properties of the brain using a layered model for the
ead will be investigated. We study whether a priori informa-
ion of, for example, the optical properties of some of the
nvolved tissue layers, is required to derive accurately the
ptical properties of the brain.

ppendix A. Fluence Rate in Fourier Space
n this subsection we present the analytical solutions of the
uence rate in the Fourier space for turbid media having two,
ournal of Biomedical Optics 025003-
three, and four layers �N=2,3 ,4�. For turbid media having a
finite thick N’th layer, the fluence rate in the first and N’th
layer is given, whereas only the fluence rate in the first layer
is shown for the case of an infinite thick N’th layer.

First, for the fluence rate in the first layer �above the �
source� of the turbid medium having both a finite and infinite
thick bottom layer we obtain

�1�z,s� =
sinh��1�z0 + zb1

��

�1D1

Z�z,s�
N�z,s�

−
sinh��1�z0 − z��

�1D1
.

�27�

The quantities N�z ,s� and Z�z ,s� are for a finite two-
layered turbid medium:

Z�z,s� = �1D1 sinh��2�l2 + zb2
��cosh��1�l1 − z��

+ 	n2

n1

2

�2D2 cosh��2�l2 + zb2
��sinh��1�l1 − z�� ,

�28�

N�z,s� = �1D1 sinh��2�l2 + zb2
��cosh��1�l1 + zb1

��

+ 	n2

n1

2

�2D2 cosh��2�l2 + zb2
��sinh��1�l1 + zb1

�� ,

�29�

for an infinite two-layered turbid medium:

Z�z,s� = �1D1 cosh��1�l1 − z�� + 	n2

n1

2

�2D2 sinh��1�l1 − z�� ,

�30�

N�z,s� = �1D1 cosh��1�l1 + zb1
��

+ 	n2

n1

2

�2D2 sinh��1�l1 + zb1
�� , �31�

for a finite three-layered turbid medium:
Z�z,s� = �1D1��2D2 sinh��3�l3 + zb2
��cosh��2l2� + 	n3

n2

2

�3D3 cosh��3�l3 + zb2
��sinh��2l2��cosh��1�l1 − z��

+ 	n2

n1

2

�2D2��2D2 sinh��3�l3 + zb2
��sinh��2l2� + 	n3

n2

2

�3D3 cosh��3�l3 + zb2
��cosh��2l2��sinh��1�l1 − z�� , �32�

N�z,s� = �1D1��2D2 sinh��3�l3 + zb2
��cosh��2l2� + 	n3

n2

2

�3D3 cosh��3�l3 + zb2
��sinh��2l2��cosh��1�l1 + zb1

��

+ 	n2

n1

2

�2D2��2D2 sinh��3�l3 + zb2
��sinh��2l2� + 	n3

n2

2

�3D3 cosh��3�l3 + zb2
��cosh��2l2��sinh��1�l1 + zb1

�� ,

�33�
March/April 2010 � Vol. 15�2�7



f

f

f

Liemert and Kienle: Light diffusion in N-layered turbid media: steady-state domain

J

or an infinite three-layered turbid medium:

Z�z,s� = �1D1��2D2 cosh��2l2� + 	n3

n2

2

�3D3 sinh��2l2�cosh��1�l1 − z�� + 	n2

n1

2

�2D2��2D2 sinh��2l2�

+ 	n3

n2

2

�3D3 cosh��2l2�sinh��1�l1 − z�� , �34�

N�z,s� = �1D1��2D2 cosh��2l2� + 	n3

n2

2

�3D3 sinh��2l2�cosh��1�l1 + zb1
�� + 	n2

n1

2

�2D2��2D2 sinh��2l2�

+ 	n3

n2

2

�3D3 cosh��2l2�sinh��1�l1 + zb1
�� , �35�

or a finite four-layered turbid medium:

Z�z,s� = �1D1	�2D2��3D3 sinh��4�l4 + zb2
��cosh��3l3� + 	n4

n3

2

�4D4 cosh��4�l4 + zb2
��sinh��3l3��cosh��2l2�

+ 	n3

n2

2

�3D3��3D3 sinh��4�l4 + zb2
��sinh��3l3� + 	n4

n3

2

�4D4 cosh��4�l4 + zb2
��cosh��3l3��sinh��2l2�
cosh��1�l1 − z��

+ 	n2

n1

2

�2D2	�2D2��3D3 sinh��4�l4 + zb2
��cosh��3l3� + 	n4

n3

2

�4D4 cosh��4�l4 + zb2
��sinh��3l3��sinh��2l2�

+ 	n3

n2

2

�3D3��3D3 sinh��4�l4 + zb2
��sinh��3l3� + 	n4

n3

2

�4D4 cosh��4�l4 + zb2
��cosh��3l3��cosh��2l2�
sinh��1�l1 − z�� ,

�36�

N�z,s� = �1D1	�2D2��3D3 sinh��4�l4 + zb2
��cosh��3l3� + 	n4

n3

2

�4D4 cosh��4�l4 + zb2
��sinh��3l3��cosh��2l2�

+ 	n3

n2

2

�3D3��3D3 sinh��4�l4 + zb2
��sinh��3l3� + 	n4

n3

2

�4D4 cosh��4�l4 + zb2
��cosh��3l3��sinh��2l2�
cosh��1�l1

+ zb1
�� + 	n2

n1

2

�2D2	�2D2��3D3 sinh��4�l4 + zb2
��cosh��3l3� + 	n4

n3

2

�4D4 cosh��4�l4 + zb2
��sinh��3l3��sinh��2l2�

+ 	n3

n2

2

�3D3��3D3 sinh��4�l4 + zb2
��sinh��3l3� + 	n4

n3

2

�4D4 cosh��4�l4 + zb2
��cosh��3l3��cosh��2l2�
sinh��1�l1

+ zb1
�� , �37�

or an infinite four-layered turbid medium:

Z�z,s� = �1D1��2D2��3D3 cosh��3l3� + 	n4

n3

2

�4D4 sinh��3l3�cosh��2l2� + 	n3

n2

2

�3D3��3D3 sinh��3l3�

+ 	n4

n3

2

�4D4 cosh��3l3�sinh��2l2��cosh��1�l1 − z�� + 	n2

n1

2

�2D2��2D2��3D3 cosh��3l3�

+ 	n4

n3

2

�4D4 sinh��3l3�sinh��2l2� + 	n3

n2

2

�3D3��3D3 sinh��3l3� + 	n4

n3

2

�4D4 cosh��3l3�cosh��2l2��sinh��1�l1

− z�� , �38�
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N�z,s� = �1D1��2D2��3D3 cosh��3l3� + 	n4

n3

2

�4D4 sinh��3l3�cosh��2l2� + 	n3

n2

2

�3D3��3D3 sinh��3l3�

+ 	n4

n3

2

�4D4 cosh��3l3�sinh��2l2��cosh��1�l1 + zb1
�� + 	n2

n1

2

�2D2��2D2��3D3 cosh��3l3�

+ 	n4

n3

2

�4D4 sinh��3l3�sinh��2l2� + 	n3

n2

2

�3D3��3D3 sinh��3l3� + 	n4

n3

2

�4D4 cosh��3l3�cosh��2l2��sinh��1�l1

+ zb1
�� . �39�
Second, for the fluence rate in the N’th layer we obtain for

he finite two-layered turbid medium:

�2�z,s�

=
�n2/n1�2 sinh��1�z0 + zb1

��sinh��2�L2 + zb2
− z��

N�z,s�
,

�40�

here N�z ,s� is given by Eq. �29�. For the finite three-layered
urbid medium:

�3�z,s�

=
�2D2�n3/n1�2 sinh��1�z0 + zb1

��sinh��3�L3 + zb2
− z��

N�z,s�
,

�41�

here N�z ,s� is given by Eq. �33�. For the finite four-layered
urbid medium:

�4�z,s�

=
�2D2�3D3�n4/n1�2 sinh��1�z0 + zb1

��sinh��4�L4 + zb2
− z��

N�z,s�
,

�42�

here N�z ,s� is given by Eq. �37�.

ppendix B. Approximate Solutions of the
luence Rate in Fourier Space
o avoid numerical errors in the computation of the inverse
ourier transform, we derived approximate solutions for the
uence rate of N-layered turbid media in the Fourier space.
ote that in an earlier paper we derived corresponding results

or a two-layered medium.6 For 2�1�l1+zb1
��1 we got

�1�z = 0,s� =
1

2�1D1
�exp�− �1z0� − exp�− �1�z0 + 2zb1

��

+ Da�exp��1�z0 − 2l1�� − exp��1�z0 − 2l1 − 2zb1
��

− exp��1�− z0 − 2l1 − 2zb1
�� − exp�− �1�z0 + 2l1

+ 4zb1
��� + Da

2�exp��1�z0 − 4l1 − 4zb1
�� − exp��1�z0

− 2zb1
− 4l1�� + exp��1�− z0 − 4l1 − 4zb1

��

− exp�− �1�z0 + 4l1 + 6zb1
���� , �43�

here
ournal of Biomedical Optics 025003-
Da =
�1	3D1 − �2
3D2�n2

2/n1
2�

�1	3D1 + �2
3D2�n2
2/n1

2�
,

and 	3 and 
3 are iteratively calculated using Eq. �18�. The
starting values are obtained from Eq. �17� for a N-layered
turbid medium having a finite thick N’th layer and from Eq.
�19� for a turbid medium having an infinitely thick N’th layer.
This approximation was typically used for s values larger than
10 / �2�l1+zb1

��.

Acknowledgment
We acknowledge the support by the European Union �nEU-
ROPt, grant agreement no. 201076�.

References
1. A. Ishimaru, Wave Propagation and Scattering in Random Media,

Academic Press, New York �1978�.
2. F. Voit, J. Schäfer, and A. Kienle, “Light scattering by multiple

spheres: comparison between Maxwell theory and radiative transfer
theory calculations,” Opt. Lett. 34�17�, 2593–2595 �2009�.

3. I. Dayan, S. Havlin, and G. H. Weiss, “Photon migration in a two-
layer turbid medium. A diffusion analysis,” J. Mod. Opt. 39, 1567–
1582 �1992�.

4. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and
H. van den Bergh, “Noninvasive determination of the optical proper-
ties of two-layered turbid media,” Appl. Opt. 37, 779–791 �1998�.

5. A. Kienle, T. Glanzmann, G. Wagnières, and H. van den Bergh, “In-
vestigation of two-layered turbid media with time-resolved reflec-
tance,” Appl. Opt. 37, 6852–6862 �1998�.

6. A. Kienle and T. Glanzmann, “In vivo determination of the optical
properties of muscle using a layered-model,” Phys. Med. Biol. 44,
2689–2702 �1999�.

7. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the
diffusion approximation in determining the optical properties of a
two-layer turbid medium,” Appl. Opt. 37, 7401–7409 �1998�.

8. S.-H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J.
Durkin, “Quantitative spectroscopy of superficial turbid media,” Opt.
Lett. 23, 3165–3167 �2005�.

9. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Monte Carlo
diffusion hybrid model for photon migration in a two-layer turbid
medium in the frequency domain,” Appl. Opt. 39, 2235–2244 �2000�.

10. M. Das, C. Xu, and Q. Zhu, “Analytical solution for light propagation
in a two-layer tissue structure with a tilted interface for breast imag-
ing,” Appl. Opt. 45, 5027–5036 �2006�.

11. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B.
Rockstroh, and T. Gisler, “Noninvasive detection of functional brain
activity with near-infrared diffusing-wave spectroscopy,” J. Biomed.
Opt. 10, 044002 �2005�.

12. J.-M. Tualle, J. Prat, E. Tinet, and S. Avrillier, “Real-space Green’s
function calculation for the solution of the diffusion equation in
stratified turbid media,” J. Opt. Soc. Am. A 17, 2046–2055 �2000�.
March/April 2010 � Vol. 15�2�9

http://dx.doi.org/10.1364/OL.34.002593
http://dx.doi.org/10.1080/09500349214551581
http://dx.doi.org/10.1364/AO.37.000779
http://dx.doi.org/10.1364/AO.37.006852
http://dx.doi.org/10.1088/0031-9155/44/11/301
http://dx.doi.org/10.1364/AO.37.007401
http://dx.doi.org/10.1364/OL.30.003165
http://dx.doi.org/10.1364/OL.30.003165
http://dx.doi.org/10.1364/AO.39.002235
http://dx.doi.org/10.1364/AO.45.005027
http://dx.doi.org/10.1117/1.2007987
http://dx.doi.org/10.1117/1.2007987
http://dx.doi.org/10.1364/JOSAA.17.002046


1

1

1

1

1

1

1

Liemert and Kienle: Light diffusion in N-layered turbid media: steady-state domain

J

3. F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, and G. Zaccanti,
“Solution of the time-dependent diffusion equation for layered diffu-
sive media by the eigenfunction method,” Phys. Rev. E 67, 056623
�2003�.

4. F. Martelli, A. Sassaroli, S. Del Bianco, and G. Zaccanti, “Solution of
the time-dependent diffusion equation for a three-layer medium: ap-
plication to study photon migration through a simplified adult head
model,” Phys. Med. Biol. 52, 2827–2843 �2007�.

5. F. Martelli, S. Del Bianco, and G. Zaccanti, “Perturbation model for
light propagation through diffusive layered media,” Phys. Med. Biol.
50, 2159–2166 �2005�.

6. A. H. Barnett, “A fast numerical method for time-resolved photon
diffusion in general stratified turbid media,” J. Comp. Physiol. 201,
771–797 �2004�.

7. C. Donner and H. W. Jensen, “Rapid simulations of steady-state spa-
tially resolved reflectance and transmittance profiles of multilayered
turbid materials,” J. Opt. Soc. Am. A 23, 1382–1390 �2006�.

8. X. C. Wang and S. M. Wang, “Light transport modell in a N-layered
mismatched tissue,” Waves Rand. Compl. Media 16, 121–135 �2006�.

9. J. M. Tualle, H. M. Nghiem, D. Ettori, R. Sablong, E. Tinet, and S.
ournal of Biomedical Optics 025003-1
Avrillier, “Asymptotic behavior and inverse problem in layered scat-
tering media,” J. Opt. Soc. Am. A 21, 24–34 �2004�.

20. A. Liemert and A. Kienle, “Light diffusion in N-layered turbid me-
dia: frequency and time domain,” J. Biomed. Opt. 15�2�, 025002
�2010�.

21. http://www.uni-ulm.de/ilm/index.php?id�10020200.
22. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. McAdams,

and B. J. Tromberg, “Boundary conditions for the diffusion equation
in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 �1994�.

23. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in Pascal, Cambridge University, Cambridge, UK
�1990�.

24. A. E. Siegman, “Quasi fast Hankel transform,” Opt. Lett. 1, 13–15
�1977�.

25. A. Kienle and M. S. Patterson, “Improved solutions of the steady-
state and the time-resolved diffusion equations for reflectance from a
semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 �1997�.

26. L. Wang, S. L. Jaques, and L. Zheng, “MCML—Monte Carlo mod-
eling of light transport in multi-layered tissues,” Comp. Meth. Progr.
Biomed. 47, 131–146 �1995�.
March/April 2010 � Vol. 15�2�0

http://dx.doi.org/10.1103/PhysRevE.67.056623
http://dx.doi.org/10.1088/0031-9155/52/10/013
http://dx.doi.org/10.1088/0031-9155/50/9/016
http://dx.doi.org/10.1364/JOSAA.23.001382
http://dx.doi.org/10.1080/17455030600683321
http://dx.doi.org/10.1364/JOSAA.21.000024
http://dx.doi.org/10.1364/JOSAA.11.002727
http://dx.doi.org/10.1364/OL.1.000013
http://dx.doi.org/10.1364/JOSAA.14.000246
http://dx.doi.org/10.1016/0169-2607(95)01640-F
http://dx.doi.org/10.1016/0169-2607(95)01640-F

