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Abstract. High-speed fluorescence molecular tomography (FMT) reconstruction for 3-D heterogeneous media is
still one of the most challenging problems in diffusive optical fluorescence imaging. In this paper, we propose a
fast FMT reconstruction method that is based on Monte Carlo (MC) simulation and accelerated by a cluster of
graphics processing units (GPUs). Based on the Message Passing Interface standard, we modified the MC code for
fast FMT reconstruction, and different Green’s functions representing the flux distribution in media are calculated
simultaneously by different GPUs in the cluster. A load-balancing method was also developed to increase the
computational efficiency. By applying the Fréchet derivative, a Jacobian matrix is formed to reconstruct the
distribution of the fluorochromes using the calculated Green’s functions. Phantom experiments have shown that
only 10 min are required to get reconstruction results with a cluster of 6 GPUs, rather than 6 h with a cluster of
multiple dual opteron CPU nodes. Because of the advantages of high accuracy and suitability for 3-D heterogeneity
media with refractive-index-unmatched boundaries from the MC simulation, the GPU cluster-accelerated method
provides a reliable approach to high-speed reconstruction for FMT imaging. C©2011 Society of Photo-Optical Instrumentation
Engineers (SPIE). [DOI: 10.1117/1.3544548]
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1 Introduction
As fluorescence labeling technology develops,1, 2 an increasing
number of biologists want to observe the distribution of fluores-
cence targets in vivo. Therefore, fluorescence molecular tomog-
raphy (FMT)3, 4 has been developed. Because FMT can be used
to quantitatively reveal the fluorescence marker’s fluorescence
yield5, 6 and lifetime7 in vivo, FMT is a promising, small-animal
imaging method for drug development and cancer research.8, 9

The reconstruction algorithm is the core technology of FMT.
The algorithm can be summarized as follows.4, 10 First, the
distribution of the photon density of fluorescence with a dif-
ferent source, which is called Green’s function, is calculated.
Then, by applying the Fréchet derivative, a Jacobian matrix
is formed with the calculated Green’s functions. Finally, the
distribution of the fluorescence yield is inversely calculated
from the Jacobian matrix by an optimization algorithm. The
first step in the algorithm is called the forward problem, which
investigates the propagation of light in tissue; the second and
third steps are called the inverse problem, which reconstructs
the distribution of the fluorescence yield. A traditional recon-
struction algorithm has been proposed based on a diffusion
approximation (DA) and using the finite-element method
(FEM).11–14 The traditional method is very fast, but it is valid
only when the reduced scattering coefficients of the tissue are
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far greater than the absorption coefficients. Although the FMT
reconstruction method based on the high order of the radiative
transport equation (RTE) is suitable for heterogeneous media
with complex distributions of optical coefficients, low computa-
tional efficiency limits its application. For example, Joshi et al.
proposed a radiative transport-based frequency-domain fluores-
cence tomography with the most accurate angular discretization
of RTE, but it requires more than 3.5 h on a 16-node Beowulf
cluster.15

Monte Carlo (MC) methods were introduced in FMT. They
are used to calculate the Green’s functions with which the Ja-
cobian matrix is formed to reconstruct the distribution of the
fluorescence yield. Because MC methods are the gold standard
for simulating the light propagation in tissue and are valid for
all kinds of tissue,16–18 they are suitable for small-animal imag-
ing, which has a complex distribution of optical coefficients.
Kumar et al. proposed a reconstruction method based on a MC
method that reconstructs the distribution of the fluorescence life-
time in time-domain fluorescence tomography for small-animal
imaging. A phantom experiment showed that this method can
clearly separate two fluorochromes with 6-mm spacing.19 Zhang
et al. also introduced MC methods into the reconstruction of flu-
orescence tomography for small-animal imaging.20 However,
because of the low computational efficiency and the large num-
ber of Green’s functions requiring calculation, more than 6 h are
required to reconstruct the result, even with a parallel computing
cluster of central processing units (CPUs).
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Graphics processing units (GPUs) have been introduced in
MC simulations to accelerate the simulation of the propagation
of light in tissue when the distribution of the optical coefficient
is already determined. The GPU is the core of a graphics card.
In the past, all software ran on CPU; GPUs were only used in
image processing and output until general-purpose computing
on graphics processing units were proposed and unleashed the
power of GPUs for parallel computation. The peak floating-point
operations per/s (flop/s) of marketavailable graphics hardware
can reach 1000 Gflop/s, which is 10 times higher than that of
a Harpertown CPU with a 3.2-GHz frequency.21 By using the
power of the GPU for parallel computation, MC methods, which
simulate the propagation of light in tissue, can be accelerated to
speeds that are 100 to 1000 times faster than those obtained with
the CPU only. For example, Alerstam et al. used a single GPU
to accelerate an MC simulation by a factor of 1000 for multi-
layered tissues;22 Lo et al. proposed a multi-GPU-accelerated
MC simulation for photodynamic therapy treatment;23 Fang and
Boas sped up an MC simulation with a single GPU by a factor
of 100 to 300 for complex 3-D turbid media;24 and Fang also
released their code named Monte Carlo eXtreme (MCX).25

Until now, the FMT reconstruction method based on DA
with FEM is still limited in high-scattering tissue; however,
many kinds of tissues in small animals do not satisfy the
condition of high-scattering, such as rabbit muscle, colon
adenocarcinomas,26 the cerebral spinal fluid layer in the brain,
and cysts in the human breast.24 FMT reconstruction methods
based on the high orders of both RTE and MC are suitable for
heterogeneity media with a complex distribution of optical co-
efficients, but poor computational efficiency has tremendously
limited their applications. GPU can tremendously accelerate
the speed of MC; however, it has not yet been used in FMT
reconstruction. Furthermore, single GPU-accelerated FMT re-
construction cannot satisfy the demand for fast reconstruction
because of the large number of source-detector pairs.

In this paper, we propose a fast MC-based FMT recon-
struction, which is suitable for 3-D heterogeneity media with
refractive-index-unmatched boundaries and a complex distribu-
tion of optical coefficients. Phantom experiments with either
high or low-scattering are used to demonstrate the accuracy and
speed of the method. By analyzing the reconstructed localization
and concentration of the fluorochromes, we compare the accu-
racy of our method with a traditional method based on DA with
FEM. By the load-balancing strategy, we optimize the perfor-
mance of the GPU cluster for faster reconstruction and compare
with that based on CPU and single GPU.

2 Method
2.1 Theory of FMT
In this section, a brief introduction to the theory of FMT recon-
struction based on MC simulations accelerated by a GPU cluster
will be given.

The distribution of fluorescence photons in tissue can be
expressed as follows:3, 7

φ f (Rd , Rs) =
∫

gλem(Rd , r )x(r )φλex (r, Rs)dr, (1)

where φ f (Rd , Rs) is the photon density of fluorescence at Rd

with a source Rs , gλem(Rd , r ) is Green’s function with a source

at r (whose wavelength is λem) and a detector at Rd , φλex (r, Rs)
is the excitation photon density with a source at Rs (whose
wavelength is λex) and a detector at r and x(r ) can be expressed
as follows:

x(r ) = ημα f (r )
1 − jωτ (r )

1 + (ωτ (r ))2
, (2)

where ημα f (r ) is fluorescence yield, η is the quantum efficiency,
μα f (r ) is the absorption coefficient of the fluorochrome, τ (r ) is
the lifetime of the fluorochrome at r,11 and ω is the modality
frequency of the light source. Because our system is a continu-
ous wavelength system, therefore in this paper, ω = 0 and x(r )
= ημα f (r ).

When the light source is a narrow collimation laser, the
light source can be expressed as a δ function, so φλex (r, Rs)
= gλex (r, Rs) (Refs. 7 and 27), and, according to reciprocity,28

gλem(Rd , r ) = gλem(r, Rd ). Equation (1) can be expressed as
follows:

φ f (Rd , Rs) =
∫

gλem(r, Rd )x(r )gλex (r, Rs)dr. (3)

Applying the Fréchet derivative and combining Eq. (3) yields
the Jacobian function:4, 7

J (Rd , Rs) = ∂[φ f (Rs, Rd )]

∂x
=

∫
gλem(r, Rd )gλex (r, Rs)dr,

(4)
where J (Rd , Rs) is the Jacobian function with a source at Rs

and a detector at Rd .
The number of reconstructed fluorescence yields of FMT was

determined by the number of discrete points (N p). To reduce
the ill-posed number of coefficients for FMT, the measurement
points referring to the number of sources (Ns) multiplied by the
number of detectors (Nd) must be greater than the number of
reconstructed fluorescence yield, which is equal to N p. There-
fore, the number of source-detector pairs is very large. When
there are Ns sources, Nd detectors, and N p discrete points in
the experiment, the Jacobian matrix can be expressed as follows:

J =

⎡
⎢⎢⎢⎣

J
(
R1

d , R1
s

)
......

J
(
Ri

d , R j
s
)

J
(
RNd

d , RNs
s

)

⎤
⎥⎥⎥⎦ . (5)

In this paper, the Green’s function in Eq. (4) was calculated
by the kernel of MCX. According to Eq. (5), there are Ns + Nd
Green’s functions to be calculated to construct a (Ns×Nd)×N p
Jacobian matrix.

Combining the Jacobian matrix in Eq. (5), and according
to Tikhonov regularization,29, 30 the distribution of the fluores-
cence yield can be reconstructed. Tikhonov regularization can
be expressed as

min(||J x − y||2 + λ||
x ||), (6)

where J is the Jacobian matrix shown in Eq. (5), 
 is the
Tikhonov matrix (generally, 
 = I where I is the identity ma-
trix) and λ = 10−20, where λ is the relaxation factor, which
was determined by the L-curve method.31 The variable y is the
photon density of fluorescence in the experiment, and x = ημa f

represents the reconstructed fluorescence yield.11 The conjugate
gradient method was used to solve Eq. (6).32
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2.2 Acceleration by a GPU Cluster
To further improve the speed of the reconstruction method based
on MC simulations, with the goal of satisfying the demand for
fast reconstruction in FMT, a GPU cluster was constructed with
MPICH2, which is a high-performance and widely portable im-
plementation of the MPI standard (both MPI 1.0 and MPI 2.0).
The entire calculation task of the Green’s functions needed by
the inverse problem was distributed to the GPU cluster. The
hardware configuration is listed in Table 1. Three personal com-
puters in a local area network equipped with a total of six GPUs
of the G200 framework (which supports both double and single
precision) were used to construct a GPU cluster. A flowchart of
the GPU cluster-accelerated FMT reconstruction method based
on MC simulations is shown in Fig. 1.

The processes in Fig. 1 can be briefly summarized as fol-
lows:

(1) The host computer receives the file containing the posi-
tion and direction of the sources and the detectors, the
average optical coefficients, and the phantom size from
the experiment. The computer then transmits this infor-
mation to each computing node in the GPU cluster.

(2) The CPU compute nodes receive all of the experimen-
tal information from the host computer and distribute
the tasks of Green’s function computation into different
GPUs. Because the calculation time for Green’s func-
tions is different for different GPUs, the time consump-
tion is determined by the GPU that would have the lowest
performance if the computing tasks were equally dis-
tributed into each GPU of the cluster. Therefore, a load-
balancing strategy is used to achieve maximum parallel
efficiency. All tasks are distributed into GPUs according
to the following equation:

Ni = Ttask ∗ P GPUi

NGPU∑
i

P GPUi

, (7)

where Ni is the number of computing tasks for Green’s
functions for the i’th GPU and Ttask is the total number of
Green’s function tasks. P GPUi is the processing power
of the i’th GPU, which is listed in Table 1. NGPU is
the total number of GPUs. The load-balancing of CPU
is not considered because the main compute task in the
compute node of CPU is to calculate the Green’s function
by GPU, so CPU is rarely used.

(3) According to Eq. (7), the start and end indices of the com-
puting task (istart, iend) for each GPU are calculated. The

MC simulation is used to calculate the Green’s function
from istart to iend, and the fluences produced by MC are
saved in a file named i.mc2. The MC simulation refers
to MCX.

(4) When the entire list of Green’s functions has been calcu-
lated by the GPU cluster, all of the files that record the
results of the Green’s functions are transformed to the
host computer to construct the Jacobian matrix required
for reconstruction.

(5) Tikhonov regularization is used to reconstruct the distri-
bution of the fluorescence yield. The expression is shown
in Eq. (6).

To ensure the validity of the Green’s function calculation,
the kernel of the MC simulation refers to MCX with the fast
math library of compute unified device architecture (CUDA)
and without the atomic compile option. The random-number
generators (RNGs) for the MC simulation use a floating-point
based RNG with a chaotic logistic map, the size of the logistic
lattice is 5, this RNG has a higher computational efficiency as the
optimization of 32 bit floating-point operations.24 In addition,
all of the codes based on the CPU were compiled in Visual
Studio 2008 with the − 02 (MaxSpeed) option on a Windows
Server 2008 R2 X64 system. The codes based on the GPU were
compiled with the NVCC 3.0 (beta) which is a compiler in
CUDA.

3 Phantom Experiments
In this section, two phantom experiments for both low- and
high-scattering media are used to demonstrate the accuracy and
speed of MC-based FMT reconstruction accelerated by a GPU
cluster.

3.1 Reconstruction Accuracy
Four glass tubes (2.2-mm in diameter) with different concentra-
tions of Dir-Boa fluorescence dye33 were placed in a rectangular
box (13.5×40.5×60 mm) with a mixed solution of Intralipid and
India ink. The concentration in the four glass tubes ranged from
1.8 μmol/L to 1.2 μmol/L . Two phantom experiments with
different kinds of optical coefficients for the mixed solution of
Intralipid and India ink were conducted. The glass tubes in the
phantom experiment are heterogeneous media because the op-
tical coefficients of the solution of Dir-Boa fluorescence dye
(high-absorption, low-scattering) are different from those for
the mixed solution of Intralipid and India ink, and the refrac-
tive index of glass is also mismatched with the mixed solution.

Table 1 The hardware of the GPU cluster.

CPU Graphic card Processing power (peak) Gflop/s (Ref. 40)

Computer 1 Pentium(R) Dual-Core E5300 NVIDIA GTX 295 with two GPUs 1788.48

Computer 2 Intel(R) CoreTM i7 920 NVIDIA GTX 295 with two GPUs 1788.48

Computer 3 Intel(R) Xeon(R) X5570 NVIDIA Quadro FX4800 with one GPU 693.50

NVIDIA Tesla C1060 with one GPU 933.12
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Fig. 1 A flowchart of the GPU cluster-accelerated FMT reconstruction method based on MC simulations.

The heterogeneity of the fluorescence solution is considered
in the calculation of the Green’s function for MC-based FMT
reconstruction but not in that based on DA with FEM because it
is not accurate for DA when μa > μ′

s .
Case 1. The absorption coefficient of the first experiment

was 0.23 mm− 1, and the reduced scattering coefficient was
0.68 mm− 1. In this case, μα ≈ μ′

s , which indicates a low-
scattering case. In theory, the DA will be invalid. However,
the MC simulation was accurate.

Case 2. The absorption coefficient of the second experiment
was 0.07 mm− 1, and the reduced scattering coefficient was
1.8 mm− 1. In this case, μα � μs

′, which indicates the high-
scattering case. In theory, the DA should be as accurate as the
MC simulation.

These two types of optical coefficients refer to the muscle
tissue and the skin of a rabbit at a wavelength of 790 nm.26 A
dual-modality imaging system combined with micro-computer
tomography (micro-CT) and FMT 34 was then used to obtain the
fluorescence images. A micro-CT slice was used to prove the
localization accuracy of the reconstruction.

The reconstruction area (1.35×40.5×20 mm) was smaller
than the real size of the phantom because the fluorescence signal
only appeared in that area. The spatial resolution of the FMT is
about 1 mm;35 therefore, by applying a 1-mm3 discrete accuracy,
the reconstruction area was separated into 14×41×20 voxels. In
this experiment, there were 99 sources and 220 detectors, so 319
Green functions were calculated. Therefore, the amount of data
from the experiment (99×220 = 21,780) was larger than the
number of reconstructed fluorescence yield, which was equal to
the number of voxels (14×41×20 = 11,480). As a result, the
ill-posed FMT reconstruction could be relieved.

Six GPUs were used to calculate the Green’s functions, and
105 photon moves were simulated at each thread of the GPU.
There were 2560 threads in total and 256 threads in each block
of the GPU. We repeated this calculation 12 times to increase
the total number of simulation photons and to avoid the kernel
launch time-out error.25 In each calculation of a Green’s func-
tion, there were 1.36 × 107 photons to be simulated on average,
and 4.34109 photons were simulated for the total reconstruction
process.

The reconstruction method based on a DA with the FEM
refers to NIRFAST36, 37and TOAST.27, 38 By applying a 1-mm3

mesh, the reconstruction area was discrete, with 12,054 points
and 50,100 tetrahedrons.

Tikhonov regularization was solved with a conjugate gradient
method that was stopped at the 18th iteration, when the differ-
ence between two consecutive iterations was less than 10− 6. The
reconstructed distribution of the fluorescence yield is shown in
Fig. 2.

The average value of the reconstructed fluorescence coef-
ficient of the four fluorochromes for both case 1 and case 2
was calculated from Figs. 2(b), 2(c), 2(e), and 2(f). These val-
ues were calculated with different FMT reconstruction methods
based on both MC simulations and DA. Because the fluores-
cence yield was in direct proportion to the concentration of the
fluorochromes, the reconstructed concentrations of four fluo-
rochromes were calculated through a linear fit of the fluores-
cence yield against the real concentration of the fluorochromes.
The results are shown in Fig. 3.

The error between the linear fit and the real reconstructed
concentration was used to determine the coefficient of the
linear fit, which refers to the linearity of the reconstructed
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Fig. 2 Reconstruction slices. (a), (b), and (c) show the reconstruction
slices for case 1. (d), (e), and (f) show the reconstruction slices for case 2.
Micro-CT refers to the central reconstruction slice with Micro-CT. MC
refers to the central reconstruction slice for the FMT reconstruction
method based on MC simulations accelerated by a GPU cluster. FEM
refers to the central reconstruction slice for the FMT reconstruction
method based on a DA with the FEM. The position and size of the
white circles in (b) and (c) were determined by the Micro-CT slice in
(a), and the white circles in panels (e) and (f) were determined by the
Micro-CT slice in panel (d).

concentration. The resulting values are listed in Table 2. The
sum of squares error (SSE) refers to the error between the linear
fit and the reconstructed concentration, and R-squared indicates
the linearity of the fit. Under ideal conditions, the SSE is zero
and R-squared is 1.

3.2 Acceleration Performance
In this section, the effect of the load-balancing method based
on the calculation power of GPU is compared with equal-load-
balancing. The acceleration performance for different numbers
of GPUs in the GPU cluster is compared for both case 1 and
case 2.

We distribute all the tasks into GPU clusters with two differ-
ent balancing methods: load-balancing with Eq. (7) and equal
loading, which equally distributes the task into GPUs. We use
the experimental data for case 1 and case 2. The configuration of
the MC and GPU is mentioned in Sec. 3.2, and the reconstruc-

Table 2 The coefficients of the linear fit.

Case 1 Case 2

FEM MC FEM MC

SSE 0.0657 0.0031 0.0093 0.0055

R-squared 0.7076 0.9837 0.9543 0.9755

tion time is recorded for comparison. The results are shown in
Table 3.

From Table 3, we find that load-balancing based on Eq. (7)
increases the computational efficiency.

We separately tested the performance of the FMT recon-
struction method based on MC simulations with a GPU clus-
ter containing one, two, four, or six GPUs. In every thread of
the GPU, 105 photon moves were simulated. There were 7680
threads in total in computer 1 and computer 2, but there were
6144 threads in total in computer 3. Every block in the GPU
contained 256 threads. Each GPU in a GTX295 graphics card
contains 30 independent multiprocessors (MPs), which contain
16384 registers, and MCX occupies 54 registers at each thread.
Therefore, 256 threads could be run simultaneously in each
MP. For the entire GPU, 30×256 = 7680 threads could be
run simultaneously. However, the GPU on the NVIDIA Quadro
FX4800 graphics card of computer 3 only contained 24 MPs, so
24×256 = 6144 threads in total could be run simultaneously.
With these settings, the computing power of a graphics card with
a G200 framework can be fully unleashed. Each calculation of
a Green’s function was repeated 12 times to avoid kernel launch
time-out errors25 and to increase the total number of simulated
photons.

For each calculation of a Green’s function, there were 4×107

simulated photons on average and 1.3×1010 in total for the en-
tire reconstruction. Because the total number of photons in the
reconstruction process was only determined by the total num-
ber of calculated Green’s functions, the photon moves in each
thread, the total number of threads, and the different numbers
of GPUs in the GPU cluster did not influence the total number

Fig. 3 Reconstruction of the concentration of fluorochromes. (a) shows the reconstructed concentration versus the real concentration of four different
fluorochromes for case 1. The concentrations were reconstructed by the FMT reconstruction method based on both MC simulations and DA.
(b) represents the case 2 experimental conditions. The linear fit function is also shown in (a) and (b).
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Table 3 Performance of load-balancing.

Case 1 Case 2

Number of GPUs Equal load(s) Load-balancing(s) Equal load(s) Load-balancing(s)

4 867 704 1133 920

6 585 465 697 554

of simulation photons. However, there were small differences
in the total number of photons when the GPU of the Quadro
FX4800 in computer 3 was used because the total number of
available threads for the Quadro FX4800 was only 6144.

The influence of the number of GPUs in the GPU cluster
on the amount of time consumed for the FMT reconstruction
method based on MC simulations is shown in Fig. 4. The time
data for one and two GPUs in the GPU cluster came from
the computing node of computer 1. Four GPUs refers to the
computing nodes of computers 1 and 2, and six GPUs in the
GPU cluster refers to computing nodes of computers 1, 2, and 3.

We also compared the acceleration ratio between the speeds
of the CPU code and the GPU cluster code. The speed of the
CPU code was estimated by the tMCimg code,39which was
compiled with –O2(maxspeed) in Visual Studio 2008. Because
it takes a long time to use the tMCimg in FMT reconstruction,
we only tested the speed of tMCimg for one calculation of a
Green’s function. This speed was approximately equal to the
speed for the whole reconstruction because the Green’s func-
tion calculation consume 95% of the time needed for the total
reconstruction. The results showed that for case 1, the calcu-
lation speed of a Green’s function based on CPU code was
75 photons/ms, and for case 2, the speed was 7.6 photons/ms.
The performance using different numbers of GPUs in the GPU
cluster is shown in Fig. 5, and the acceleration ratio compared
with the CPU is shown in Table 4.

4 Discussion and Conclusion
For the low-scattering case (μa ≈ μ′

s), Figs. 2(a), 2(b) and 2(c),
and Fig. 3(a) illustrate that the GPU-cluster-accelerated FMT
reconstruction method based on MC simulations accurately re-
constructed the localization and concentration of fluorochromes.
The traditional reconstruction method based on a DA with the

Fig. 4 The time performance of different numbers of GPUs in the GPU
cluster for case 1 and case 2.

FEM failed in this case. This superiority of our method in
reconstructing the concentration is quantitatively demonstrated
in Table 2.

In the experiment for the high-scattering case (μα � μs
′),

which has typically been reconstructed with the traditional
reconstruction method based on a DA with the FEM, the
GPU cluster–accelerated FMT reconstruction method based on
MC simulations also accurately reconstructed the localization
and concentration of fluorochromes. Figures 2(d), 2(e), 2(f),
Fig. 3(b), and Table 2 show that, in the high-scattering case,
the two methods achieve almost identical results. The only dis-
parity is a very small difference in the linearity of the recon-
structed concentration because the heterogeneity of the fluores-
cence solution is considered in the MC-based FMT reconstruc-
tion method accelerated by GPU clusters and the size of the
fluorescence solution is small, which cannot cause a large error
in the calculation of the Green’s function. This small difference
indicates the advantage of our method for heterogeneous media
with refractive-index-unmatched boundaries.

The GPU cluster-accelerated FMT reconstruction method
based on MC simulations can accurately reconstruct the local-
ization and concentration of fluorochromes for heterogeneous
media under both low- and high-scattering conditions. In con-
trast, the traditional FMT reconstruction method based on a DA
with the FEM was only valid for the case in which μα � μs

′.
Figure 4 shows that the FMT reconstruction method based

on MC simulations accelerated by a single GPU for case 1 and
case 2 requires 44 and 49 min to finish the whole process, which
does not satisfy the demand for fast reconstruction in FMT. How-
ever, the FMT reconstruction method based on MC simulations
accelerated with six GPUs for case 1 and case 2 requires only 7.7
and 9.2 min, which is the same as the time required by the FMT
reconstruction method based on a DA with the FEM.12 We also
found that the more GPUs in the GPU cluster, the less time was

Fig. 5 The speed performance of different numbers of GPUs in the
GPU cluster for case 1 and case 2.
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Table 4 The acceleration ratio for different numbers of GPUs.

Number of GPUs 1 2 4 6

Acceleration ratio in case 1 66x 132x 246x 373x

Acceleration ratio in case 2 580x 871x 1859x 3088x

required for the FMT reconstruction based on MC simulations,
which predicts that a GPU cluster with about 15 Nvidia GTX
480 graphic cards (about 3 times faster than Nvidia GTX 295)
may require only 1 min to finish the entire FMT-reconstruction
process. Note, however, that the larger reduced scattering coeffi-
cient required more processing time in the FMT reconstruction
based on MC simulations because a larger reduced scattering
coefficient means that the photons need more steps to escape
from the tissue, which requires more time to calculate.

The more GPUs in the GPU cluster, the faster the speed
of the FMT reconstruction method based on MC simula-
tions. Compared with the CPU code, the FMT reconstruction
method based on MC simulations accelerated with 6 GPUs was
3088 times faster for case 2, but only 373 times faster for case 1.
This difference is caused by the speed of the FMT reconstruc-
tion method based on MC simulations decreasing more quickly
for the CPU code than for the GPU cluster when the reduced
scattering coefficient increased.

In summary, with the MPI standard and load-balancing
method, we propose a fast FMT reconstruction method
which is based on MC simulation and accelerated by a GPU
cluster. Through two phantom experiments on both high- and
low-scattering media, we prove that this method can accurately
and rapidly reconstruct the fluorochrome localization and
concentration for 3-D heterogeneous media with refractive-
index-unmatched boundaries and complex distributions of
optical coefficients.
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