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Abstract. Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-
art algorithms based on independent component analysis suffer from a sorting problem which hinders their
performance, and propose a novel algorithm based on constrained independent component analysis to improve
performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the
sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art
algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algo-
rithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute
(bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy
expected from the reference measurements. This implies that the proposed algorithm provided performance of
equal accuracy to the finger probe oximeter. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO

.17.7.077011]
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1 Introduction
Pulse rate is widely recognized as an important cardio-vascular
parameter for assessing a patient’s health. Current methods of
measuring pulse rate rely on the placement of electrodes on
patient’s skin. Continuous monitoring using commercial pulse
oximetry sensors attached to a finger or earlobe pose discomfort,
susceptible to infections and could lead to irritation of the skin. In
addition, the sensors must be placed and read by a qualified med-
ical professional, resulting in potential bottlenecks when attend-
ing to patients at healthcare facilities. Remote nonobtrusive
monitoring is clearly an attractive alternative, provided that accu-
rate measurements are obtained. Past attempts for remote nonob-
trusive monitoring of the pulse rate include the use of
photoplethysmography (PPG). In PPG, a dedicated light source
is used to capture the bloodvolumepulse (BVP)byobservingvar-
iations in reflected light due to pulsatile blood volume. Spectral
estimation is applied to the BVP to extract the pulse
rate.

Recent work focused on obtaining BVP using ambient light
rather than a dedicated light source.1–4 The works in Refs. 1
and 2 pioneered an approach to extract pulse rate measurements1

and PPG signals2 using digital RGB cameras. The work in Ref. 3
improved on the accuracy of such methods by applying blind
source separation using independent component analysis (ICA)
and incorporating face tracking to automatically capture the
face of a single or multiple patients. The work in Ref. 3 used a
webcamtocapture thevideoandwas recently expanded to include

measurementsofotherparameters suchas theheart ratevariability
(HRV) based on the ICA approach.4

Although ICA is a fairly new technique, it was successfully
used in many source separation problems. It assumes the
observed signals are the result of a linear mixture of independent
sources, a.k.a. independent components (ICs). The number of
sources is equal to the number of observations, i.e., the linear
mixture model is represented by a square matrix. ICA extracts
the ICs responsible for the observed signals.5

In the framework of pulse rate measurements, we are inter-
ested in extracting the periodic variations in color due to the
pulsating blood flow beneath the skin surface controlled by
the heart. Other sources are mixed with the pulsating heart,
such as fast variations in ambient light and movement of the
subject. These act as interference in our measurements.

Standard ICA techniques suffer from the sorting problem: the
independent components are not ordered,meaning that the source
signal of interest could be present in any of the ICA outputs. The
work inRefs. 3 and4 recognized the sorting problemand resolved
it either by always selecting the second IC,3 or by selecting the IC
for which the peak frequency has the highest power.4 In the latter
case, the selected component varies from measurement to mea-
surement. Results in Refs. 3 and 4 were obtained from a dataset
of 12 videos.

In this contribution, we propose the use of constrained ICA
(cICA) to improve the accuracy of BVP measurements using a
webcam. cICA is a useful extension of ICA and is applicable in
cases where prior knowledge about the underlying sources is
available.6–8 Using cICA, a single source closely related to
the reference signal is extracted in the optimization process.Address all correspondence to: Gill R. Tsouri, Rochester Institute of Technology,
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cICA has been successfully used in the past to extract an under-
lying signal of interest. A relevant example can be found in
Ref. 6, where the weak signal of a fetal electrocardiogram
(ECG) was extracted after removing the dominant maternal sig-
nal using a cICA approach. In the framework of pulse rate mea-
surement, cICA can help avoid the sorting problem and extract
the BVP as the source of interest even when other sources exist.

In what follows, we design, implement and test a novel
cICA-based algorithm for accurately measuring the pulse
rate. We demonstrate how the sorting problem hinders perfor-
mance of the ICA based approach and how the proposed
cICA algorithm solves the problem and improves performance.
In addition, we perform a comparative study between the ICA
based algorithms of Refs. 3 and 4 and the proposed cICA
algorithm over a dataset of 45 videos.

2 Proposed Algorithm
In one form of cICA a single output is forced and optimized to
match a reference signal embodying prior knowledge about an
underlying IC.7,8 Since the sources considered in source separa-
tion usually have nonGaussian distributions, negentropy (J ) is
used to separate the sources. To this end, J is estimated using
approximations as described in Ref. 7 and our cICA problem is
modeled as follows:

Minimize:

CðyÞ ¼ −J ðyÞ ≈ −ρfE½fðyÞ� − E½fðvÞ�g2 (1)

Subject to:

hðyÞ ¼ ½Eðy2Þ − 1�2 ¼ 0; gðyÞ ¼ εðy; rÞ − ξ ≤ 0; (2)

where C denotes the cICA contrast function, hðyÞ constrains the
output to have unit variance and to avoid estimating the same IC
for different outputs, and gðyÞ is the closeness constraint to
guide the separation; v is a zero mean unit variance Gaussian
variable, εðy; rÞ is the closeness between estimated output
and the reference, and ξ is a closeness threshold; ρ is a positive
constant and f is a nonquadratic function. Note that f is chosen
depending on whether the source of interest is super-Gaussian or
sub-Gaussian. In our case, it is super-Gaussian and we set f as
was proposed in Ref. 7:

fðyÞ ¼ a−1 log½cosh ðayÞ� − 0.5ay2; (3)

where a ∈ Rþ. This fðyÞ helps achieve a stable solution at the
global optima as its second derivative is negative. The mean
square error (MSE) is used as a measure of closeness,
εðy; rÞ, as is commonly done. The closeness threshold ‘ξ’ is
selected within the range [εðy�; rÞ,εðyo; rÞ), where y� is the out-
put producing the desired IC closest to r, and yo is the next IC
closest to r.

Initially, ξ is chosen to be very small so as to avoid any local
minima. It is then gradually increased within its range to con-
verge to the global minima. Optimization of Eq. (1) with equal-
ity and inequality constraints in Eq. (2) would yield a single IC
at the output which is closest to the input reference signal.

The proposed cICA algorithm is depicted in Fig. 1 using a
functional block scheme. A video is captured using an RGB
webcam along with face tracking for locating the region of inter-
est (RoI) for pulse detection (entire face region). The RGB traces
from the RoI are pre-processed per trace by band-limiting to the
expected pulse rate range, whitening to uncorrelate the traces by

linear transformation, shifting to zero mean and normalizing to
unit variance to simplify the separation. The three processed
traces are fed as input signals to cICA optimization as described
in Eqs. (1)–(3). The constrained optimization problem is solved
using Newton-like learning7 to incorporate prior information
and additional requirements in the form of constraints. The
reference signal fed to the cICA algorithm is a single tone with
frequency corresponding to a possible heart rate in beats per
minute (bpm). The peak frequency in the spectrum of the cICA
output is compared to the frequency of the reference signal and
the error is recorded as the absolute difference in frequencies.

This process is repeated while sweeping through frequencies
of the reference signal within the expected range of the corre-
sponding pulse. The reference frequency which results in the
minimal absolute error is selected as the estimated pulse rate.

3 Comparative Study
Forty-five participants between the ages of 18 to 45 years and
from various nationalities were enrolled in a study. The study
was approved by the Internal Review Committee for Protect-
ing Human Subjects at the Rochester Institute of Technology,
and a corresponding consent form was signed by participants.
One minute video recordings were taken using an off-the-
shelf, 2 MP, RGB Logitech camera at 15 frames per second
with pixel resolution of 320 × 240 saved in WMV/AVI format.
During the video recording, participants were asked to main-
tain a relaxed sitting position. At the same time a reference
pulse rate was measured using a BVP finger probe oximeter.
All videos were processed offline using MATLAB.

An automatic face tracker was used to detect the faces and
select the RoI within each video frame. We used the face
detection toolbox (version 0.21) using local binary patterns
and haar features.9 The face detection code was mainly written
in C and wrapped with a MATLAB interface. The RoI was
then separated into three RGB channels by averaging all
the pixels in a frame to obtain a single red, blue, and
green point for each video frame and form the raw traces.
Each video resulted in a block of three vectors, where each
vector has 900 numbers. The raw traces were whitened,
shifted to zero mean, normalized to unit variance and
band-pass filtered within the range of 0.75 to 4 Hz, under
the assumption that the pulse lies within 45 to 240 bpm.
The filtered traces were fed to the cICA algorithm with refer-
ence signal sweep as previously described to extract the BVP
with a sweep resolution of 0.5 bpm. The peak frequency was

Fig. 1 Functional block scheme of proposed algorithm.
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extracted using the MATLAB periodogram function with a
hamming window for power spectral density estimation. All
video streams were also subjected to the ICA pulse rate mea-
surement algorithms described in Refs. 3 and 4 to form a basis
for comparison with state-of-the-art algorithms.

4 Results
We start by analyzing a representative video. Figure 2 depicts
the error as a function of the reference signal frequency in
bpm. Note that there is a single frequency (very close to the
true pulse of 84 bpm) for which the error is very close to
zero and that the error increases linearly as we move away
from the true pulse. We observed the same behavior for all
other videos. This implies that the algorithm does not suffer
from ambiguities associated with convergence to local minima.
Figure 3 presents the cICA output signal when the minimum
error is achieved, and a PPG signal obtained via the MP36
Biopac System with a sensor attached to the earlobe. The close
resemblance between the signals is evident. The cICA reference
signal is presented as well.

We now demonstrate the sorting problem of the ICA based
approach and how it is resolved using our cICA approach.
Table 1 presents pulse detection results along with the heart
rate measured by the finger probe oximeter (true pulse) for a

representative set of 10 videos. For the ICA approach the
detected pulse from each ICA component is presented. For
each video a different component provided a result closer to
the true pulse. In most videos, the cICA algorithm provided
a result similar in accuracy to the best result across all ICA com-
ponents. For videos 8–10, cICA performed better than all ICA
components.

Figure 4 summarizes results for the entire data set using
Bland-Altman plots for the ICA based algorithms depicted in
Refs. 3 and 4, including the impractical scenario where the
ICA component providing a pulse closest to the true pulse is
chosen, and the proposed cICA algorithm. Comparing the ICA
algorithms of Refs. 3 and 4 [Fig. 4(a)] with the impractical
a-posterior best IC selection [Fig. 4(b)], it is clear that truly sol-
ving the sorting problem provides much better results. Compar-
ing Fig. 4(b) with the proposed cICA algorithm [Fig. 4(c)], it is
evident that the cICA algorithm furthers estimation accuracy
beyond solving the sorting problem. The root mean square
error (RMSE) for the ICA algorithm across the set is 20.6 bpm
when selecting the second IC3 and 9.5 bpm when selecting the

Fig. 3 Photoplethysmography (PPG) sensor signal compared to constrained independent component analysis (cICA) output signal.

Fig. 2 Error vs. frequency sweep in beats per minute (bpm).

Table 1 Pulse rate samples from data in bpm.

Video Num True pulse

ICA component

cICA1st 2nd 3rd

1 60 49.0 58.0 45.9 58.6

2 64 48.5 82.4 64.6 64.1

3 72 71.6 70.5 51.0 71.6

4 66 73.2 72.4 65.4 65.6

5 76 81.1 45.5 81.7 81.1

6 113 45.0 47.7 113.2 113.6

7 49 49.4 56.4 49.6 50.1

8 57 53.8 56.8 73.0 57

9 78 45.7 66.3 60.1 72.3

10 66 53.4 49.4 51.0 69.6
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IC with maximum spectral peak.4 The RMSE for the proposed
cICA algorithm is 3.5 bpm. Such inaccuracy is within the ex-
pected margin of error of the true pulse reference measurement,
implying that the proposed algorithm provides measurement
accuracy similar to the BVP finger probe oximeter.

We observed that motion of subjects during video capture
affects the accuracy of all tested algorithms for pulse rate mea-
surement. Face tracking was efficient in locating the face within
a RoI selected for processing; however, the positioning of the
face within the RoI would alter slightly causing jitter in the pro-
cessed RGB traces. We were able to compensate for this effect
by reducing the rate at which face tracking is performed. Since
subjects were asked to sit still, the effect of such motion artifacts
on presented results is minimal. In a real-world application, non-
obtrusive pulse rate measurement algorithms should be augmen-
ted with existing methods of motion artifacts cancellation.

The cICA approach requires more processing time than the
ICA approach. This is due to the sweep performed over the
reference signal. We compared the runtime between the two
algorithms and found that the cICA algorithm takes 30 times
longer to run. Recall that our sweep was defined with intervals
of 0.5 bpm. The processing time ratio is reduced to 15 if the
sweep is performed using an interval of 1 bpm. Implementing
the algorithms in a different programming language such as C
would most likely reduce the processing time ratio, since itera-
tions would run faster compared to MATLAB. Since pulse mea-
surement is not expected to be performed continuously, we do
not expect processing time to be a limited factor in practical
implementations.

5 Conclusion
A cICA algorithm for nonobtrusive pulse rate measurement
using a webcam was proposed and evaluated using a compara-
tive study with state-of-the-art algorithms over a large data set.
The results demonstrated how the proposed algorithm extracts a
PPG-equivalent signal and how it resolves the ICA sorting

problem. The estimation error of the proposed algorithm was
shown within the estimation error of a commercially available
finger-probe oximeter, suggesting nonobtrusive pulse rate
measurements could replace existing practices. Although the
focus of this contribution was on pulse rate measurement, the
proposed cICA algorithm is likely useful for estimating other
physiological parameters where an ICA sorting problem is evi-
dent and prior knowledge exists on the parameter being
estimated.
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