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Abstract. A novel approach is presented for obtaining fast robust three-dimensional (3-D) reconstructions of bio-
luminescent reporters buried deep inside animal subjects from multispectral images of surface bioluminescent pho-
ton densities. The proposed method iteratively acts upon the equations relating the multispectral data to the
luminescent distribution with high computational efficiency to provide robust 3-D reconstructions. Unlike existing
algebraic reconstruction techniques, the proposed method is designed to use adaptive projections that iteratively
guide the updates to the solution with improved speed and robustness. Contrary to least-squares reconstruction
methods, the proposed technique does not require parameter selection or optimization for optimal performance.
Additionally, optimized schemes for thresholding, sampling, and ordering of the bioluminescence tomographic
data used by the proposed method are presented. The performance of the proposed approach in reconstructing
the shape, volume, flux, and depth of luminescent inclusions is evaluated in a multitude of phantom-based and
dual-modality in vivo studies in which calibrated sources are implanted in animal subjects and imaged in a dual-
modality optical/computed tomography platform. Statistical analysis of the errors in the depth and flux of the recon-
structed inclusions and the convergence time of the proposed method is used to demonstrate its unbiased perfor-
mance, low error variance, and computational efficiency. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10

.1117/1.JBO.18.7.076010]
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1 Introduction
Bioluminescence tomography (BLT) has found extensive appli-
cations in preclinical studies, small animal imaging, cancer
research, and drug monitoring and discovery as a noninvasive
in vivo molecular imaging platform for three-dimensional
(3-D) localization and visualization of the distribution and activ-
ity of bioluminescent reporters that label physiological
and molecular processes of interest deep inside biological
tissue.1–4 Bioluminescence is a process in which light is pro-
duced through oxidation of a class of heterocyclic molecules
named luciferin in the presence of the enzyme luciferase.5

Bioluminescent compounds are used as bioreporters to tag,
track, and monitor molecular and biological processes in labo-
ratory animals.1 Photons emitted from luminescent probes upon
administration of luciferin, though weak in intensity,2 can be
detected and measured (counted) on the surface of the animal
using ultrasensitive charged couple device (CCD) cameras or
detector arrays. Quantification and depth-resolved localization
of deep tissue bioluminescent reporters from these multispectral
boundary measurements in small animals constitute a highly ill-
conditioned problem and require inverse solvers that effectively
overcome the ill-posed nature of the problem. While least-

squares 3-D reconstruction algorithms have been developed
for BLT,6,7 they require proper parameter selection for optimal
performance and suffer from slow convergence when solving
large-scale problems.

In this work, we present a row-action unbiased iterative adap-
tive algebraic reconstruction technique (ART) optimized for fast
robust 3-D reconstructions in BLT. The proposed method does
not rely on optimal parameter selection unlike least-squares
methods. The proposed algorithm, named multilevel scheme
adaptive algebraic reconstruction technique (MLS-AART), is
designed for remarkably fast convergence to unbiased stable
solutions and is optimized according to the properties of
the data and constraints of bioluminescence imaging. To
validate the performance of the proposed method, it is applied
to a total of 10 phantom-based and dual-modality optical/
computed tomography (CT) in vivo studies, and the errors in
the reconstructed volume, depth, and flux intensity along
with convergence time of the algorithm are computed and ana-
lyzed statistically. The statistical study of error in the 15 recon-
structed inclusions shows that the proposed algorithm has an
unbiased low-variance performance especially in depth estima-
tion and flux quantification and a remarkably low average
convergence time compared to existing row-action inverse
solvers.
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2 Background
In BLT, multispectral measurements of the diffuse luminescent
photons on the animal surface are used for depth-resolved locali-
zation and quantification of the 3-D distribution of biolumines-
cent reporters buried deep in the tissue.6 Propagation of emitted
luminescent photons in highly scattering low absorptive media
such as tissue is modeled by the diffusion equation, expressed in
Eq. (1), which is a first-order approximation to the radiative
transfer equation and has been shown to accurately model dif-
fuse photon propagation.8

D∇2ΦðrÞ − μaΦðrÞ ¼ −qðrÞ: (1)

In Eq. (1), ΦðrÞ represents average light intensity, μa is the
absorption coefficient, D is the diffusion coefficient, and qðrÞ is
the luminescent source flux at location r. Numerical techniques
such as the finite element method are often used to discretize
Eq. (1) and numerically solve for its Green’s functions.
However, the excessive computational and memory require-
ments of these techniques make them less efficient compared
to faster semianalytical solvers. It has been shown that for a
homogeneous medium (medium with spatially uniform absorp-
tion and scattering coefficients), a tangential planar approxima-
tion can be used to find a semianalytical formulation for the
Green’s functions of Eq. (1) as shown below,6
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where dj is the distance of the voxel indexed i from the tangent
plane at the boundary point indexed j, and pij is the distance of
the boundary point indexed j from the point on the plane closest

to the voxel indexed i and so rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2j þ p2

ij

q
. The parameters

μeff and zb depend on the geometry of the medium and its optical
properties.9

Using Eq. (2), the Green’s function describing the boundary
distribution of the photons emanating from an arbitrary point
source inside a turbid medium can be obtained analytically.
Since the Green’s functions of Eq. (2) are wavelength depen-
dent, multispectral data are acquired to enhance the information
content of the measurements and constrain the solution. Using a
3-D grid to discretize the medium and the Green’s functions cor-
responding to the voxels of the grid, a linear relationship can be
established between the flux of the bioluminescent agents at the
voxels of the 3-D grid and the boundary measurements of lumi-
nescent light intensity as formulated below:

ρ ¼ Gs; (3)

where ρ is the data vector that lists the multispectral boundary
measurements, s is the luminescence flux vector, and G is the
system matrix that depends on the optical properties and the
geometry of the turbid medium and whose columns are the dis-
cretized Green’s functions for the voxels corresponding to the
entries of s.

BLT aims at retrieving the luminescence distribution vector s
using the measurements ρ and an estimate of the system matrix
G. It involves a highly ill-posed inverse problem,10,11 as the 3-D
depth-resolved map of bioluminescence source flux distribution
must be reconstructed from two-dimensional (2-D) boundary
measurements. Conventionally, reconstruction algorithms resort
to least-squares regularization methods10,12–14 to overcome this
ill-posedness. However, in these techniques, optimal selection
of the regularization parameter is needed to avoid over- or
under-regularization. Also, the computational cost and memory
requirements for numerical implementation of some regulariza-
tion-based reconstruction algorithms are considerably high.14,15

Although a priori information can be incorporated into regulari-
zation and least-squares methods to enhance stability and
numerical efficiency,16,17 they are not always available in biolu-
minescence imaging studies.

Iterative row-action reconstruction methods18,19 are a class of
memory-efficient low-cost numerical solvers that avoid bulky
matrix computations in large-scale problems by iteratively
updating the solution using only one equation at a time. As a
result, these methods only involve one-dimensional vector com-
putations. The most popular iterative row-action methods are
ARTs that have recently found extensive applications in medical
and molecular image reconstruction.20–23 In conventional ART,
the solution is updated at each iteration through an orthogonal
projection to the hyperplane of the corresponding equation in
the linear system of equations. Mathematically, given the system
of equations defined in Eq. (3), the solution vector denoted by s
is updated at the k’th iteration, corresponding to the i’th row of
the system of equations as below,19

sðkþ1Þ ¼ min kskþ1 − skk2 subject toGi∶sðkþ1Þ ¼ ρi; (4)

where Gi∶ denotes the i’th row of the matrixG, and ρi is the i’th
entry in the data vector. Solving for sðkþ1Þ while enforcing non-
negativity (since s represents the non-negative flux of biolumi-
nescence at each voxel) yields19

sðkþ1Þ ¼ sðkÞ þ ρi −Gi∶sðkÞ

Gi∶G�
i∶

G�
i∶; (5)

sðkþ1Þ ¼ maxðsðkþ1Þ; 0Þ: (6)

Equations (5) and (6) are the core components of non-neg-
ative conventional ART. It has been shown that the projection
access order (order at which the equations are accessed and used
for updating the solution) has an important role in the speed of
convergence in ART.24–26 MLS-ART is a modification to con-
ventional ART where the equations are accessed in an optimal
order to ensure speedy convergence.24 The access order of equa-
tions is considered to be optimal when hyperplanes correspond-
ing to successive equations are orthogonal to each other or
intersect at close-to-perpendicular angles. After the equations
are reordered to ensure optimal convergence, they are accessed
one by one for iterative projections and this continues until each
equation has been accessed N times. Figure 1 provides a geo-
metric insight into the dynamics of ART-type algorithms.
Figure 1(a) presents a geometrical interpretation of MLS-
ART applied to a 2-D problem. Here, each line represents a
hyperplane in the solution space corresponding to one of the
equations, and the solution is the intersection of the solid
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lines. The progress of MLS-ART is represented by dark cross-
marks and gray arrow lines. As depicted in Fig. 1(a), the points
with crossmarks iteratively progress toward the solution (inter-
section of the two lines) by orthogonal successive projections
onto the two lines.

In this paper, we investigate the use of a modified version of
MLS-ART that has improved speed and performance over con-
ventional MLS-ART as it smartly guides the projections toward
the true solution which increases the speed of convergence and
geometric proximity of the result to the true solution.27 The pro-
posed algorithm is called MLS-AART because it adaptively
guides the projections to the solution. In Fig. 1(b), the violet
dots and orange arrows demonstrate the convergence of
MLS-AART algorithm toward the solution. As depicted in
Fig. 1(b), in adaptive algebraic reconstruction, the direction
of projection at each iteration is inclined toward the crossing
point of the two lines making the convergence to the solution
faster compared to MLS-ART where the circular (spherical)
unit circle of the objective norm results in orthogonal projec-
tions. The adaptively inclined projections are a result of the
elliptical unit circle of the weighted norm used in MLS-
AART. Mathematical details of the proposed algorithm will
be discussed in Sec. 3.1.1. In this paper, we optimize and
employ MLS-AART for 3-D BLT reconstructions. We validate
the performance of MLS-AART using phantom and dual-
modality animal studies. The multitude of studies used for val-
idation of the algorithm allows for a statistical study of the mean
and standard deviation of the error in the reconstructed volume,
depth (defined as the distance along the optical axis of the sys-
tem from the inclusion to the animal surface facing the camera),

and flux of the 3-D bioluminescence distribution as well as the
convergence time of the algorithm.

3 Materials and Methods

3.1 Optimized AART

3.1.1 General MLS-AART

The MLS-AART can be represented mathematically as follows.
In the k’th iteration of MLS-AART [corresponding to the i’th
row in the linear system of equations expressed in Eq. (3)], the
solution is updated as follows:

sðkþ1Þ ¼ min kskþ1 − skkS−1 subject toGi∶sðkþ1Þ ¼ ρi; (7)
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Solving for sðkþ1Þ using Lagrange multipliers28 yields
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MLS-AART, as formulated in Eqs. (9) and (10), must be ini-
tialized with a nonzero vector sð0Þ to converge. To illustrate the
dynamics of MLS-AART, we present a 2-D geometrical inter-
pretation as shown in Fig. 1(b). The unit circle of the weighted
L2 norm denoted by k:kðSð−1ÞÞ is an ellipse in two dimensions and
an n-dimensional ellipsoid in higher dimensions with its long
diameter lying parallel to the axis corresponding to the largest
entry in s. When projections are ordered in a multilevel scheme
to maximize orthogonality (or the angle) between successive
equations or hyperplanes, the ellipsoid representing the unit
circle of the adaptively weighted norm is inclined toward the
meeting point of the hyperplanes as shown by the green ellipses
in Fig. 1(b). Hence, in each iteration, MLS-AART projects the
updates closer to the true solution compared to orthogonal pro-
jections as shown in Fig. 1(c), where the progress of MLS-
AART and MLS-ART is depicted by orange arrows and violet
dots and dark crossmarks and gray arrows, respectively.

3.1.2 Sampling and ordering of data points

Multispectral noncontact [charge-coupled device (CCD)-based]
data acquisition provides a large set of data points ranging from
noisy low-intensity to high-intensity data points. High-intensity
data provide information about the flux intensity and the coor-
dinates of the source. Low-intensity data, which usually sit on
the spatial tails, carry information about the depth and the shape
of the inclusion. Additionally, data from lower wavelengths
carry more localized information (due to higher tissue absorp-
tion) and data from higher wavelengths are more diffuse and less
localized. Therefore, finding the optimal sampling strategy

Fig. 1 Geometric interpretations of ART and MLS-AART: red lines
represent the two equations in the 2-D solution space. (a) Gray arrows
and dark crossmarks show the convergence of ART. (b) Orange arrows
and violet dots show the convergence of MLS-AART to the solution
(crossing point of two lines). (c) Convergence of MLS-ART and MLS-
AART overlaid.
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which provides the best trade-off between low-intensity and
high-intensity data is important for accurate and robust 3-D
reconstructions in BLT. In this work, we investigated three sam-
pling distributions on patterns with 200 per wavelength data
points: uniform distribution, intensity distribution, and inten-
sity-squared distribution. While for each sampling distribution
there are cases for which they work optimally, on aggregate,
intensity-weighted sampling resulted in better 3-D reconstruc-
tions compared to the uniform and intensity squared.

As discussed in Sec. 2, the optimal projection access order is
pivotal to speedy convergence of ART, particularly for MLS-
AART.21,24 Ordering the equations to establish maximal inde-
pendence between successive equations can be done through
computing the angle between pairs of hyperplanes representing
the linear equations. However, this scheme would be highly time
and memory consuming and defeats the purpose of optimizing
the proposed algorithm for speedy convergence. Similar to fast
projection access ordering schemes used in x-ray CT,21 we pro-
pose a fast heuristic method for ordering the projections in
MLS-AART. After interlacing data points from different wave-
lengths, equations (data points) are ordered in a fashion that
maximizes physical distance between successive data points
to ensure minimal correlation between successive equations.
Hence, starting from a high intensity point, the algorithm
moves to a point farthest from it and then onto a point farthest
from both in a max–min fashion and so on. In mathematical
terms, at k’th iteration, the data point pk is picked from

pk ¼ argp max½minðdistðp; pjÞ� for ∀ j < k; (11)

which is a fast strategy for ordering data points or equations used
by MLS-AART. The ordering described in Eq. (11) does not
overburden the reconstruction algorithm as its computational
complexity for N data points is OðN2Þ, which, as discussed
in Sec. 5, is in the same order as the computational complexity
of MLS-AART.

3.1.3 Non-negativity constraint

Non-negativity in ART is enforced through setting negative
entries to zero in the updated solution vector. In MLS-AART,
however, zero entries will remain zero since the update equation
includes a multiplication by a matrix diagonally populated with
the solution vector as formulated in Eqs. (9) and (10). Therefore,
setting negative entries to zero cannot be used to enforce non-
negativity as the corresponding entry will remain zero for the
remainder of the iterations, which will not allow the algorithm
to converge to the true solution. Therefore, we use a reflective
scheme for non-negativity enforcement. Mathematically, it can
be formulated as

sðkþ1Þ ¼ maxðsðkþ1Þ;−sðkþ1ÞÞ; (12)

where negative entries are reflected to their positive absolute
value. This scheme of non-negativity enforcement does not
harm nor limit the convergence of MLS-AART toward the
true solution.

3.2 Multispectral Imaging System

The bioluminescence imaging experiments presented in this
paper were conducted using IVIS® Spectrum Imaging
System (PerkinElmer, Inc., Alameda, California) that is

shown in Fig. 2. The multispectral imaging data collected by
IVIS® Spectrum are used for 3-D BLT. This instrument uses
a 2048 × 2048 pixel, 26 mm wide, high-sensitivity back-
thinned CCD camera for image acquisition while thermoelectri-
cally cooled to −90°C to minimize dark current and other ther-
mal noise effects. The CCD possesses high quantum efficiency
(>90%) over a wavelength range of 400 to 950 nm covering the
entire visible and near-infrared range that are of interest in opti-
cal imaging. Light is collected and directed to the CCD array
using an F∕1 aperture lens. The minimum detectable radiance
for the system is rated around 70 photons∕s∕cm2∕sr for integra-
tion times up to 300 s allowing for fast collection of weak lumi-
nescent signals attenuated by tissue absorption. A filter wheel
comprised of 18 custom-designed (transmission >95%)
20-nm band-pass filters spaced every 20 nm from 500 to
840 nm is used in the imaging system.

In order to provide consistent measurements in different im-
aging conditions, the imaging system is calibrated for detection
and quantification of very low spectral radiance.29 This calibra-
tion provides the conversion of the CCD electron counts to iso-
tropic radiance on the subject surface by taking into account the
loss in the optics and the aperture (f-stop), the field of view
(FOV), CCD integration time, binning, and quantum efficiency.
The instrument is equipped with a laser and a high-speed scan-
ning galvo mirror system that provides structured illumination
for determining the surface topography of the boundary of the
small animal being imaged.6 The photon density distribution on
the surface is calculated from the radiance or counts of the CCD
image using the spatial angle between the normal to the surface
and the CCD axis as described in Kuo et al.6

3.3 Optical/CT Dual-Modality Imaging and
Coregistration

The dual-modality studies presented in this paper are carried out
using the IVIS® Spectrum (optical) and the Quantum® FX (x-
ray) imaging platforms. The Quantum® FX system
(PerkinElmer, Inc., Alameda, California) is a stand-alone
micro-CT system for small animal studies. Implants used for
the dual-modality studies are made of materials with x-ray
opacity noticeably higher than biological tissue and can be seg-
mented out in the CT reconstructions. The 3-D reconstructions
from bioluminescence and micro-CT imaging are coregistered
using a scheme that involves a position-encoded pattern in

Fig. 2 Illustration of the IVIS Spectrum imaging system is used for bio-
luminescence tomography (BLT).
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the animal restraining bed used for imaging and transport of the
anesthetized animal. In our studies, the typical resolution and
dosage of a single CT scan are around 100 μm and 8 mgray,
respectively.

4 Experiments and Results
We performed a variety of phantom-based and in vivo studies to
assess the performance of the proposed optimized MLS-AART
in reconstructing luminescent inclusions. In phantom-based
experiments, the optical properties are homogeneous and
their precise values are known. As a result, these studies are suit-
able for exploring how the performance of the proposed tech-
nique is affected by errors only arising from experimental
settings (detector noise, calibration errors, etc.). Verifiable in
vivo studies are also used as a highly effective test bed for
the proposed reconstruction algorithm as they include all

types of the errors and noise contamination present in biolumi-
nescence studies. We use two categories of in vivo luminescent
implant studies: (1) fixed-flux radioluminescent implant studies
suitable for flux reconstruction validation and (2) sizeable phos-
phorescent implant studies suitable for depth, flux, volume, and
shape reconstruction of differently shaped inclusions.
Altogether, these studies provide a comprehensive and varied
pool of datasets that can reveal different aspects of the perfor-
mance of the proposed MLS-AART.

4.1 Phantom-Based Studies

We utilize a mouse-shaped phantom, as shown in Fig. 3(a),
made of polyurethane material that includes scattering particles
and absorbing material to mimic the optical properties of bio-
logical tissue.30 The phantom is about 9 cm long, 4 cm wide and

Fig. 3 (a) Mouse-shaped phantom made of polyurethane material with scattering and absorptive pigments to mimic tissue optical properties. This
phantom has rod-shaped hollow regions to house light sources of cylindrical shapes. Tissue phantom experimental studies: (b) data from disk-shaped
source inside XPM phantom and 3-D reconstruction using MLS-AART. (c) Data from rod-shaped source inside XPM phantom and 3-D reconstruction
using MLS-AART.
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2.2 cm high. The mouse-shaped phantoms have hollow regions
of different shapes to house light-emitting objects. To mimic the
bioluminescence deep inside small animals, optically charged
phosphorescent beads were placed inside the phantoms. The
two phantom experiments presented in this work comprise of
(1) a phosphorescent rod and (2) a phosphorescent disk placed
inside phantoms and imaged by the IVIS® Spectrum. Emission
properties, flux calibration, and other details regarding the phos-
phorescent beads used in our experiments are discussed in detail
in the Appendix. As depicted in Fig. 3(b) and 3(c), filtered mul-
tispectral images were acquired at wavelengths of 560, 580, 600,
620, and 640 nm at an FOVof 13.4 deg with a binning factor of
8 and average exposure time of 15 s∕image. The 3-D recon-
structions were performed on a 3-D grid with 1 mm3 cubic vox-
els using the proposed optimized MLS-AART as shown in
Fig. 3(b) and 3(c). The 3-D reconstructions visually match
the phosphorescent inclusions while errors in reconstructed
flux average around 9% and errors in reconstructed depth aver-
age around 12% for the phantom studies.

4.2 In Vivo Radioluminescent Implant Studies:
Quantification Validation

In the first category of the in vivo experiments, calibrated radio-
luminescent tritium-filled glass beads are implanted surgically at
fixed locations in live mice under anesthesia.6,31 With a diameter
of around 1 mm and a length of 5 mm, the barrel-shaped beads
maintain a fixed radiant flux of 3.6 × 1010 photons∕s.

Four tritium bead experiments are presented in this paper for
in vivo validation of the proposed MLS-AART as depicted in
Fig. 4: (1) two beads implanted 2 mm deep in the pelvic fat
region of a nu/nu mouse and imaged on the ventral side,
(2) two beads implanted 4.5 and 5.9 mm deep in left and
right thighs of a nu/nu mouse, respectively, and imaged on
the dorsal side, (3) two beads implanted 4 mm deep in the
left and right thighs of a nu/nu mouse and imaged on the ventral
side, and (4) one tritium bead implanted 3 mm deep in the scruff
region of a nu/nu mouse and imaged on the dorsal side. All cases
were imaged at wavelengths of 560, 580, 600, 620, and 640 nm
at an FOV of 12.6 deg with a binning factor of 8 and average
exposure time of 1 s∕image. Structured light analysis was per-
formed to render the mouse boundary visible to the camera lens.
While no a priori information regarding the shape, size, or posi-
tion of the implants is used by the reconstruction algorithm, the
volume over which the reconstruction is performed is limited to
the 3-D space laterally bounded by the coordinates of the data
points used by the algorithm.

3-D reconstructions are performed for the four in vivo experi-
ments described above on a 3-D grid with 1 mm3 cubic voxels
using MLS-AART as shown in Fig. 4. The reconstructed inclu-
sions are small in size and have spherical or cylindrical shapes as
expected. The error in the reconstructed depth averages around
−6%, and the error in the reconstructed flux averages around
3.5% for these studies. Hence, there is good agreement between
the tritium bead shapes, flux, and depth and the corresponding
reconstructions. In Fig. 4(c), the fit between the measured data
and the simulated data from the reconstruction in Fig. 4(b) is
shown. Despite the presence of optical heterogeneities in the
organs of the nu/nu mouse imaged in this experiment, the
data simulated from the reconstructed sources match the mea-
sured data very well. The good data fit further demonstrates the
validity of the homogeneous model used in this work.

4.3 In Vivo Phosphorescent Implant Studies: X-Ray
CT Validation

While tritium beads are useful models of in vivo point sources,
they do not allow for validation of shape reconstruction in a
more extended geometry. To accomplish this, we use sizeable
phosphorescent beads of various shapes implanted at different
depths in live nu/nu mice. The phosphorescent material
employed in the implants is copper-doped zinc sulfide
(ZnS∶Cu), which is used extensively in glow-in-the-dark
paint.32 ZnS∶Cu phosphorescence emission, which is the result
of optically excited electrons decaying between Cu impurity
states, has a relatively slow decay and hence a long life-time
which makes it particularly attractive to our in vivo implant stud-
ies. Meanwhile, ZnS∶Cu has higher x-ray opacity compared to
the organs and soft tissue surrounding it when implanted in
small animals. Therefore, these implants provide high contrast
in x-ray CT imaging, allowing them to be localized in the 3-D
CT image. The CT map of the ZnS∶Cu inclusions is used as a
reference for validation of the 3-D bioluminescence reconstruc-
tions. Depth and volume of ZnS∶Cu implants are obtained from
the 3-D CT images. The reconstructed ZnS∶Cumaps from x-ray
CT are coregistered with the 3-D reconstructions from optical
imaging for visual assessment. The ZnS∶Cu beads used in
the implant studies, their flux decay, and their emission spec-
trum curves are depicted in Fig. 5. Details regarding the calibra-
tion of the flux of the ZnS∶Cu implants are described in the
Appendix.

After optical imaging is performed, the anesthetized mouse is
directly transported to and scanned by the x-ray CT system
where a 3-D CT map of the phosphorescent implant is obtained.
Four ZnS∶Cu in vivo studies, as shown in Figs. 6 and 7, are
performed: (1) a sizeable ZnS∶Cu ring, about 6 mm in diameter,
is implanted 4 mm deep in the intestines of a nu/nu mouse and
imaged at 580, 600, 620, 640, 660 nm and also scanned by the
CT system as depicted in Fig. 6(a) and 6(b); (2) a sizeable
ZnS∶Cu disk is implanted 4 mm deep in the intestines of a
nu/nu mouse whose CT map is depicted in Fig. 7(a); (3) two
ZnS∶Cu cylinders are implanted 4 mm deep and 6 mm apart
in the intestines of a nu/nu mouse whose CT map is depicted
in Fig. 7(d); and (4) a ZnS∶Cu cylinder and a ZnS:Cu elbow
are implanted 5.6 and 5.1 mm deep in the left and right thighs
of a nu/nu mouse, respectively, whose CT map is depicted in
Fig. 7(g). For all cases, the imaging is performed with an
FOV of 13 deg, a binning factor of 8, and average exposure
time of 3 s∕image.

Three-dimensional reconstructions of the ZnS∶Cu implant
beads from bioluminescence imaging are performed on a 3-D
grid with 1 mm3 cubic voxels using MLS-AART as depicted
in Figs. 6(c), 7(b), 7(e), and 7(h). Also the coregistered overlaid
optical/CT reconstructions are depicted in Figs. 6(d), 7(c), 7(f),
and 7(i). As shown in Figs. 6 and 7, the reconstructed inclusions
match the shape of the implants visually. The reconstructed
depth and flux for the ZnS∶Cu experiments have an average
error of only 1.2% and 3%, respectively, which further validate
the robustness and unbiased nature of MLS-AART reconstruc-
tions. Also, as depicted in Fig. 6(e), there is a good fit between
the measured and simulated data for the ring-shaped implant
study that illustrates the validity of approximations used for opti-
cal properties in this work.
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Fig. 4 In vivo studies for flux quantification of radioluminescent implants in nu/nu mice: (a) ventral view data from two tritium beads implanted in
pelvic fat region of a nu/nu mouse;(b) reconstruction of the pelvic fat implants using MLS-AART;(c) data fidelity or fit between simulated from recon-
structed sources and original data;(d) reconstruction using MLS-AART for dorsal data from two tritium beads implanted in thighs of a nu/nu mouse;
(e) reconstruction using MLS-AART for ventral data from two tritium beads implanted in thighs of a nu/nu mouse; and (f) reconstruction for dorsal data
from a tritium bead implanted in the scruff region of a nu/nu mouse.
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5 Discussion and Conclusions
Reconstruction algorithms are an integral part of BLT systems
and are required to obtain quantitative source location, size, and
flux. Considering the ill-posed nature of the BLT inverse prob-
lem, the accuracy and computational efficiency of these algo-
rithms present significant challenges. These algorithms must
be robust against errors and noise to achieve stable performance.
Techniques such as regularization methods add robustness to
reconstruction algorithms by limiting the solution space. This
can limit the optimal performance of the algorithms to certain
scenarios that make up only a subset of the solution space.
Robust yet unbiased algorithms are advantageous to biased
algorithms as their performance has the same level of accuracy
for all BLT scenarios. Furthermore, the speed of convergence

and memory efficiency of reconstruction algorithms must be
optimized to avoid excessive computational complexity.
MLS-AART is a fast robust unbiased row-action numerical
solver that brings all of the desired characteristics together. In
this paper, MLS-AART was applied to 3-D reconstruction in
BLT. The algorithm relies upon iterative projections onto hyper-
planes of the linear system of equations relating the biolumines-
cence distribution to the data. MLS-AART is memory efficient
and fast because it only acts on one equation at a time and proc-
esses vectors and diagonal matrices. For a system of equations
withN columns (voxels) andM rows (data points), the computa-
tional complexity of MLS-AART is O(MN) which theoretically
outperforms least-squares based methods.33 Also, unlike regu-
larization-based methods, MLS-AART is unbiased in nature

Fig. 5 Phosphorescent copper-doped zinc sulfide beads made as in vivo implants: (a) elbow shaped, (b) disk shaped of different sizes, and (c) ring
shaped. (d) Blue curve (circles) shows the decay of phosphorescent emission intensity versus time for a ZnS∶Cu bead. Green curve (plus-signs)
shows the inverse square root of the same emission intensity versus time which has a linear behavior. (e) Emission spectrum of ZnS∶Cu peaks around
540 nm.
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Fig. 6 In vivo dual-modality optical/CT imaging experiment with a ZnS∶Cu phosphorescent ring implanted in the intestines of a nu/nu
mouse.(a) Ventral view data from the ring-shaped ZnS∶Cu implant in the intestines of the nu/nu mouse. (b) X-ray CT 3-D map of the mouse with
ring-shaped ZnS∶Cu implant. (c) BLT 3-D reconstruction for ring-shaped implant. (d) Coregistered overlaid bioluminescence and CT reconstruction
for ring-shaped implant. (e) Data fit between the acquired data and simulated data from reconstructed sources for ring-shaped implant.
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Fig. 7 Three in vivo studies with CT validation of ZnS∶Cu phosphorescent implants in nu/nu mice.(a) X-ray CT 3-D map of disk-shaped ZnS∶Cu
implant. (b) BLT 3-D reconstruction of the disk-shaped implant. (c) Coregistered overlaid bioluminescence and CT reconstruction for disk-shaped
implant. (d) X-ray CT 3-D map of cylinder-shaped ZnS∶Cu implants. (e) BLT 3-D reconstruction of the cylinder-shaped implants. (f) Coregistered
overlaid bioluminescence and CT reconstruction for cylinder-shaped implants. (g) X-ray CT 3-D map of elbow-shaped and cylinder-shaped
ZnS∶Cu implants. (h) BLT 3-D reconstruction of the elbow-shaped and cylinder-shaped implants. (i) Coregistered overlaid bioluminescence and
CT reconstruction for elbow-shaped and cylinder-shaped implants.
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as it does not favor solutions of certain forms. In a well-posed
problem, MLS-AART would converge to the minimum-norm
least-squares solution.

The accuracy of reconstructions of luminescent inclusions
can be best assessed quantitatively based on the accuracy of
depth estimation, flux quantification, and volume reconstruc-
tion. Since bioluminescent imaging applications and scenarios
are varied in many aspects, a multitude of verifiable studies are
required for a thorough statistical analysis of the performance of
a reconstruction algorithm. In this work, we presented a total of
10 verifiable BLT studies and experiments that included 15
luminescent inclusions and implants. Therefore, a total of 15
data points are available in this work for statistical study of
the error in depth, flux, and volume reconstruction by MLS-
AART. The errors associated with MLS-AART reconstructions
are summarized in the scatter plots of Fig. 8. The total average
error in flux quantification by MLS-AART for the presented
studies and experiments is 1.6% with a standard deviation of
18% as represented in Fig. 8(a). The average errors in flux quan-
tification for phantom and in vivo studies are −9.5% and 3.3%
with standard deviations of 2% and 19%, respectively. The con-
siderably low mean and relatively low standard deviation in flux
quantification error demonstrate that statistically, as predicted by
theory,18,19,26 MLS-AART has a low-biased to unbiased perfor-
mance with a reasonably low error variance. The average error in
depth estimation by MLS-AART and the corresponding stan-
dard deviation are −2.3% and 21.4%, respectively. For the phan-
tom-based and in vivo studies, the average errors in depth
estimation are 8.5% and −4% with standard deviations of
17% and 22%, respectively. The flux quantification and
depth estimation errors are plotted in Fig. 8(a); the red plus
signs represent the phantom-based studies, and the blue cross-
marks represent the in vivo studies. By visual inspection of
Fig. 8(a), the unbiased distribution of the flux and depth errors
is evident. Unlike regularized (Bayesian) techniques, where
noticeable bias exists in reported results such as in Feng et
al.34 in reconstructed flux and depth (reconstructed inclusions
are consistently deeper and possess higher flux compared to
actual), the reconstruction errors from MLS-AART are quanti-
tatively spread around zero with both positive and negative val-
ues. Also, as expected, the standard deviation of the depth and
flux error is higher in in vivo studies compared to phantom-
based studies. In phantoms, the homogeneous model is valid
and the optical properties are known unlike in vivo studies.
Nevertheless, the small relative increase in the standard
deviation of the error from phantom to in vivo studies shows
the robustness of MLS-AARTagainst errors with from by tissue
properties’ mismatch and heterogeneities.

While accuracy in depth and flux and visual match are the
most important metrics for assessing the quality of 3-D recon-
structions in BLT, we also study the error in reconstructed vol-
ume to add a quantitative aspect to the performance of the
algorithm in reconstructing the shape and geometry of the inclu-
sions. The average error in volume reconstruction by MLS-
AART is around 21% with a standard deviation of 70%. The
reconstructed volume errors are summarized in Fig. 8(b). The
volume reconstruction errors are higher compared to flux and
depth, as inaccuracies in the reconstructed volume are also
due to the removal of voxels with low flux values in the recon-
structed solutions as well as the discretization of the volume
with a 3-D grid.

Fig. 8 (a) Scatter plot of reconstructed depth and flux error for 15
bioluminescent inclusions in numerical and experimental studies.
(b) Scatter plot of reconstructed volume error and convergence time
of MLS-AART algorithm for the numerical and experimental studies.
(c) Bar plot of MLS-AART convergence time and ART convergence
time for the phantom and animal studies.
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Moreover, the required times for matrix/vector creation,
ordering, and sampling of data, and convergence of the
MLS-AART algorithm to the solution for each study, all imple-
mented in C++ on a dual-core processor machine, are plotted in
Fig. 8(b). The average required time is 19 s with double-inclu-
sion studies having longer convergence times than single-inclu-
sion studies. When conventional ART was applied to the
presented studies, it took an average of 47 s to converge.
Figure 8(c) provides a comparison between approximate conver-
gence times of MLS-AART and ART for the presented studies.
In our studies, ART required, on average, more than double the
time used by MLS-AART to converge to reasonable solutions,
especially in studies with sizeable multiple inclusion.

In summary, the statistical study of error in 3-D reconstruc-
tions from optimized MLS-AART indicates that the proposed
algorithm has an unbiased behavior and a low error variance.
Similar to minimum variance unbiased estimators in estimation
theory,35 the unbiased and low-variance nature of MLS-AART
makes it particularly useful for 3-D reconstructions in imaging
modalities with highly ill-conditioned inverse problems. As pre-
sented in this work, MLS-AARTovercomes the ill-posed nature
of the BLT problem, provides robust 3-D reconstructions with-
out limiting the solution space, and ensures stability in the sol-
ution without jeopardizing its accuracy. It was also shown to be
more computationally efficient and faster than conven-
tional ART.

In conclusion, we presented an optimized non-negative
MLS-AART algorithm suitable for 3-D reconstructions from
multispectral bioluminescence imaging data. The unbiased
low-variance performance of MLS-AART and its speedy con-
vergence were successfully demonstrated using statistical analy-
sis of error and convergence time in 15 reconstructed inclusions
from phantom-based and in vivo studies on various parts of
mouse body.

Appendix
In order to make the ZnS∶Cu phosphorescent implant beads,
powder-form ZnS∶Cu is mixed uniformly with epoxy hardener
and resin, and the mixture is poured into polyurethane molds.
The epoxy ZnS∶Cu mixture completely hardens after 24 h and
assumes the shape of its mold. Phosphorescent beads of various
shapes, as depicted in Fig. 5(a)–5(c), were made with this pro-
cedure. Once optically charged, the beads emit a green glow
whose power decays slowly. The decay of ZnS∶Cu phosphores-
cence emission intensity IðtÞ is best approximated as below:32,36

IðtÞ ¼ I0
ð1þ ktÞ2 ; (13)

where k represents a constant, and I0 is the initial intensity after
charging is completed. The accuracy of Eq. (13) in describing
the decay of the phosphorescent implants is pivotal to the pre-
cision of flux calibration in the ZnS∶Cu implant in vivo studies.
To examine the accuracy of Eq. (13), we tracked the flux emitted
by the ZnS∶Cu beads using IVIS® Spectrum flux quantification
capabilities. The blue curve in Fig. 5(d) represents the measured
flux intensity values. From Eq. (13), it follows that the inverse
square root of intensity is linear in time as below:

1ffiffiffiffiffiffiffi
IðtÞp ¼ 1ffiffiffiffi

I0
p þ

ffiffiffi
k

p
t: (14)

Therefore, the inverse square root of the measured flux inten-
sities should increase linearly with time. The nearly linear green
curve in Fig. 5(d) represents the inverse square root of the mea-
sured intensity. The linearity of this curve demonstrates the val-
idity of Eq. (14) and hence Eq. (13) in modeling the
phosphorescent decay of the ZnS∶Cu beads. Therefore using
the model formulated in Eq. (13), once the initial flux intensity
I0 of a charged-to-saturation ZnS∶Cu bead is known, the value
of its flux intensity can be calculated at later times as long as it
receives no optical excitation. The emission spectrum of
ZnS∶Cu peaks around 540 nm as depicted in Fig. 5(e), whereas
the excitation peak lies around 400 nm. For this reason, our
experiments show that near-infrared light has no or negligible
charging effect on ZnS∶Cu beads.
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