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Abstract. Cystoid macular edema (CME) and macular hole (MH) are the leading causes for visual loss in retinal
diseases. The volume of the CMEs can be an accurate predictor for visual prognosis. This paper presents an
automatic method to segment the CMEs from the abnormal retina with coexistence of MH in three-dimensional-
optical coherence tomography images. The proposed framework consists of preprocessing and CMEs segmen-
tation. The preprocessing part includes denoising, intraretinal layers segmentation and flattening, and MH and
vessel silhouettes exclusion. In the CMEs segmentation, a three-step strategy is applied. First, an AdaBoost
classifier trained with 57 features is employed to generate the initialization results. Second, an automated
shape-constrained graph cut algorithm is applied to obtain the refined results. Finally, cyst area information is
used to remove false positives (FPs). The method was evaluated on 19 eyes with coexistence of CMEs and MH
from 18 subjects. The true positive volume fraction, FP volume fraction, dice similarity coefficient, and accuracy
rate for CMEs segmentation were 81.0%� 7.8%, 0.80%� 0.63%, 80.9%� 5.7%, and 99.7%� 0.1%, respec-
tively. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.7.076014]
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1 Introduction
Optical coherence tomography (OCT) is becoming a mainstay
in ophthalmology as a noninvasive imaging technique for
human retina.1–4 OCT has been widely used in the diagnosis of
ocular diseases, such as macular edema (ME), macular hole
(MH), glaucoma, etc. The macula is located near the center of
the retina and is responsible for central, high-resolution, and
color vision. Some acute maculopathies may lead to the loss of
central vision and even blindness.5 MH is a full-thickness defect
of neurosensory retina involving the anatomic fovea which
severely affects central visual acuity.6 The overall incidence of
MH is ∼3.3 cases in 1000 in the United States.7 MH often pro-
gresses gradually and is common in people of age 60 and over.8

A person with MH may notice a slight distortion or blurriness in
straight-ahead vision. Cystoid macular edema (CME) occurs in
a wide variety of ocular diseases, such as diabetic retinopathy,
intraocular inflammation, and central or branch retinal vein
occlusion.9,10 If CME is untreated, the final result is the perma-
nent deterioration of the central vision. Figure 1 shows a B-scan
of the 3-D OCT image with CMEs and MH. Red curves show
the manual segmentation of CMEs and yellow arrow shows the
position of the MH. In clinical practice, if the CMEs andMH co-
occur, the CMEs usually surround the MH as in Fig. 1. It has
been proved that the volume of CMEs in the retina can be an
accurate predictor of visual acuity.10 Furthermore, the volume of
CMEs can lead to better metrics for making treatment protocols.

Therefore, automated methods for CMEs segmentation in the
3-D OCT images with coexistence of CMEs and MH have
urgent needs.

There are several previous studies focused on the segmenta-
tion of CMEs. Both semiautomated and automated methods
have been studied. The semiautomated methods rely on manual
initialization in each B-scan to quantify the volume of CMEs.
Kashani et al.11 used the OCTOR software to quantify the cys-
toid spaces in eyes. Fernández12 proposed a method that requires
the manual initialization of the snake and the fluid regions in
2-D OCT B-scans can be detected using a deformable model.
Zheng et al.13 developed a technique that utilized the computer-
ized segmentation combined with the minimal expert interaction
to quantify the volume of CMEs. Although the abovementioned
methods can detect the volume of CMEs accurately, they are
semiautomatic so that they are laborious and time-consuming.
Several automated methods have also been proposed which can
obtain satisfactory results. Wilkins et al.14 segmented the CMEs
in 3-D OCT images by thresholding and boundary tracing.
Roychowdhury et al.15 localized cysts in diabetic macular
edema (DME) by iterative high-pass filtering with further analy-
sis using solidity, mean, and maximum pixel value as decisive
features. Sisternes et al.16 segmented the cysts in 3-D OCT
images using lasso regularization-based regression and adaptive
thresholding. Esmaeili et al.17 proposed a 3-D curvelet transform-
based dictionary learning method for automatic segmentation of
cysts. Girish et al.18 proposed a marker-controlled watershed
transform-based method to segment cysts on 2-D OCT B-scan
images. Venhuizen et al.19 proposed a multiscale convolutional
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neural network-based method to predict if an image voxel
belongs to a cyst. Wang et al.20 proposed a fuzzy level set-
based method to automatically segment the intraretinal fluid and
subretinal fluid in DME eyes using structural OCT and angiog-
raphy OCT data. However, these methods may fail when the
MH and CMEs coexist. There may be two reasons. First, most
of the CMEs segmentation methods in OCT images are based on
the intensity differences between CMEs and the other tissues of
retina, and the intensity of MH is similar to the one of CMEs, so
MH may be very likely segmented as a false positive (FP)
region. Second, some of the above methods, e.g., Sisternes
et al.16 use the position information about the fovea center
because CMEs usually surround the fovea. When MH co-occurs,
the normal shape of retina is altered and the correct position of

the fovea center cannot be detected. This may be another cause
of FPs. Therefore, new methods that can fully segment the
CMEs in the retina with MH are urgently needed.

The automatic segmentation of the CMEs coexisting with the
MH is a challenging problem. The key difficulties lie in two
aspects: (1) MH is a great disturbance for CMEs segmentation,
and MH cannot be easily segmented because the shapes of the
MHs may be irregular and even distorted by the detached tis-
sues, such as posterior vitreous detachment.21 (2) The number
and size of CMEs are always uncertain, making it difficult to
quantify the volume of the cysts.

In this paper, we propose an automated framework for intra-
retinal CME segmentation in 3-D OCT images with MH. The
proposed method consists of two steps: preprocessing and CMEs
segmentation. In the preprocessing, the operations including sig-
nal-to-noise (SNR)-balancing, 3-D curvature anisotropic diffu-
sion filtering, layer segmentation and flattening, and MH and
vessel silhouettes exclusion, are applied to the OCT scans. In the
CMEs segmentation, first, an AdaBoost classifier with 57 fea-
tures is employed for the coarse segmentation. Second, the mor-
phological dilation and erosion operations are used to generate
the foreground (CMEs) seeds and background seeds for the fol-
lowing graph cut-based segmentation method. Third, an auto-
matic shape-constrained graph cut algorithm is applied for
the fine segmentation. Finally, the FPs are eliminated according
to the CMEs area-related information. The flowchart of the pro-
posed method is shown in Fig. 2.

2 Materials and Methods

2.1 Subjects and Data Collection

The collection and analysis of image data were approved by the
Institutional Review Board of Joint Shantou International Eye
Center (JSIEC), Shantou University and the Chinese University
of Hong Kong and adhered to the tenets of the Declaration of
Helsinki. Because of its retrospective nature, informed consent
was not required from subjects. The medical records and OCT
database of JSIEC from December 2008 to 2013 were searched
and reviewed.

Totally, 19 eyes with coexistence of CMEs and MH from 18
subjects were included and underwent macular-centered (6 ×
6 mm) SD-OCT scan (Topcon 3-D OCT-1000, 512 × 32 ×
480 voxels, 11.72 × 187.5 × 3.50 μm3, 512 × 64 × 480 voxels,
11.72 × 93.75 × 3.50 μm3, or 512 × 128 × 480 voxels, 11.72 ×
46.88 × 3.50 μm3). There were 8 males and 10 females with the
mean age of 45.6� 19.7 years (range: 9 to 66 years). Subjects
with other eye diseases were excluded except for refractive error
<¼ �6 diopter. The raw, uncompressed data were exported
from the OCT machine as “.fds” format for analysis.

2.2 Ground Truth Delineation

All the CME regions in the 3-D OCT images were manually
marked slice by slice by two observers independently, under
the directions of an experienced ophthalmologist. The marked
results marked are considered as the ground truth one (GT1) and
ground truth two (GT2), respectively.

2.3 Preprocessing

The OCT volume is first segmented into 10 layers by 11 surfaces
using the multiscale 3-D graph-search approach.22–25 To remove
the image deformation caused by eye movement, the 3-D OCT

Fig. 1 Example for the coexistence of MH and CMEs in a B-scan of
optical coherence tomography (X − Z plane).

Fig. 2 The flowchart of the proposed method.
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volume is flattened based on the retinal pigment epithelium (sur-
face 11).26–28 The inner retina is defined as the region between
surfaces 1 and 6, and the outer retina refers to the region between
surfaces 7 and 11. As the CMEs are mainly located in the inner
retina, the inner retina is our initial volume of interest (VOI). So
the precise segmentation of surfaces 1 and 6 is necessary. As
shown in Fig. 3(b), surface 6 is well detected by the 3-D graph-
search-based approach except the region around the CMEs, due
to the coexistence of CMEs and MH. Surface 6 is then adjusted
by replacing it with the lower boundary of its convex hull.29

Figure 3(c) shows the results after adjustment.
The OCT images acquired from different patients have differ-

ent intensity profiles, which will affect the CMEs segmentation.
In this paper, a SNR balancing14 is used on each B-scan to obtain
uniform intensity profile. The noise level N is taken as the mean
intensity within a 20 × 20window in the background. The signal
level S is taken as the mean intensity within a 20 × 20window in
the region between surfaces 1 and 6. The image data are SNR
balanced using the equation ISNR ¼ ðIO − NÞ∕ðS − NÞ, where
IO is the original intensity value and ISNR is the final intensity
value.

Speckle noise is the main quality-degrading factor in OCT
scans. The denoising method applied to OCT images should
be efficient for speckle noise suppression while maintaining
edge-like features. A 3-D curvature anisotropic diffusion filter
is adopted in this paper. This filter performs anisotropic diffu-
sion using the modified curvature diffusion equation (MCDE),30

which can efficiently enhance the contrast of edges. The MCDE
equation is given as

EQ-TARGET;temp:intralink-;e001;63;433ft ¼ j∇fj∇ · cðj∇fjÞ ∇f
j∇fj ; (1)

where f denotes the input image, c is the conductance function.
The conductance modified curvature term is ∇ · ∇f

j∇fj. Figure 4(b)

shows a B-scan image after the 3-D curvature anisotropic dif-
fusion filtering, in which the speckle noise is effectively
reduced.

2.4 Macular Hole Detection and Vessel Silhouettes
Exclusion

Because the MH and vessel silhouettes have similar intensity
value to the CMEs, it is necessary to isolate the MH and vessel
silhouettes before extracting the CMEs volumetric feature. This
procedure can reduce the volume of data to be analyzed and
reduce the FPs.

The likelihood that a point belongs to an MH footprint can be
calculated from the 2-D projection image in X–Y plane.31 Here,
a 2-D projection image is generated by averaging the OCT sub-
volume between surfaces 1 and 6 in the z-direction, as shown in
Fig. 5(a). Then a footprint of MH is defined by thresholding
[threshold value ¼ 33, in range (0, 255)]. The initial result is
shown in Fig. 5(b). Because the footprint of MH usually locates
around the center of the 2-D projection image, the falsely
detected regions nearby the border, caused by signal attenuation,
are discarded. The final result of the MH footprint is shown in
Fig. 5(c).

With the detected MH footprint, an improved region-grow-
ing method is applied to delineate the MH in the 3-D OCT
image. First, the seeds for region growing are determined based
on the following criteria:

1. belonging to the A-scans indicated by the 2-D MH
footprint,

2. between surfaces 1 and 6,

3. with intensity smaller than mMH þ stdMH, in which
mMH and stdMH are the statistical mean intensity and
standard deviation of the MH region, respectively.

Fig. 3 Illustration of layer segmentation and adjustment. (a) One slice from the original 3-D OCT image.
(b) Layer segmentation results of surface 1 (red) and surface 6 (purple) by the graph-search method.
(c) Layer segmentation after surface 6 adjustment.

Fig. 4 SNR balancing results followed by a 3-D curvature anisotropic diffusion filtering. (a) Original B-
scan and (b) denoised B-scan.
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Second, with the detected seeds, the region-growing method
becomes automatic. The neighbors of the seeds are searched and
determined whether they belong to the object region according
to intensity.

The CMEs segmentation results may occasionally include
the low-intensity regions, such as vessel silhouettes, which are
shown in Fig. 6. The arrows indicate vessel silhouettes formed
by the vasculature of the retina. The green line in (b) indicates
the location of the slice shown in (a) on the projection image of
the retina. The vessel silhouettes should be detected and
excluded before the CMEs segmentation. Here, the vessel sil-
houettes are effectively detected using a vessel detector.32 First,
a 2-D projection image [Fig. 6(b)] is calculated by averaging the
intensities of pixels in the outer retina (from surfaces 7 to 12) in

the z-direction, as the vessel silhouettes have excellent contrast
only in the outer retina. Then the vessel silhouettes are seg-
mented from the projection image by a KNN classifier with
31 features. Finally, if the voxels in the inner retina regions
have the same x, y locations with the vessel silhouettes, they are
excluded from the VOI.

At last, the subvolume of the retina between surfaces 1 and 6
without the MH and the vessel silhouettes is defined as our
real VOI.

2.5 AdaBoost Classifier-Based Coarse Cystoid
Macular Edemas Segmentation

After preprocessing, 57 features are extracted for each voxel in
the VOI, including textural and structural information of the
image. Table 1 shows the list of features. Features 1 to 8 describe
the local texture of the image. The first 6 features were defined
in our previous research.33 The skewness and kurtosis are used
to describe the statistical distribution characteristics of the inten-
sity values in the VOI. Features 9 to 57 describe the local image
structure. In order to speed up the feature extraction phase, the
training images are sampled which yielded images of 256 ×
240 × 32 voxels. Then, an AdaBoost classifier is applied for the
coarse segmentation of CMEs in the VOI. AdaBoost is an iter-
ative boosting algorithm constructing a strong classifier as a lin-
ear combination of weak classifiers.34,35 The algorithm takes the
set of ðx1; y1Þ; ðx2; y2Þ; : : : ; ðxn; ynÞ as the input, where xiði ¼
1;2; : : : ; nÞ is am-dimensional feature, and yiði ¼ 1;2; : : : ; nÞ is
the corresponding label, set as 1 or 0 for cyst or noncyst voxels.
In this paper, m ¼ 57.

The coarsely detected CME regions are processed by the
morphological dilation and erosion operations, to generate the
object and background seeds for the following graph cut-based
fine CMEs segmentation.

2.6 Constrained Graph Cut-Based Fine Cystoid
Macular Edemas Segmentation

The graph cut algorithm has been widely used for the image
segmentation in recent years.36–40 The energy function of tradi-
tional graph cut includes a regional term and boundary term.
Obtaining seeds is an important step of the graph cut algorithm.

Fig. 6 Vessel silhouettes appear as low-intensity regions which may cause FPs. (a) The arrows indicate
vessel silhouettes on a B-scan image. (b) The green line indicates the location of the slice shown in (a) on
the projection image.

Fig. 5 MH footprint detection. (a) The 2-D projection image (X–Y
plane) from surfaces 1 to 6. (b) Rough detection results by threshold-
ing. (c) MH footprint detection result after removing FPs.

Journal of Biomedical Optics 076014-4 July 2017 • Vol. 22(7)

Zhu et al.: Automated framework for intraretinal cystoid macular edema segmentation. . .



With the given seeds generated in the coarse segmentation step,
an automated shape-constrained graph cut method is applied for
the final fine segmentation.41 In the graph cut algorithm, the
overall problem can be formulated as an energy minimization
problem.42 The energy function of the shape-constrained graph
cut is defined as

EQ-TARGET;temp:intralink-;e002;63;400EðlÞ ¼
X
p∈P

½αDpðlpÞ þ βSpðlpÞ� þ
X

p∈P;q∈Np

γBp;qðlp; lqÞ;

(2)

where α, β, γ denote the weights for the data term, shape term,
and boundary term, respectively. They satisfy αþ β þ γ ¼ 1.
The data term is defined as a probability of the voxel to be the
object or not. The boundary term is defined on the gradient of
the intensity between the adjacent voxels. They are defined as
follows:

EQ-TARGET;temp:intralink-;e003;63;277DpðlpÞ ¼
�
− ln PðIpjOÞ; if lp is object label
− ln PðIpjBÞ; if lp is background label

;

(3)

EQ-TARGET;temp:intralink-;e004;63;219Bp;qðlp; lqÞ ¼ exp

�
−
ðIp − IqÞ2

2σ2

�
1

dðp; qÞ δðlp; lqÞ; (4)

and

EQ-TARGET;temp:intralink-;e005;63;168δðlp; lqÞ ¼
�
0; if lp ≠ lq
1; otherwise

; (5)

where Ip is the intensity of the voxel p and lp is the label
assigned to the voxel p. PðIpjOÞ and PðIpjBÞ represent the
probabilities that the voxel p belongs to CME and non-CME,
respectively. They can be calculated from the histogram of the
CME and non-CME voxels during the training phase. dðp; qÞ is

the distance between voxel p and q. σ is the standard deviation
of the voxel intensity.

The shape term is defined as,

EQ-TARGET;temp:intralink-;e006;326;719SpðlpÞ ¼ 1 − exp

�
−
dðp;CMEÞ

r

�
; (6)

where dðp;CMEÞ is the distance from voxel p to the coarse
CMEs segmentation result in the AdaBoost classification. r is
the radius of a circle that can just enclose the CMEs. The shape-
constrained graph cut is implemented on the VOI and the CMEs
region can be refined.

2.7 False Positive Rejection

The CMEs FPs may be caused by the noise and the retinal
region with low intensity value. The connected component
detection based on morphological operations is used to reject the
FPs. If the area of the detected connected region is smaller than
6 pixels, it will be discarded as an FP.

3 Results
Leave-one-out cross-validation strategy was used for training
and testing the AdaBoost classifier and the parameters used
in the graph cut. To objectively evaluate the CME volume seg-
mentation results, the true positive volume fraction (TPVF), FP
volume fraction (FPVF), accuracy rate (ACC), and dice similar-
ity coefficient (DSC) are used in the experiment.43,44 TPVF indi-
cates the rate of correctly detected volume compared with the
reference standard. FPVF denotes the fraction of incorrectly
detected volume in the true negative volume. ACC indicates the
detection ACC. DSC is used for comparing the similarity
between the automated segmentation results and the ground
truth. The definitions are defined as follows:

EQ-TARGET;temp:intralink-;e007;326;379TPVF ¼ jVTPj
jVGT j

; (7)

EQ-TARGET;temp:intralink-;e008;326;336FPVF ¼ jVFPj
jVj − jVGT j

; (8)

EQ-TARGET;temp:intralink-;e009;326;297ACC ¼ jVTPj þ jVTN j
jVj ; (9)

EQ-TARGET;temp:intralink-;e010;326;258DSC ¼ 2 ×
jVTPj

jVTPj þ jVFPj þ jVGT j
; (10)

Table 1 List of the features used in the AdaBoost classifier.

Feature number Feature description

1 Max–min normalized intensity

2 to 3 Block mean intensity and standard deviation
(block size: 3 × 3 × 3)

4 to 6 Gradient in three directions

7 to 8 Skewness and kurtosis

9 to 13 First eigenvalues of the Hessian matrix at
scales ¼ 1, 3, 6, 9, 14

14 to 18 Second eigenvalues of the Hessian matrix at
scales ¼ 1, 3, 6, 9, 14

19 to 23 Third eigenvalues of the Hessian matrix at
scales ¼ 1, 3, 6, 9, 14

24 to 53 Gaussian filter banks of zero, first, and second
orders with derivatives at scales ¼ 2, 4, 8

54 to 57 Occurrence matrix contrast, correlation, energy,
and homogeneity

Table 2 Mean� standard deviation comparison of the CMEs seg-
mentation results.

TPVF (%) FPVF (%) ACC (%) DSC (%)

Ref. 14 72.5� 17.6 8.3� 5.6 82.5� 3.2 71.2� 6.8

Ref. 16 90.5� 12.3 8.3� 5.9 91.9� 5.0 53.5� 11.0

AdaBoost-only 79.5� 8.7 0.80� 0.42 98.1� 0.6 79.1� 7.2

Proposed
method

81.0� 7.8 0.80� 0.63 99.7� 0.1 80.9� 5.7
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where j · j denotes volume, VTP denotes the true positive set,
VFP denotes the FP set, VTN denotes the true negative set,
and VFN denotes the false negative set. VGT denotes the ground
truth, and V denotes the VOI.

As shown in Table 2, the mean of TPVF, FPVF, ACC, and
DSC for the proposed method was 81.0%, 0.80%, 99.7%, and
80.9%, respectively. The proposed method was compared with
the coarse CMEs segmentation based only on the AdaBoost

Fig. 7 Experimental results for five examples of CMEs segmentation. The first column shows the original
image, the second column shows the segmentation results of AdaBoost classifier, the third column
shows the final fine segmentation results, the fourth column shows the segmentation results by 2-D
thresholding segmentation method proposed in Ref. 14, the fifth column shows the segmentation results
by lasso regularization-based regression method proposed in Ref. 16, and the last column shows the
GT1.

Fig. 8 Statistical correlation analysis between the automated method, GT1 and GT2. (a) The linear
regression analysis results between GT1 and the automatic method. (b) The linear regression analysis
results between GT2 and the automatic method. (c) The linear regression analysis results between the
automatic method and the average of GT1 and GT2. (d) The linear regression analysis results between
GT1 and GT2.
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algorithm, the 2-D thresholding segmentation method proposed
in Ref. 14, and the lasso regularization-based regression
method proposed in Ref. 16. Compared to the results by the
AdaBoost algorithm, the DSC of the proposed method increased
slightly (with a p-value of 0.061 in the paired t-test) and the

corresponding ACC showed a significant improvement (with
a p-value <0.0001). The results of the proposed 3-D method
showed a more significant improvement compared to the results
of the 2-D thresholding segmentation proposed in Ref. 14.
Though the average TPVF of the regression method proposed
in Ref. 16 is higher than the proposed method, its FPVF, ACC,
and DSC are much poorer than the ones of the proposed method,
which is caused by large FP regions.

Figure 7 shows five examples of CMEs segmentation results.
The first column shows the original image, the second column
shows the coarse segmentation results of the AdaBoost classi-
fier, the third column shows the final fine segmentation results,
the fourth column shows the segmentation results by 2-D thresh-
olding segmentationmethod proposed in Ref. 14, the fifth column
shows the segmentation results by lasso regularization-based
regression method proposed in Ref. 16, and the last column shows
the GT1. Note the improvements between columns 2 and 3. There
are FPs caused by the presence of MH in columns 3 and 4.

Figure 8 shows the linear regression analysis results for the
GT1 versus the GT2. The correlation R2 between the proposed
method and GT1, GT2, and the average of GT1 and GT2 were

Fig. 9 Bar plot for CMEs volume comparison.

Fig. 10 Bland–Altman plot of CME volume. (a) Bland–Altman plot for auto versus GT1. (b) Bland–Altman
plot for auto versus GT2. (c) Bland–Altman plot for GT1 versus GT2.

Fig. 11 Segmentation results for CMEs with unpredictable locations and ambiguous boundaries. The
first column shows the original image, the second column shows the segmentation results of the pro-
posed method, and the third column shows the GT1.
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0.9794, 0.9668, and 0.9812, respectively. The correlation coef-
ficient between GT1 and GT2 was 0.9677, which indicated the
two ground truths are very consistent.

Figure 9 shows the CMEs volume of 19 subjects by three
methods. Bland and Altman plots were used to evaluate the
agreement between two different methods. The Bland–Altman
plots for the proposed method (auto) versus the GT1 and the
GT2 are shown in Fig. 10. The points were mostly located in
the 95% limits of agreement (�1.96 standard deviation of the
difference), which indicated good agreement between the pro-
posed method and GT1 and GT2.

4 Discussion and Conclusions
Automated segmentation of CMEs in 3-D OCT images is a chal-
lenging task due to the variation of CMEs’ shape and size and
the textural similarity between the foreground and background.
The experiment results showed the good performance of the pro-
posed method. The FPVF of the proposed method was low,
which may be due to several facts: (1) compared with the VOI
region between surfaces 1 and 6, the volume of the CMEs is
very small; (2) the size for FP exclusion in the postprocessing
is very effective. The CMEs can be effectively segmented by the
proposed method. With coexistence of MH, both the 2-D thresh-
olding method proposed in Ref. 14 and the lasso regularization-
based regression method proposed in Ref. 16 fail to exclude the
MH effectively, because the intensity value is similar between
MH and CMEs and neither of these two methods uses the spatial
and shape information about the MH.

Our contributions are summarized as follows:

• This is a method for the automated 3-D CMEs volume
segmentation in the retina with coexistence of MH.

• The proposed method can effectively detect CMEs with
unpredictable locations and ambiguous boundaries (as
shown in Fig. 11).

• An improved efficient region-growing method is pro-
posed to delineate the MH in 3-D OCT image.

• The seeds used in the shape-constrained graph cut algo-
rithm are generated automatically and the proposed method
is a fully automated framework.

However, there are still some limitations in our method.
(1) The proposed method can accurately detect a big cyst, but
it is not sensitive to very small cysts. This will be improved in
the near future. (2) The final CMEs detection results largely rely
on the preprocessed results. If the MH exclusion result is incor-
rect, the final segmentation results may include falsely detected
regions in MH. A better algorithm for MH detection is needed.
(3) A larger dataset will be explored in the near future for further
validation of the proposed method.

In conclusion, an effective approach is proposed to segment
the CMEs in the 3-D OCT images with coexistence of MH. This
may provide a clinically useful tool to help ophthalmologists
with disease diagnosis.
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