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ABSTRACT. Significance: Ultrasound (US)-guided diffuse optical tomography (DOT) has dem-
onstrated great potential for breast cancer diagnosis in which real-time or near real-
time diagnosis with high accuracy is desired.

Aim: We aim to use US-guided DOT to achieve an automated, fast, and accurate
classification of breast lesions.

Approach: We propose a two-stage classification strategy with deep learning. In
the first stage, US images and histograms created from DOT perturbation measure-
ments are combined to predict benign lesions. Then the non-benign suspicious
lesions are passed through to the second stage, which combine US image features,
DOT histogram features, and 3D DOT reconstructed images for final diagnosis.

Results: The first stage alone identified 73.0% of benign cases without image
reconstruction. In distinguishing between benign and malignant breast lesions in
patient data, the two-stage classification approach achieved an area under the
receiver operating characteristic curve of 0.946, outperforming the diagnoses of all
single-modality models and of a single-stage classification model that combines all
US images, DOT histogram, and imaging features.

Conclusions: The proposed two-stage classification strategy achieves better clas-
sification accuracy than single-modality-only models and a single-stage classifica-
tion model that combines all features. It can potentially distinguish breast cancers
from benign lesions in near real-time.
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1 Introduction

Breast cancer is the most common cancer among women in the United States, with around
2.9 million estimated new cases in 2022." X-ray mammography is the major modality for both
screening and diagnosis;>* however, it has limited sensitivity when used in dense breasts.* For
average-risk patients with dense breasts, breast ultrasound (US) has been widely adopted as both
a diagnostic tool and supplementary screening tool.>® Magnetic resonance imaging is also a
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supplementary tool for screening dense breasts of high-risk women,’ but its high cost makes it
accessible to only a small patient population. Despite improvements in imaging tools, a low
positive predictive value for biopsy recommendation has remained a problem. In 2017, the
Breast Cancer Surveillance Consortium reported only a 27.5% positive predictive value for
biopsy recommendation.’

In the last two decades, diffuse optical tomography (DOT), which utilizes diffused near-
infrared (NIR) light to map tissue optical properties, has been widely explored for non-invasive
breast cancer diagnosis.®*** US-guided DOT, utilizing co-registered US images to provide lesion
size and depth information for improved DOT reconstruction accuracy, has shown success in
breast cancer diagnosis and treatment monitoring.>~** A recent study reported that the adjunctive
use of US-guided DOT can reduce benign biopsies by 23.5%.%

Recently, machine learning (ML) has been applied to DOT in bulk tissue optical property
estimation,’**! image reconstruction,®”>? and breast cancer diagnosis.*’™* Using simulated
breast lesions, Di Sciacca et al.** applied logistic regression, support vector machines
(SVMs), and a fully connected network to reconstruct optical properties and achieved a best
accuracy of 78%. Xu et al.*’ applied a convolutional neural network (CNN) to 1260 2D optical
tomographic images sliced from 3D images collected from 63 women with dense breasts and
achieved a 0.95 area under the receiver operating characteristic (ROC) curve (AUC). Inspired by
recent multi-model fusion techniques in medical imaging,***® Zhang et al. combined US features
extracted by a modified VGG-11 network with DOT images to form a new neural network for
classification, and it achieved an AUC of 0.931 in distinguishing between benign and malignant
breast lesions.”’ However, DOT’s relatively slow data processing and image reconstruction
speeds have hindered real-time diagnosis. To address this problem, our group has developed
a two-stage strategy.*! The first stage uses breast imaging reporting and data system (BI-RADS)
readings from radiologists together with features from DOT frequency domain perturbation
measurement data represented in two-dimensional histograms (DOT histograms). These data
are combined by a random forest classifier to screen out ~60% of benign lesions without the
need of reconstruction. The second stage then utilizes reconstructed DOT images and an SVM
classifier to improve the overall diagnostic accuracy. However, this strategy relies on radiolog-
ists” readings, which can be unavailable or have limited accuracy in remote or low-resource
settings. Additionally, it relies on limited hand-crafted features from DOT measurement data
and DOT images, which may not capture all important features.

In this study, we further improve the two-stage classification strategy with deep learning and
we automate it to achieve faster and more accurate classification for breast lesions without BI-
RADS readings or hand-crafted features. In the first stage, we train two CNN-based classifiers
using US images and DOT histograms. The predictions of the CNNs are averaged to single out
benign lesions. The rest of the non-benign suspicious lesions pass through the second stage,
which combines US image features, DOT histograms, and DOT reconstructed images for diag-
nosis of this group. This two-stage classification strategy combines the diagnoses of first and
second stage classifiers and has achieved the excellent diagnostic performance by filtering out
70% of the benign lesions in near real-time without DOT image reconstruction.

2 Methods

2.1 Data

A total of 254 patients (169 with benign lesions and 85 with malignant lesions) were studied to
evaluate the proposed diagnostic strategy. In the benign group, the maximum dimensions of the
lesions, measured by US, ranged from 0.31 to 5.30 cm, with a mean of 1.48 cm, and the depths
ranged from 0.65 to 3.20 cm, with a mean of 1.50 cm. In the malignant group, the maximum
dimensions of the lesions ranged from 0.43 to 5.52 cm, with a mean of 2.05 c¢m, and the depths
ranged from 0.70 to 3.00 cm, with a mean of 1.53 cm. DOT patient data and co-registered US
images were acquired with our US-guided DOT systems at four wavelengths in the NIR range.>**’
The clinical study was approved by the local Institutional Review Boards and was compliant with
the Health Insurance Portability and Accountability Act. Informed consent was obtained from each
patient, and data from patients were de-identified. Because of our limited dataset, the results could
be influenced by the training-testing splits. Thus, we chose to employ a bootstrapping approach to
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Table 1 Simulated lesion and background tissue optical properties in the pre-training dataset.

Target Target center Target u, Target ug’ Background Background
radius (cm) depth (cm) (ecm™) (em™) tissue u, (cm™) tissue us’ (cm1)
0.375~1.5 0.7~27 0.06 ~ 0.30 4~8 FEM: 0.01 ~0.06 FEM: 4 ~8

MC: 20 digital breast phantoms
with fat fractions 20% ~ 80%%4°

evaluate the performance of our models by shuffling the dataset 50 times, providing a more robust
model performance than using a small testing dataset. To use a balanced dataset, in each of the 50
runs, 120 lesions (60 benign and 60 malignant) were selected as the training set and the other 50 (25
benign and 25 malignant) were used as the testing set. The hyperparameters were tuned based on
the averaged performance of the 50 runs. In addition, using the finite element method (FEM) and
Monte Carlo (MC) simulations, we generated a total of 880 sets of DOT measurements to pretrain
the DOT models before fine-tuning the models with patient data. For FEM simulation, we used
COMSOL software to generate the forward measurements. One hemisphere was used to simulate
breast tissue, and the other layer was used to simulate the chest wall.*” The VICTRE digital breast
phantoms were incorporated with Monte Carlo simulation to simulate heterogeneous breast
tissue.***’ The digital phantoms were uniformly compressed numerically in the z-direction to
a depth of 5 cm to simulate the compression that occurred when using our handheld reflec-
tion-mode DOT probe.*® Details of the simulated lesion and background tissue optical properties
are in Table 1. For both simulation settings, the probe locations were moved slightly around the
center locations to mimic a clinical scenario in which the probe is moved around the lesion location
to obtain multiple sets of measurements from a single lesion. Then all measurements obtained from
a single lesion were merged into one DOT histogram.

2.1.1 US images

Figure 1 shows co-registered US images of a benign lesion and a malignant lesion. The benign
lesion has a clear boundary, whereas the malignant one has an irregular and ill-defined boundary.
These features were used by the CNN to classify different types of breast lesions. To utilize CNN
weights pre-trained with the ImageNet dataset,’® we cropped the lesion area of each US image to
a region of interest (ROI) and resized it to 3 X 224 x 224 pixels before inputting it to the CNN.
Here, 3 is the number of channels and 224 x 224 is the height X width of each channel. After
resizing, the pixel sizes ranged from 0.044 to 0.123 mm. Finally, the images (ROIs) were nor-
malized based on the mean and standard deviation of the ImageNet dataset.

2.1.2 DOT frequency domain data (DOT histogram)

We normalized the measured frequency-domain diffuse reflectance obtained from the lesion side
breast, U,, to the contralateral normal breast, U,, to produce the “perturbation”

(@) (0)

Fig. 1 Examples of co-registered US images, with lesions marked by blue circles. (a) A benign
lesion and (b) a malignant lesion.
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Fig. 2 Examples of DOT histograms and 2D representations. (a) A benign case and (c) its 2D
representation after averaging. (b) A malignant case and (d) its 2D representation after averaging.

pert = Uizt _Ui_ 1 = real(pert) + j X imag(pert).
U, U,

We used a two-dimensional representation of the DOT perturbation measurements, with the
x-axis being the real part of the perturbation and the y-axis being the imaginary part. For each
lesion, the real and imaginary perturbation parts were used together to obtain a bivariate histo-
gram with 32 X 32 bins, as shown in Fig. 2. For a benign lesion, which typically has lower
absorption, the difference between the lesion side and reference side measurements is typically
small, which means U, and U, are similar and their ratio is close to 1, so the points are more
distributed around the origin. For a malignant lesion, typically with higher absorption, U, is
smaller than U, so the perturbation is skewed toward —1 in the negative real axis. This histogram
representation can handle different source-detector geometries. For each patient, all DOT per-
turbations from multi-spectral measurements and repeated lesion measurements were combined
into one 2D histogram, and the total number of points in one 2D histogram is the number of
sources X number of detectors X number of wavelengths X number of repeated lesion measure-
ments. The histograms were then averaged based on the number of lesion files used, the number
of wavelengths, and the number of detectors in the DOT system.

2.1.3 DOT reconstructed images

To reconstruct the unknown changes in the target absorption coefficients du, compared to the
reference side, we used the Born approximation to linearize the inverse problem:”'

. A
10 = ang ming, ( Iper = Wiy P+ £ o )
where W is a sensitivity matrix calculated using the absorption and reduced scattering coeffi-

cients of the reference side and 4 is a regularization parameter. The conjugate gradient algorithm
and a dual mesh scheme using co-registered US guidance were employed to solve the inverse
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Fig. 3 Examples of DOT reconstructed tHb images. Color bar indicates tHb values in uM.
(a) A benign lesion and (b) a malignant lesion.

problem. After reconstructing the absorption maps, the total hemoglobin (tHb) distribution was
calculated using all four wavelengths. Figure 3 shows reconstructed images of a benign and a
malignant lesion, the same cases as in Fig. 2. The benign lesion has a relatively lower tHb con-
centration than the malignant lesion. Besides, the malignant lesion shows a “light shadowing”
effect, because the tHb in the topmost layer is greater than the tHb of the underlying layers.>
The resulting high absorption by the cancer in the topmost layer significantly reduces the number
of photons reaching the deeper layers.

2.2 First Stage

In the first stage, two individual CNNs were trained with US images only and DOT histograms
only, as shown in Figs. 4(a) and 4(b). Because we had a clear set of benign or malignant labels,
supervised learning was used to train and evaluate all the CNN models.

2.2.1 US only CNN

We used a modified VGG-11 neural network™ to extract features from co-registered US images,
as shown in Fig. 4(a). The model was pre-trained with the ImageNet database. After the first 26
layers of the VGG-11 and a maxpooling layer, the output 512 X 7 X 7 matrix was zero-padded to
a 512 x 8 x 8 matrix. Then another convolutional layer with a 3 X 3 kernel size and batch nor-
malization was added to generate a 64 X 8 x 8 feature matrix. Following feature extraction, a
binary classification model (benign versus malignant) was obtained using three fully connected
layers. The weights of the first nine layers were kept unchanged from the pre-trained VGG-11
using ImageNet and then the model was fine-tuned using open-source US images™*>> and US
images acquired with our US-guided DOT system. The fine-tuning was performed for 5 epochs
with a learning rate of 0.001, followed by another 5 epochs with a learning rate of le™*, using
stochastic gradient descent with a momentum of 0.9 as the optimizer. After training, the predicted
probability of malignancy was extracted and combined with DOT histogram predictions for
the first stage classification. The features before the fully connected layers were also extracted
to be combined with DOT histogram features and DOT image features for the second stage
classification.

2.2.2 DOT histogram feature extraction CNN

The DOT histogram feature extraction CNN is shown in Fig. 4(b). The inputs are the 2D DOT
histograms, measuring 1 X 32 X 32 pixels. After two convolutional layers with a 3 X 3 kernel
size, followed by batch normalization and 2 X 2 maxpooling, the input histogram goes through
another convolutional layer with a 3 X 3 kernel size and two fully connected layers. The output is
the final prediction of the lesion type. We pre-trained the model with simulated DOT histograms
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Fig. 4 (a)-(c) First stage of the two-stage classification strategy.

for 20 epochs with a learning rate of 1e™* and then fine-tuned it with patient data for 20 epochs
with a learning rate of 1e™*. The Adam optimizer and the cosine annealing learning rate sched-
uler were used. After the model was trained, the predicted probability of benign versus suspicious
was extracted and combined with US only predictions for first stage classification. After two
convolutional layers, the features were extracted to be combined with US and DOT images
in the second stage for identifying suspicious lesions.

2.2.3 First stage combined prediction

In the first stage, as shown in Fig. 4(c), the probabilities of malignancy predicted from the
US-only CNN and the DOT histogram-only CNN were averaged to generate the prediction of
benign versus suspicious for near real-time diagnosis.

2.3 Second Stage
2.3.1 DOT image feature extraction CNN

A similar CNN, as shown in Fig. 5(a), was built to extract DOT images. The inputs are the
reconstructed tHb maps, which are 3 x 32 X 32 matrixes, and the output is the probability of
the lesion being malignant. The three convolutional layers have a convolutional kernel of
3 x 3 and are followed by batch normalization, and two fully connected layers are applied to
perform classification. The DOT image feature extraction CNN was trained on the simulation
data with a learning rate of 0.001 for 60 epochs and then fine-tuned with patient data with a
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Fig. 5 (a) and (b) Second stage of the two-stage classification strategy.

learning rate of 0.001 for 10 epochs. The features after two convolutional layers were extracted to
be combined with DOT histogram features and US features for the second-stage classification.

2.3.2 Two-stage Classification Strategy

As shown in Fig. 5(b), in the second stage, DOT image features, DOT histogram features, and US
features are concatenated to generate 192 X 8 X 8 input matrices, followed by a convolutional
layer with a 3 X 3 kernel size and two fully connected layers to output the final prediction of the
lesion type for the suspicious group from the first stage. In the two-stage strategy, to recover the
optical properties of the suspicious lesions, DOT reconstruction is performed for the suspicious
cases identified by the first stage classifier. Then, the DOT image features are extracted using the
DOT image feature extraction CNN. Next, to obtain the final classification, the DOT histograms,
DOT image features, and US features are concatenated and fed into the second stage classifier.
The final predictions for all cases thus comprise the benign predictions from the first stage and
the predictions of suspicious cases from the second stage.

The two-stage strategy is shown in Fig. 6. Once the data acquistion is complete, the co-
registered US images and the perturbation measurements are generated and put into the first
stage classifier, which combines the predictions from the US only CNN and DOT histogram
only CNN. To lower the false negative rate while maintaining a high true negative rate, the pre-
diction threshold is set at a value lower than 0.5, the value commonly used in binary classifi-
cation. The threshold for the first stage classification model was determined by a grid search of all
thresholds lower than 0.5, with a step size of 0.01. Based on the grid search results, we set a
threshold value of 0.12, which minimized the false negative rate while maintaining high accuracy
in predicting benign cases. Lesions with predicted probabilities lower than the threshold are
classified as benign lesions, and the rest are classified as suspicious lesions.

3 Experimental Results

The Supplementary Material provides the number of trainable parameters for each model as well
as examples of training and testing losses.

3.1 First Stage Classification Results

On average, the first stage identified 18.2 of 25 cases as benign, so the benign accuracy was
73.0%. However, an average of 0.7 malignant cases were falsely classified as benign, resulting
in a false negative rate of 3.0%. Among the 50 testing set cases, an average of 30.1 cases were
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Fig. 6 Two-stage classification workflow.

classified into the suspicious group and fed into the second stage classifier. These results are
better than those from US-only models, which can filter out only 68.1% benign cases, with
a false negative rate of 9.8%, or histogram-only models, which can filter out 54.6% benign cases,
with a false negative rate of 9.4%.

3.2 Two-Stage Classification Strategy Results

After the first stage classifier excluded part of the benign cases, the suspicious cases above the
threshold, with a higher probability of malignancy, were advanced into the second stage classifier.
For those cases, DOT images were reconstructed using the conjugate gradient descent method with
regularization, and the reconstructed image features were extracted using the DOT image feature
extraction CNN. Next, the reconstructed DOT image features, DOT histogram features, and US
features for the suspicious group were put into the second stage classifier to obtain the final clas-
sification. The averaged ROCs from 50 runs for the two-stage classification strategy, along with the
single-modality models, are shown in Fig. 7. The first stage classifier predicts only two groups:
benign and suspicious cases. In the second stage, the suspicious cases are further classified as either
benign or malignant. Biopsy confirmed the true positive and false positive predictions from the
second stage, and the biopsy-confirmed true negative and false negative predictions from both stages
were used to generate the two-stage combined ROC curve. The confusion matrix used to generate
the ROC curve is shown in Table 2, where a 1 or 2 denotes results from the first or second stage. TM,
FM, FB, and TB respectively denote true malignant, false malignant, false benign, and true benign.
As shown in Fig. 7, the two-stage classification strategy provides a more accurate classification
(AUC = 0.946, 95% CI: 0.939 to 0.954) than any of the single-modality based classifiers.

We also evaluated the performance of a single-stage model that combines features extracted
from DOT histograms, DOT images, and US images. For a fair comparison, the evaluation is
performed for all testing cases, not limited to only the suspicious cases classified by the first stage
model. This model achieved an AUC of 0.933 (95% CI: 0.924 to 0.941), which is compariable
with that of the two-stage classification strategy; however, the latter can achieve near real time
diagnosis for 70% of the benign lesions.

3.3 Comparison with Traditional Feature-Based Machine Learning Approaches
As a comparison, we manually extracted features from DOT histograms and DOT images
following Ref. 28 and used two radiologists’ BI-RADS readings. Then we used random forest
or SVM classifiers instead of deep learning classifiers to perform the classification, with the
results shown in Table 3.
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Fig. 7 ROC curves for testing data.

Table 2 Confusion matrix of two-stage combined results, where a 1 or 2
denotes results from the first or second stage. TM, FM, FB, and TB denote
true malignant, false malignant, false benign, and true benign, respectively.

Biopsy
Predicted Malignant Benign
Malignant T™2 FM2
Benign FB2 + FB1 TB2 + TB1

Table 3 Comparison of deep-learning based classification with traditional feature-based
classification.

Deep learning

Traditional Traditional ML Traditional ML Deep learning counterpart
ML input method Performance counterpart input performance
12 DOT histogram Random forest AUC = 0.715 DOT AUC = 0.878
features classifier histograms

First stage: 12 DOT  Random forest 61.8% of benign First stage: DOT 73.0% of benign

histogram features classifier cases were singled histograms and cases were singled
and BI-RADS from out, with a 6.6% US images out, with a 3.0%
2 radiologists false negative rate false negative rate
2 DOT functional SVM classifier AUC = 0.744 DOT reconstructed AUC = 0.762
features: total total hemoglobin

hemoglobin and maps

oxy hemoglobin

DOT histogram Random forest AUC = 0.931 DOT histograms, AUC = 0.933
features, BI-RADS, classifier US images, and

and DOT functional DOT reconstructed

features total hemoglobin maps

Two-stage First stage: DOT AUC = 0.925 Two-stage AUC = 0.946
classification histogram features classification

strategy and BI-RADS strategy

Second stage: DOT
histogram features,
BI-RADS, and
functional features
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These findings suggest that deep learning methods outperform traditional ML methods when
using DOT histograms and DOT images only. Additionally, deep learning models combining
DOT with US features achieve results better than or comparable to the results of traditional
ML models utilizing radiologists’ BI-RADS readings.

4 Conclusion

In this paper, we proposed a two-stage strategy using deep-learning models to classify whether a
breast lesion is malignant or benign. In the first stage, DOT histogram features and US features
are extracted using two feature extraction CNN models. Next, to single out those benign cases
with a low probability of malignancy, the averaged prediction scores from the two models are
calculated as the first stage result, which yields predictions of benign or suspicious. This strategy
can identify 73.0% of benign cases in the first stage without the need for imaging reconstruction.
In the second stage, the DOT image features, extracted by another feature extraction CNN model,
are combined with the DOT histograms and US features and input into the second-stage classifier
to obtain the final diagnostic classification. This strategy achieved near real-time diagnosis for a
significant portion of breast lesions, without the need for image reconstruction in the first stage,
and the second stage ensures the overall prediction accuracy. Combining the first stage’s high
sensitivity and the second stage’s high specificity, the two-step classification strategy provides
better classification accuracy, with an AUC of 0.946, than either single-modality-only models or
a single-stage classification model that combines all features.

The proposed two-stage classification strategy has shown promising results on clinical
patient data, with high robustness over 50 random training-testing splits. However, there are still
limitations to this approach. First, the first-stage model has a false negative rate of 3.0%, even
with a threshold set much lower than 0.5. This performance could be improved by incorporating
radiologists’ BI-RADS scores, which have extremely high sensitivity, albeit low specificity.
Second, the second-stage model involves DOT image reconstruction, which requires manual
data preprocessing, such as reference selection and outlier removal. This limitation can be miti-
gated by applying an automatic data preprocessing strategy to fully automate the entire two-stage
classification strategy. Additionally, we utilized traditional iterative methods for DOT reconstruc-
tion to accommodate data collected from various DOT systems, and these methods are usually
slower than deep learning reconstruction. As more data are accumulated from a specific DOT
system, deep learning reconstruction®” could be used to achieve real-time diagnosis for all cases.
Furthermore, with more data in the future, it will be possible to reserve an additional testing set
that has never been exposed to the model during training and thus the robustness of the model
could be further evaluated.
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