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Abstract. We propose a method to acquire compressed measure-
ments for efficient video reconstruction using a single-pixel camera.
The method is suitable for implementation using a single-pixel detec-
tor, along with a digital micromirror device or other types of spatial light
modulators. Conventional implementations of single-pixel cameras
are able to spatially compress the signal, but the compressed mea-
surements make it difficult to exploit temporal redundancies directly.
Moreover, a single-pixel camera needs to make measurements in a
sequential manner before the scene changes, making it inefficient for
video imaging.We discuss ameasurement scheme that exploits spar-
sity along the time axis for video imaging. After acquiring all measure-
ments required for the first frame, measurements are acquired only
from the areas that change in subsequent frames. We segment
the first frame, detect the magnitude and direction of change for each
segment, and acquire compressed measurements for the chang-
ing segments in the predicted direction. Next, we compare the
reconstruction results for a few test sequences with existing tech-
niques and demonstrate the practical utility of the scheme. © The
Authors. Published by SPIE under a Creative Commons Attribution
3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication,
including its DOI. [DOI: 10.1117/1.JEI.22.2.021013]

1 Introduction
The compressed sensing (CS) framework for image acquis-
ition exploits the inherent properties of a signal to reduce the
number of samples required for reconstruction. Most signals
are sparse in some domains and require fewer samples than
specified by the Nyquist criterion to fully recover the signal.
Unlike conventional Nyquist sampling, CS uses the sparsity
information in the signal and acquires measurements in the
domain in which the signal is sparse. The sampling matrices
or projections are carefully designed to acquire maximum
information from the signal. Random projections have been
proven to recover the signal with the least number of samples
above the minimum bounds, and with high probability. Some
deterministic sampling matrices have also been investigated
and proven efficient for a full recovery of the signal.

Researchers have come up with many imaging architec-
tures for CS implementation employing spatial light modu-
lators (SLMs). These include the Rice single-pixel camera,

which uses a digital mirror device (DMD),1 coded apertures,
and CMOS SLMs2 to exploit the sparsity of the signal in the
spatial domain.3 These architectures acquire compressive
measurements in the spatial domain, but due to the sequential
nature of measurement acquisition, they are not efficient for
video. Most CS architectures use a single detector that cre-
ates a temporal bottleneck for applications requiring fast
sampling rates. One way to reduce the effect of this bottle-
neck is to take multiple measurements at one instance by
increasing the number of sensors. Each sensor will require
a respective DMD, making an array of DMDs that is not
a feasible solution in terms of cost and space. Another
cost-efficient way is to exploit redundancies or its comple-
ment, temporal sparsity, in a video sequence.

In order to exploit temporal sparsity in a video, we
intuitively think of changes between frames. In many video
sequences, change is sparse along the time axis. Many
methods have been published for video sensing and
reconstruction that exploit change sparsity, most of which
acquire measurements for several frames and reconstruct
them subsequently using Fourier or wavelet domain sparsity.
One direct method is to acquire measurements for each
frame separately. To minimize motion blur, direct acquisi-
tion requires the scene to be static before measurements
are made for each frame, which is not practical in most
cases. Another approach adopted is three-dimensional wave-
let reconstruction.1 Samples for a group of frames are
acquired and a wavelet basis is used for recovering all frames
in the group at once. This method cannot be used for real
time video streaming without incurring latency and delay
that may significantly affect performance in many situations.
Frame differencing has been used where the differences
between consecutive frames are compressively measured,
reconstructed, and added to the previous frame.4 This
method not only accumulates residual error, but the mean
square error (MSE) increases significantly when the differ-
ence is not sparse, as in the case of large changes in the
scene. Another approach is based on modeling specific
video sequence evolution as a linear dynamical system
(LDS).5 This approach reduces the required samples for
reconstruction considerably but is restricted to videos pos-
sessing an LDS representation, which is possible for only a
few specific sequences. Some works based on block-based
compressive sensing (CS), such as block-based compressive
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sensing with smooth projection Landweber reconstruction
(BCS-SPL), divide the frame into nonoverlapping blocks
and process each block separately. The basic technique
splits the processing into smaller blocks and combines the
reconstruction for the final result.6 This method does not
take into account the temporal redundancies in a video.
More advanced techniques based on BCS-SPL take into
account motion estimation parameters to aid the recon-
struction process. Motion estimation/motion compensation
BCS (ME/MS-BCS) selects a group of pictures (GOP) for
estimating motion vectors and reconstruct the GOP using
this information. This improves the subrate performance
but incurs an undesirable time delay in addition to increasing
reconstruction complexity.7–10 One other approach is adap-
tive block-based compressive sensing in which a frame is
divided into a specific number of blocks and each block
is assigned measurements based on changes and texture.11

This approach accumulates residual error and gives block
artifacts after recovery. Moreover, it is computationally
expensive to optimize measurement allocation before each
frame acquisition.

In this study, we try to exploit temporal redundancies
and reduce the required computations. We propose a scheme
keeping in view the properties of a single-pixel camera
employing a DMD. Takhar has shown an implementation
of CS using a single-pixel detector for sensing light after
modulation from a DMD.1 This setup requires the scene
to be static before all the required measurements are made.
However, by using the concept of sparse changes along the
time axis, we can reduce the number of samples required
for reconstruction of each frame. Most real video frames
are defined by contours and moving objects trajectories are
irregular in shape. The scheme that we propose identifies
static and dynamic regions of arbitrary shape for each
frame and only modulates the light incident from these iden-
tified dynamic locations for each frame. The spatial modu-
lation scheme is random for identified dynamic regions and
allows recovery of the signal with fewer samples than
Nyquist12 reconstruction. In order to achieve video rates,
the dynamic and static region identification should be fast
enough to allow detection of these regions and the sub-
sequent measurements to take place within a specific time
frame. We have used optical flow features to complete
this task. The next step of the scheme uses features of the
moving segments to predict the direction of motion and allo-
cate additional measurements in that direction. It confines the
measurements to the areas predicted to change over time.
The change detection is performed at the sensor, with the
result that predictions are faster to make. The mask formed
by these dynamic areas reduces the number of pixels to be
estimated, hence reducing the load on the reconstruction
algorithm, which allows for faster reconstruction.

The scheme uses the multiplexing property of SLMs in
imaging sensor design. Most DMD or other SLMs can
selectively direct light from individual image pixels toward
the detector. Using the dynamic region detection scheme
described earlier, the flux of light from dynamic regions
in the scene is multiplied by random projections, the results
of which are then summed at the detector. The number of
distinct random patterns to generate measurements for re-
construction depends on the size and sparsity of the dynamic
region. The algorithm also measures the direction in which a

particular region is progressing, thereby spreading the region
of measurement in that direction. Light spatially modulated
by calculated projections is sampled at less than Nyquist
rates for a full recovery. The patterns used for modulation
are critical to noiseless recovery. The projecting matrices
follow the restricted isometry property (RIP).13 We give
some background of the fundamental concepts used for
this technique in Sec. 2. Section 3 details all aspects of
the scheme. Section 4 discusses the simulation results, and
Sec. 5 summarizes the conclusions and future work needed
to improve on this method.

The most effective application of this scheme is for
videos with slow changes over time or few spatially dy-
namic regions. It reduces the computation required after
each frame, gives comparable peak signal-to-noise ratio
(PSNR) with other techniques with the least number of mea-
surements, and is implementable on a single-pixel DMD
camera.

2 Theoretical Background

2.1 Compressed Sensing
CS provides an efficient framework to sample a signal below
the Nyquist rate without losing high-frequency information.
In order to use the CS framework for acquisition, some
conditions must be met. These conditions are based on the
characteristics of the signal under consideration, and they
guarantee a full recovery from far fewer samples than con-
ventional methods require. Consider a signal x, which we
desire to reconstruct from the measurements y. The relation-
ship between the signal and the measurements can be
expressed as

y ¼ Axþ ω; (1)

where y is defined as the measurement vector of length k, x is
the signal to be recovered having n dimensions, the matrix A
is the measurement matrix, and w is the noise with an
assumed Gaussian distribution (0, σI). This is an underdeter-
mined system of linear equations where k ¼ n. If the signal
is sparse in a domain and the sparse domain is incoherent
with the sampling domain, then we should be able to re-
present the signal well by a linear combination of only a
few atoms of the domain and fully recover the signal. For
instance, if x is sparse in the domain ϕ then

x ¼ ϕz (2)

and

y ¼ Aϕzþ ω; (3)

where the vector z is a sparse vector with a very low sparsity
index. The sparsity index is the number of nonzero elements
in a coefficient vector. CS theory provides a threshold
imposed on the sparsity index based on mathematical deri-
vations. If S is the sparsity index of x in ϕ, then the aspect
ratio of the measurement matrix required for full recovery
is given by the ratio

k
n
≥
CS logðnÞ

n
; (4)
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where C is a positive constant. According to Candès,13 C
depends on the coherence measure of the measurement
matrix and the sparsity basis. If ai and ψ j represent the
atoms of A and ϕ, respectively, then

μ ¼ max1≤i;j≤njhai;ψ jij (5)

and the matrices are incoherent if the following holds:

n1∕2 ≤ μ ≤ 1: (6)

In addition to satisfying the coherence measure, the sampling
matrix should comply with the RIP, which requires that if a
matrix operates on a sparse vector, the l2 norm of the result-
ing product should be less than δs which is a restricted isom-
etry constant.13 If z is a sparse vector, then the product Aϕ
should satisfy this equation:

ð1 − δsÞkzk22 ≤ kAϕzk22 ≤ ð1þ δsÞkzk22: (7)

For a given matrix, determining whether it satisfies RIP is an
NP hard problem.14 The RIP ensures that the transformation
Aϕ preserves the distances between the nonzero planes of
sparse vectors. This is equivalent to the requirement that
the largest eigenvalue of AϕðAϕÞT lies in the interval
½1þ δs; 1 − δs�. Most random matrices satisfy both the inco-
herence and RIP criteria. Some deterministic matrices exhibit
statistical RIP compliance and fully recover the signal with a
high probability.15

A signal acquired using a sampling matrix satisfying the
above mentioned criteria can be recovered by using CS re-
construction algorithms for underdetermined systems of lin-
ear equations. It has been established that samples acquired
using a measurement matrix satisfying k-neighborliness can
be recovered, provided that the solution is sparse.16 Different
optimization techniques such as basis pursuit (BP) can be
used for estimating a solution.17,18 We formulate the problem
as a BP problem and optimize it using total variation min-
imization.19–21 According to CS theory, if we minimize the l1
norm, it gives us the sparsest unique solution to this convex
problem:22

minimizekxk1 subject to y ¼ Ax: (8)

If we decompose x into ϕz and minimize the l1 norm subject
to the constraints described next, then

minimizekzk1 subject to y ¼ Aϕz: (9)

If the signal is sparse spatially, ϕ can be the identity
matrix. In the case of noisy measurements, we formulate
the problem as BP denoising or23

minimizekxk1 subject to ky − Axk2 < ε: (10)

If x ¼ fz, then

minimizekzk1 subject to ky − Aϕzk2 < ε; (11)

where ε > σ and σ is the combined noise variance due to
detection and quantization noise. Detector noise depends
on the integration time, and by increasing integration
time, this error can be reduced. In order to minimize
quantization noise, it is possible to make a trade-off between

saturation and quantization while using compressive pro-
jections for measurements.24 Since each compressive meas-
urement carries the same information, by adjusting the
quantization levels to saturate more measurements, the quan-
tization error can be greatly reduced on all the unsaturated
measurements.

2.2 Segmentation and Change Detection
Segmentation is a key step for implementing our proposed
scheme. It separates the scene into segments, which helps to
identify and track object motion effectively. In this study, we
used normalized cut image segmentation.25 The effectiveness
of the technique varies depending on the contrast and texture
in a video frame. The main goal here is to effectively separate
portions of the image that may move in subsequent frames
from static background portions of the scene. An important
parameter is the number of segments produced during seg-
mentation. This can vary depending on the sparsity of a par-
ticular video sequence to achieve optimum segmentation. In
order to determine the number of segments, we maximize the
inter-cluster distance and minimize the intra-cluster distances
over a predefined range of number of clusters. The contrast
measure between clusters can be maximized to separate a
cluster from neighboring clusters.26 In order to decrease
intra-cluster distances, variance can be minimized. We find
the number of segments corresponding to a maximum value
of contrast by searching over a range of the number of seg-
ments. This range is bounded by the number of segments
corresponding to the value of mean variance and a specified
maximum number of segments. Variance for l clusters can be
calculated as

σ ¼ 1

l

Xl

i¼1

σi ¼
1

l

Xl

i¼1

1

mi

Xmi

k¼1

jxk − μij; (12)

where σi is the variance of pixels within the segment i andmi
is the mean of the i’th segment, l is the total number of seg-
ments and mi corresponds to the number of pixels within the
segment i. Mean contrast for l clusters can be computed
using the equation here:

Ct ¼ 1

l

Xl

i¼1

Cti

¼ 1

lðl − 1Þ
Xl

i¼1

Xl

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμi − μjÞ2 þ ðσi − σjÞ2
ðμi þ μjÞ2 þ ðσi þ σjÞ2

s

j ≠ i; (13)

where Ct is the mean contrast of all segments. The variation
of the number of segments against maximum contrast is used
to determine the number of segments used for all further
processing.

We next classify segments as static or dynamic. The static
and dynamic areas are found by looking at the temporal
differences in the average pixel value over a segment. In
the context of a single-pixel DMD-based sensor, averages
over arbitrary-shaped regions are easily calculated by simply
directing the light associated with those pixels to the single
detector and dividing the measured value by the number of
pixels in the segment. These averages are compared with a
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threshold value. We assume that only a few segments change
significantly from one frame to the next. Therefore, the histo-
gram of differences between the segment averages forms a
unimodal distribution with a mode at the first bin. We esti-
mate the change detection threshold based on unimodal dis-
tribution to select segments that have significantly changed
between consecutive frames. A straight line joining peak and
last bin is drawn as shown in Fig. 1(a). The value correspond-
ing to the point on the histogram with maximum divergence
from the straight line gives an estimate of the threshold.27

The area above the threshold is classified as dynamic, and
the area below is static. In the event that more segments
change significantly, the histogram is inverted to calculate
the threshold. All segments are selected in the case where
no population is considerably larger than the other. The prac-
tical implementation of this procedure is described in Sec. 3,
later in this article.

2.3 Motion Estimation
In order to sense a video efficiently, we need to perform both
spatial and temporal compression. Random sampling can
compress the signal effectively if applied in the domain
where the signal is sparse. In the time domain, changes
are sparse in many video sequences. In order to take mea-
surements efficiently in the change domain, we need a trans-
formation that detects change. Most transformations require
knowledge of past and future frames to calculate the change.
This approach can compress the signal after acquisition or by
using additional hardware to reach video rates. Another way
to detect change is predictive modeling, but due to the
ephemeral nature of videos, it is hard to model these changes,
with the exception of a few specific video sequences. In this
study, a simple optical flow technique is implemented, which
uses the multiplexing properties of DMDs employed in sin-
gle-pixel cameras.1 The scheme locates the dynamic and
static segments in a frame and takes some strategic averages
to access the direction in which the segments might be mov-
ing. The scheme predicts the direction of motion based on a
novel feature of moving segments and allocates measure-
ments in that direction for the next frame. The process begins
by encircling each segment by a circle with a radius larger
than the maximum size of the segment. The circle is divided
into sectors. The difference in averages outside the segment
and inside the circle generates peaks at values of the angle θ,
which predicts the direction in which the segment is mov-
ing.28 The possible directions are quantized by the number
of sectors used to divide the circle (eight in the current
research). It is assumed that motion is sparse along the
time axis and only a few segments move between consecu-
tive frames. A binary filter is formed based on these loca-
tions, which filters out the static segments and enables
measurements to be performed for only the dynamic pixels
of moving objects. The binary pattern and the random sam-
pling matrix are multiplied to acquire samples.

2.4 Hardware Implementation
The proposed method can be efficiently realized in hardware.
The basic operations to implement this scheme can be com-
puted rapidly. To acquire measurements for dynamic regions,
the mirrors of the DMD are turned off where the mask is
zero, and a random pattern is projected on the rest of
the mirrors. The sampling requirements for the discussed

algorithm depend upon the dynamic region in a video
sequence and varies directly with the number of pixels
that are changing. Our proposed technique adapts the
sampling to these changing regions. In order to achieve
real-time video streaming, the sampling process on the
encoder side would need to be fast enough to acquire
dynamic measurements in less than 33 ms. On the decoder
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Fig. 1 (a) Threshold estimation. (b) Segmented frame. (c) Selected
segments with differences above the threshold.

Journal of Electronic Imaging 021013-4 Apr–Jun 2013/Vol. 22(2)

Noor and Jacobs: Adaptive compressive sensing algorithm for video acquisition. . .



end, the computations would need to be fast enough to
optimize the dynamic area in less than 33 ms. Under the
assumption of slow change, the segmentation process can
be performed in parallel and the newest segmentation can
be used to form sampling masks instead of requiring the
latest frame to be reconstructed. This saves significantly
on reconstruction time. The discussed scheme for measure-
ment allocation is capable of acquiring a number of frames
without consuming as many resources for many types of
video compared to existing techniques. The bandwidth
gained by reducing samples required for a frame recon-
struction can be used toward increasing frame rate or
decreasing bandwidth.

3 Methodology
The setup described by Takhar1 is used as an example of
practical implementation (see Fig. 2). We propose to acquire
all the measurements for the reconstruction of the first frame
by projecting different random patterns on the entire DMD.
For subsequent frames, only temporally changing regions of
the image are measured. To calculate magnitude and direc-
tion of change, we adopt the scheme shown in the flowchart
in Fig. 3.

We segment the first frame after reconstruction into a
number of segments. The segmentation algorithm used is
based on a normalized cut criterion, which measures both
dissimilarity between the groups and similarity within a
group. It maximizes the normalized cut criterion for a given

number of clusters. In order to estimate change due to each
moving object between consecutive frames, we try to sepa-
rate each object from the background and estimate the mini-
mum number of groups that can separate objects present in
an image.

In order to optimize the number of segments, we maxi-
mize the contrast between the segments and minimize the
variance within segments in a frame. We start with a mini-
mum of five segments and calculate variance and contrast
between each frame. The number of segments is incremented
in each iteration until a maximum contrast limit is reached.
The contrast is estimated over a range of variance above the
mean value, as shown in Fig. 4. The number of segments
corresponding to the maximum contrast is used for all
subsequent calculations. The segment can be expressed for-
mally as

ypðx; yÞ ¼
�
1 x; y ∈ pth segment

0 otherwise
: (14)

The segmentation mask for each segment is used to drive the
DMD of the single-pixel camera to route light from each seg-
ment to the detector one by one. The output of the detector is
the average of each segment. A step by step procedure is
listed in Algorithm 1.

Next, we calculate the temporal differences in the aver-
ages over each segment to see which segment has changed
significantly. We assume that change is sparse between two

Fig. 2 (a) Single-pixel camera.1 (b) Adaptive compressive sensing imager block diagram.

Journal of Electronic Imaging 021013-5 Apr–Jun 2013/Vol. 22(2)

Noor and Jacobs: Adaptive compressive sensing algorithm for video acquisition. . .



consecutive frames and only a few segments change signifi-
cantly relative to the others. In view of this assumption,
unimodal thresholding can be used to estimate the level
of significance for change detection.27 We form the histo-
gram of segment average differences and the threshold is
the point of maximum divergence on the curve from the
straight line joining the peak and the bin before the last
empty bin as shown in Fig. 1. The number of bins is kept
equal to the number of segments. Increasing the number
of bins does not affect the detection significantly. The prob-
ability to detect change accurately depends on the quality of
segmentation and the threshold estimation technique. In this
approach, if the difference histogram is not unimodal, all
segments are selected for further processing. We noticed
in our simulations that increasing the number of segments
makes the change detection more precise. Considering
that the number of segments should be moderate for this
scheme to be competitive with other methods, we kept an
upper bound of 40 segments with a negligible effect on
performance.

The segments with changed averages are selected [see
Fig. 1(b) and 1(c)] and encircled with a radius exceeding
the distance from the centroid to the farthest pixel in a seg-
ment by a fixed amount. For this work, this value was set to 4
pixels. Setting the radius beyond the farthest pixel defines the
area within which a segment can move. In order to calculate
the magnitude and direction of motion, we partition the circle
into 8 equal sectors covering 0 → 2π and representing eight
degrees of freedom that a segment can move. For each seg-
ment, the space outside the segment boundary and inside the
circle is determined. This is projected by the DMD onto the
detector to calculate the average in this boundary area. This
average is compared with the previous frame average of this
same area. We restrict the estimate of the direction of motion
to the eight central angles θk ¼ 1: : : 8 of the eight sectors.
We find all directions θk for which the difference of the
boundary averages exceeds a predefined threshold. Math-
ematically, the average can be written as

Fig. 3 Flow chart for adaptive sample acquisition.

(a)

(b)

Fig. 4 (a) Mean contrast versus number of clusters. (b) Mean vari-
ance versus number of clusters.
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PartAvgkðyp; tÞ ¼
1

sp

X
hk · ft for k ¼ 1: : : 8; (15)

where ft is the frame at time t and hk is a mask defined by

hk ¼ ðcp ∪ ypÞ ∩ sk:

Here, cp is the circle around the centroid of segment yp:

cpðx; yÞ ¼
�
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< radp

0 o:w
(16)

and sk is the k’th sector centered at radp:

skðx; yÞ ¼
�
1

πðk−1Þ
4

< θk <
πk
4

0 o:w
: (17)

We find all θk, for which

jPartAvgkðyp; tÞ − PartAvgkðyp; tþ 1Þj > β: (18)

Figure 5 graphically represent the motion estimation pro-
cedure. In order to calculate the magnitude of change, we

move the segment in the estimated direction θk for all possible
x and y inside the circle and measure the average outside the
segment for each coordinate pair. For pixel locations yp,

ypðxi; yiÞ ¼ ypðxþ ri cos θk; yþ ri sin θkÞ;

where ri is such that the distance of the farthest pixel in seg-
ment yp remains less than the radius of the circle; i.e.,
dðyp; cenpÞ < radp. Using Eq. (15), we calculate all averages
outside the segment boundary, maximizing the difference
between the average calculated and the previous frame aver-
age over all pairs of coordinates. We then calculate the mag-
nitude of the displacement mθk in the θk direction:

mθk ¼ maxjPartAvgθk ½ypðx; yÞ; tþ 1�
− PartAvgθk ½ypðxi; yiÞ; t�ji ∀ i:

(19)

The new coordinates for yp in direction θk will be defined as

x 0 ¼ xþmθk cos θk y 0 ¼ yþmθky sin θk:

We calculate the updated segment dynamic area by combining
the translated segment in all significant θk directions. The
updated segment dynamic area is found as

ypðx; yÞ ¼ ypðx; yÞ ∪ ypðxþmθ1 cos θ1; yþmθ1 sin θ1Þ
× ∪ : : : ∪ ypðxþmθk cos θk; yþmθk sin θkÞ:

(20)

Figure 6 graphically represent the magnitude estimation
process. A mask for all dynamic segment areas can be for-
mally expressed as

Mt ¼ y1 ∪ y2 ∪ : : : ∪ yp: (21)

The measurement matrix then can be written as a scalar
product of a Gaussian rand matrix and the mask:

A ¼ randðm; nÞ ×Mt: (22)

A binary mask is created using the location information of
the dynamic segments. By rewriting Eq. (4), the number of
measurements M3 are assigned based on

M3 ¼ logðnÞ∕½ε∕ðC · SÞ�2p∕ðp−2Þ; (23)

where n is the sum of ones in the mask, S is the sparsity index
of the last segmented frame dynamic area inside the mask, ϵ
is the reconstruction error bound, C is a constant value de-
pendent on the correlation between the sampling and basis
matrix, and p is taken as 2∕3. The number of measurements
k is bounded below by 0.3n and bounded above by 0.6n.

In order to form a measurement matrix, we need to trans-
mit the information about segments corresponding to each
pixel. The location of each segment is shared with the
encoder after resegmentation is performed at the decoder
end. Therefore, the bandwidth required per frame depends
on the resegmentation interval and estimated number of seg-
ments required using contrast and variance information from
Eqs. (12) and (13). We calculate the measurements required to
transmit the information using the relationship shown here:

Algorithm 1 Adaptive CS for Video Acquisition Using SPC.

1. Acquire the number of measurements for the first frame according
to Eq. (4).

2. Divide the frame into a number of segments that maximize contrast
and minimize variance within the segments and calculate the vector
SegAvgyp

ðtÞ ¼ 1
Sp

P
i ;j∈yp

x i;j , where yp is the set of pixel locations in a

segment, p ¼ 1; 2; : : : ; F , sp is the number of pixels in yp , and t is the
frame number.

3. Measure SegAvgyp
ðt þ 1Þ ¼ 1

sf

P
i ;j∈yp

x i;j and select p, for which
jSegAvgyp

ðtÞ − SegAvgyp
ðt þ 1Þj > α, where α is the change

threshold determined by unimodal thresholding.

4. Draw a circle circðcenyp
; radpÞ, where radp is greater than the

distance between the center and the farthest pixel in the segment.

5. Define sectors θ from ðk − 1Þπ∕4 → kπ∕4, where k ¼ 1; 2;3; : : :8.

Measure each PartAvgθk ðyp; tÞ ¼ 1
sp

Pi ;j<radymaxp

i ;j>yp
x i;j and find all ranges

of θ for which jPartAvgθk ðyp; tÞ − PartAvgθk ðyp; t þ 1Þj > β, where β is
a fixed threshold, and update the motion vector for each yp .

6. Update the segment locations based on the calculated magnitude
and direction of significant motion vectors and form a mask covering
the dynamic area.

7. Calculate the number of samples required for reconstruction using
Eq. (4).

8. Form ameasurement matrix as A ¼ Mask × randðm;nÞ and use the
measurements for reconstruction.

9. Go to step 3 if the area under the mask is less than a predefined
dynamic area. Start from Step 2 if area is greater than the dynamic
area using same number of clusters estimated using first frame and
same threshold value in step 3.
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M1 ¼ Total Number of pixels

ðbit depth − bits req to represent segmentsÞResegmentaion interval
; (24)

where M1 is the number of measurements per frame
used to transmit the mask. The number of measurements
required for motion estimation is calculated using the
following equation:

M2 ¼ direction resolution × Avg:dynamic segments∕frame

þ No: of segments; (25)

where M2 is the number of measurements per frame
required to estimate the motion of dynamic segments.
These measurements are used at the encoder to generate
a new mask and transmitted from encoder to decoder for
updating the mask at the decoder for reconstruction. The
total number of measurements can be expressed as

M ¼ M1þM2þM3:

After acquisition of the measurements from the dynamic
area, we use the total variation minimization algorithm for
estimation in a manner similar to Eq. (8):

minimizekxkTV subject to y ¼ Ax: (26)

All the dynamic pixels are replaced by new estimates and
static pixel values are taken from the previous frame:

ftþ1 ¼ Mc
t · ft þMt · x;

where Mc
t is the complement of Mt.

When the area under the mask is less than a predefined
percentage of the whole frame κ averages for each segment
are measured and any segment other than the previously
selected segment with a changed average above the threshold
is included in the mask. Above-threshold segments are proc-
essed further for motion detection and mask creation for the
next frame. Re-segmentation is performed when the κ value
jumps above a predefined percentage.

We have found this scheme efficient for surveillance
videos with complex background and slow changes.
Masking the static background using segmentation reduces
the number of pixels to be estimated with greater precision,
thereby increasing the performance of the reconstruction
algorithm.

4 Simulations and Analysis
In the experimental studies, we first show the variation of
subrate and PSNR for the proposed technique. Simulated
and real videos were obtained for this study. Each video
was created or downsampled to a size of 64 × 64 pixels
per frame. The machine used for simulation has a 2.4-
GHz processor and 4-GB RAM. The simulated videos are
of a human-shaped object moving linearly across a uniform
background at different speeds. The real videos are taken
with a thermal infrared camera and show animals moving
at different speeds under the control of human handlers.
These videos are representative of the types of scenes

expected to be encountered in a practical implementation
of our algorithm in a sensor. The quantization is assumed
to be 16 bits for calculation of M1 and M2. The subrate
is controlled by varying the multiplicative constant Cm
from 0.1 to 0.8 in the following expression M3 ¼ Cm × n,
where n is the sum of ones in the mask. The κ threshold
was set at 0.1 for simulated video and 0.5 for real video
sequences. Here, values of κ are chosen according to the
changes in video. This also show the effect of κ on the num-
ber of motion estimation (ME) and mask measurements. All
measurements are averaged over 30 frames. The results are
shown in Table 1 for a simulated video and real video and
plotted in Fig. 7. The ME measurements for simulated video
are less due to the complexity of scene. Mask measurements
are high due to a smaller percentage of area threshold. In real
video, the mask measurements are less due to a higher per-
centage of area threshold and ME measurements are high
due to a greater number of segments selected to separate
the foreground and background.

In order to demonstrate the performance of the proposed
technique, we performed a simulation using simulated and
real video sequences and recorded the PSNR and the
subrate used for each frame. In simulated videos, temporal
changes are varied for eight video sequences over a mini-
mum to a maximum range of temporal changes. The texture
in each frame is kept to a minimum in order to minimize
the number of segments required for separating foreground
and background. A random two-dimensional signal with
10−4 variance is added to each frame as well to simulate
small changes. Change is calculated based on the following
expression:

Δ ¼ MSE½fðt − 1Þ; fðtÞ�: (27)

The subrate and PSNR is recorded for each reconstructed
video sequence and compared with intraframe TV, frame
differencing, and BCS-SPL-CT methods. Real videos were
recorded using a longwave infrared camera in a fixed posi-
tion in a natural environment. The video is of an animal
passing through the field of view at different speeds con-
trolled by a human.

The proposed method reduces the computational com-
plexity of the reconstruction algorithm and produces a
frame in less time than the other methods when the change
is below a threshold. It adapts the subrate according to the
changes in a video. An average subrate over 30 frames for a
particular video using our proposed method is used for
reconstruction using the other methods. The time require-
ments and PSNR for intraframe TV and BCS-SPL-CT are
irrespective of the changes in the video but depend on the
subrate. As mentioned before, the subrate of our adaptive
method is passed to the other methods for reconstruction,
which changes the PSNR and time accordingly. There-
fore, we have used a ratio of PSNR to seconds per frame
in order to demonstrate the performance comparison. As
shown in Fig. 8, the ratio is the maximum for least change
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for our proposed method and the differencing algorithm and
drops as the change increases.

The PSNR is also compared to the existing methods and it
is noted that results using the proposed method holds the
PSNR value in the 2-db range, while other algorithms
PSNR drops as the temporal changes are decreased. The

reason for the drop is the use of an adaptive subrate required
by the proposed method which adapts to less changes while
the other algorithms, with the exception of differencing,
reconstruct irrespective of changes in a scene. The change
in subrate required by our proposed technique is not pro-
nounced in the simulated video as compared to real videos.

Fig. 5 (a) Foreman frame. (b) Segmented foreman frame. (c) One of the changed segment partitioned into eight parts. (d) Area outside the segment
partitioned into eight parts.(e) PartAvgθk ðy f ; tÞ − PartAvgθk ðyf ; t þ 1Þ for same x . (f) Direction of movement.
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This affects the performance of the other algorithms curves
in both cases. The differencing algorithm shows a less steep
downward trend compared to our proposed algorithm.

Figure 9 shows five frames from four original and
reconstructed simulated videos with D increasing from the
top down, following the increased speed of the object.
Figure 10 shows five frames from four original and

reconstructed real videos, recorded at a trail using a long-
wave infrared camera. The κ threshold was kept at 0.3
and 0.5 for simulated and real video, respectively, for
reconstruction. The parameter C as empirically chosen to
be 1.5 and ϵ was taken to be 0.1. The parameter S was cal-
culated based on a threshold taken as 0.13 in Eq. (23). The
first real surveillance video was reconstructed with about 6%

Fig. 6 (a) A dynamic segment of Foreman video. (b) Initial segment position, PartAvgθ¼45°ðyf ; tÞ. (c) Segment position incremented in a single
direction and PartAvgθ¼45°ðy f ; tÞ for x i1 ;j1 . (d) Another segment position PartAvgθ¼45°ðyf ; tÞ for x i2 ;j2 . (e) PartAvgθk ðyf ; tÞ − PartAvgθk ðy f ; t þ 1Þ for all
θ. (f) Final dynamic area for measurements.
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of the measurements necessary for each frame on average,
compared to traditional raster scanning. The number of sam-
ples falls to only 1% for a few frames where most of the
dynamic area over the whole frame is below threshold.
These measurements are used to reconstruct only the
dynamic area, which is on average about 25% per frame
for this video. This takes the computational load from the
optimization algorithm, hence improving the time required
for reconstruction. This number can be further improved
if we assign some parameters, such as a threshold and num-
ber of clusters, individually to each sequence based on the
characteristics of the sequence. Basically the scheme tracks
an object once it is detected in motion. Prediction of the
direction and magnitude of motion enables us to assign
measurements strategically and improve reconstruction
efficiency. Due to the shape and texture of segments, some
static areas are picked up and some dynamic areas fall
below threshold. The algorithm checks for change before
collecting measurements and incorporates the new dynamic
areas in the next frame so that there is minimal residual error

Table 1 The breakup of subrate into measurement of mask transmis-
sion (M1), ME (M2), and scene measurements (M3) for a simulated
video sequence and a real video sequence.

Sr. No. M1 M2 M3 M Subrate PSNR

Simulated video sequence

1 82 10 149 241 0.05 27.8

2 82 10 176 268 0.06 28.9

3 82 10 201 293 0.07 35.5

4 82 10 247 339 0.08 42.7

5 82 10 327 419 0.102 44.5

6 82 10 340 432 0.105 49

7 82 10 355 447 0.109 50

8 82 10 399 491 0.119 52.5

Real video sequence

1 63 60 162 285 0.069 27.2

2 63 60 272 395 0.096 29.5

3 63 60 331 454 0.110 32.7

4 63 60 366 489 0.119 35.2

5 63 60 571 694 0.169 37.2

6 63 60 574 697 0.169 38.4

7 63 60 768 891 0.217 39.9

8 63 60 827 950 0.231 40

Fig. 7 The PSNR-to-subrate curve for simulated video sequence and
real video sequence.

(a)

(b)

Fig. 8 PSNR/time versus temporal change curves for (a) simulated
video sequence; (b) real video sequence.
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accumulation. The residual error may accumulate in areas
classified as static. In all test cases in this study, the errors
were removed within a few frames.

Our interest in CS techniques is in applying them to prob-
lems related to surveillance videos. Most researchers apply-
ing CS to video are interested in a more general application
of this technique to all types of video. The videos we used
represent the types of videos that we expect to encounter in
our applications. However, our restriction to these types of
videos leaves open the question of how our technique would
work against more traditional video sequences. To address
this question, we show the results for the Foreman video
sequence in Table 2. This video was downsampled to the
same 64 × 64 pixel size as used for the other videos. This
video is very different in character from the ones shown
previously in this article. The amount of change between
frames as indicated by the D parameter is an order of
magnitude bigger. As with most of the other videos, our
technique has PSNR values second only to the frame
differencing method. However, the Block CS technique in
this case outperforms our method significantly with respect
to execution time. This is to be expected since our algorithm
scales with the number and size of segments changing,
and there is a significant amount of change in this video.

The Block CS method uses Contourlets as a sparsifying
transform and seems to be more effective when the
changes are larger. Since reconstruction in Block CS is
done in the sparse domain and then transformed, this
indicates that the Foreman video possess greater sparsity in
this domain than the other videos used in this study. While
this indicates that our algorithm loses performance for the
conditions inherent in the Foreman video, the prior results
presented in this article indicate that Block CS loses
performance when the change in videos is small. A full
exploration of the reasons for this behavior is left for future
study.

In order to see effects due to segmentation, the number of
segments was varied keeping the parameter κ constant.
PSNR was recorded against total subrate, which is the
sum of scene measurements, ME measurements, and mask
transmission measurements and is plotted in Fig. 11. The
numbers above the points in Fig. 11 represent the number
of segments used. The PSNR does trend upward with
an increase in subrate, but is not strictly monotonic func-
tion of subrate. There is very little apparent relationship
between the number of segments and PSNR. ME measure-
ments and mask transmission measurements are directly
related to the number of segments for simulated and real

Fig. 9 (a) Simulated motion of person across a frame at different
speeds increasing from top to bottom. (b) Reconstructed frames of
simulated motion in (a).

Fig. 10 (a) Real videos of animals walking across a frame with
increasing MSE top to bottom. (b) Reconstructed videos frames in (a).
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videos but they do not appear to directly relate to PSNR.
Each video has an optimal number of segments for which
PSNR is maximum. We believe that PSNR is primarily
reflecting the characteristics of the segmentation algorithm
used. As a result, further analysis was deemed outside the
original scope of this paper and will be pursued in future
research.

After mask transmission and until resegmentation, meas-
urement allocation in our algorithm is performed at the sen-
sor level with less complexity and higher speed than previous

methods. The method is adaptive to the complexity of the
scene. A change in average from a previous frame is calcu-
lated before sampling. At the decoder, only dynamic pixels
are reconstructed reducing the complexity by the number of
static pixels. Some methods based on motion estimation
and motion compensation, such as ME/MC BCS-SPL
and MH-BCS-SPL, accumulate the measurements for a
series of frames and perform reconstruction of all frames
simultaneously.6–8 The method proposed here reduces the
complexity of the optimization process used in recon-
struction not only by single frame reconstruction, but also
by reconstructing only the dynamic area of each frame.
Scenes where the dynamic area is small and the motion is
not complex can be potentially reconstructed in real time.
The resegmentation interval is adaptive to the complexity
and the spread of motion in a video as shown in Tables 3
and 4, thereby reducing the computational requirements
for segmentation. In addition, if the slow change assumption
holds, segmentation of previous frames can be used for
forming the mask and performing motion estimation, which
removes the constraint of generating new masks after
reconstruction.

In a feature comparison to existing adaptive block-based
techniques, which require optimization of measurement allo-
cation before each frame on the decoder side, this technique
can acquire a number of frames with far less computational
time required on the encoder side depending on the dynamic
areas spread in the scene.11 We have observed that if the seg-
mentation is of good quality then this method is efficient for
surveillance videos in terms of computations and sampling
efficiency.

In this study, we have taken the last reconstructed frame
for resegmentation but in order to avoid latency due to the
segmentation process, we can also make it a parallel back-
ground process. Segmentation can be performed after each
reconstruction, and the last available segmented frame before
the mask area upper bound is reached can be used to avoid
any delays in making measurements. This scheme basically
reduces computations by load sharing between two routines.
It can be further improved by implementing better parameter
estimation techniques and by optimizing the process of
measuring averages for motion detection. The TV minimiza-
tion package used for reconstruction in this paper had the
parameters shown in Table 5.29

In order to give an overview of computational time
requirements to realize this technique, we calculated some
values based on the first real video results. The nominal flip-
ping rates of 200 ns for a micromirror array are taken from
the advertised specifications of the device.30 The sampling
and transmission is assumed to be performed at the same
rate. The total time for measurement acquisition, motion esti-
mation, mask update, and transmission latency is calculated

Table 2 Foreman video sequence comparisons with three other methods.

Video Δ M1 M2 M3 M Subrate

Adaptive CS Intraframe CS Frame differencing Block CS

PSNR t s Ratio PSNR t s Ratio PSNR t s Ratio PSNR t s Ratio

Foreman 3.4 136 168 989 1294 0.32 27.2 3.4 7.8 25.4 3.3 7.6 33.5 12.1 2.7 23.5 0.9 25.1

(a)

(b)

Fig. 11 PSNR variation with subrate by changing number of seg-
ments. (a) Simulated video. (b) Real video, the number beside
each data point shows number of segments used.

Journal of Electronic Imaging 021013-13 Apr–Jun 2013/Vol. 22(2)

Noor and Jacobs: Adaptive compressive sensing algorithm for video acquisition. . .



Table 3 Simulated video sequence comparisons with three other methods.

Δ M1 M2 M3 M Subrate

Adaptive CS Intraframe CS Frame differencing Block CS

PSNR t s Ratio PSNR t s Ratio PSNR t s Ratio PSNR t s Ratio

1 1.15 36 38 199 273 0.066 37.7 0.95 39.5 35.8 1.83 19.5 45.7 2.9 15.4 14.1 5.2 2.67

2 1.2 36 38 205 279 0.067 38.4 0.96 39.7 36.1 1.9 19 45.6 2.83 16.04 14.19 5 2.83

3 1.25 36 38 215 288 0.073 38.5 1.03 37.2 36.5 1.93 18.8 45.5 2.9 15.6 15.8 5.3 2.98

4 1.27 36 50 220 306 0.074 38.7 1.1 35.1 36.9 1.93 19.0 45.7 2.96 15.4 15.7 5 3.14

5 1.28 36 50 221 307 0.074 38.5 1.13 33.9 37.1 1.96 18.8 45.7 3 15.2 15.78 5.5 2.85

6 1.33 36 50 225 311 0.075 38.8 1.18 32.8 37.5 1.96 19.0 45.6 3.2 14.25 15.7 5.13 3.05

7 1.44 36 50 230 316 0.077 39.5 1.2 32.7 37.6 1.96 19.11 45.3 3.3 13.45 15.12 5.3 2.85

8 1.48 36 50 235 321 0.078 39 1.23 31.6 37.8 2.03 18.5 45.2 3.4 13.29 15.6 5.03 3.09

Table 4 Real video sequence comparisons with three other methods.

Δ M1 M2 M3 M Subrate

Adaptive CS Intraframe TV Frame differencing Block CS

PSNR t s Ratio PSNR t s Ratio PSNR t s Ratio PSNR t s Ratio

1 0.3 49 50 179 278 0.06 34.9 0.73 47.5 23.4 1.63 14.3 46.3 2.4 19.2 17.3 4.6 3.7

2 0.35 49 50 221 320 0.07 33.8 0.9 37.5 24.6 1.73 14.19 45.7 3.03 15.0 16.9 4.06 4.15

3 0.37 49 50 324 423 0.10 33.1 1.2 27.5 26 2 13 45.7 4 11.4 21.2 3.7 5.6

4 0.39 49 63 346 458 0.113 32.1 1.3 24.6 26.3 2.3 11.4 44.8 4.3 10.4 19.1 3.8 5.02

5 0.41 49 63 361 473 0.115 36.1 1.36 26.4 25.5 2 12.7 44.3 4.43 9.99 18.3 3.8 4.8

6 0.44 49 63 376 488 0.118 32.1 1.4 22.9 27.5 2.06 13.3 45.02 4.93 9.1 22.4 3.1 7.14

7 0.5 49 63 373 485 0.118 31.4 1.5 20.9 26.8 2.2 11.8 40.7 5.1 7.9 21.2 3.0 6.91

8 0.55 49 63 408 520 0.12 33.6 1.6 20.16 26.3 2.3 11.4 41.7 5.4 7.7 19.7 3.4 5.79

Table 5 Parameters used for TV minimization.

Parameter Value

opt.mu 28

opt.beta 25

opt.tol 1 × 10−3

Opt.maxit 300

opt.TVnorm 1

opt.nonneg true

Table 6 Computational time bounds for real-time reconstruction.

Task Analytical time
Time

requirement (ms)

Measurement
acquisition

M3 × sampling rate 0.09

Motion
estimation

M2 × sampling rateþ
subraction time

0.0009

Mask update transmission rate ×M1 0.0002

Transmission
latency

ðM1þM2þM3Þ×
sampling rate

0.10

Reconstruction jj
Segmentation

0.33 − Total time 320

All <0.33 s
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and subtracted from the minimum time to render a frame for
real-time streaming. This time bound can be used to com-
plete reconstruction and segmentation in parallel. The results
are listed in Table 6.

To summarize the important points: in the proposed tech-
nique, after mask transmission and until resegmentation, the
measurement allocation is performed at the sensor level
with less complexity and high speed. The method is
adaptive to the complexity of the scene. A change in average
from the previous frame is calculated before sampling. At
the decoder, only dynamic pixels are reconstructed, reducing
the complexity and thereby increasing the efficiency of
reconstruction algorithms.

5 Conclusions and Future Work
We have discussed in this article a new scheme to acquire
measurements for video reconstruction. We found this
scheme useful for temporal compression in videos with
static background and slow foreground changes over time.
Depending on the video, this scheme is able to decrease
reconstruction time and computations compared to some
existing sampling techniques. Furthermore, the motion
estimation is very efficient from a hardware implementation
perspective. However, while we believe that we have made a
good case that the computational burden of this algorithm is
actually less than most other CS techniques for video, it
should not be compared to traditional video compression.
Given the fact that memory is inexpensive, visible band cam-
eras are inexpensive, and hardware coding/decoding is fairly
inexpensive for traditional video devices, the desirability of
any CS technique is limited for visible band sensors.
However, our scheme can prove useful at wavelengths where
an array of sensors is expensive, and single-pixel detection is
the most cost-efficient method for producing video. Examples
would include terahertz sensors31 and perhaps infrared.32

The gains from this scheme can be applied to reducing
reconstruction time and computational requirements or
increasing frame rates for video imaging at wavelengths
where sensor arrays are expensive. In order to improve
the results shown here, use of spatial sparsity transform
domain knowledge incorporated with the sampling matrix
could prove fruitful. Further studies of the impact of param-
eters such as the radius of the circle and shape to encircle
should also be performed. The motion estimation scheme
can be optimized to use least averages for predicting the
direction. Further, other robust methods can be investigated
for parameter estimation. Noise should be taken into consid-
eration to study the effects on performance and a denoising
scheme designed for and applied to reducing the artifacts due
to quantization and detection noise. We are constructing a
hardware simulator of a single-pixel camera device for test-
ing and further development of this algorithm.
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