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Abstract. Typically, the initial task of classifying indoor scenes is challenging, because the spatial layout and
decoration of a scene can vary considerably. Recent efforts at classifying object relationships commonly depend
on the results of scene annotation and predefined rules, making classification inflexible. Furthermore, annotation
results are easily affected by external factors. Inspired by human cognition, a scene-classification framework
was proposed using the empirically based annotation (EBA) and a match-over rule-based (MRB) inference sys-
tem. The semantic hierarchy of images is exploited by EBA to construct rules empirically for MRB classification.
The problem of scene classification is divided into low-level annotation and high-level inference from a macro
perspective. Low-level annotation involves detecting the semantic hierarchy and annotating the scene with a
deformable-parts model and a bag-of-visual-words model. In high-level inference, hierarchical rules are
extracted to train the decision tree for classification. The categories of testing samples are generated from
the parts to the whole. Compared with traditional classification strategies, the proposed semantic hierarchy
and corresponding rules reduce the effect of a variable background and improve the classification performance.
The proposed framework was evaluated on a popular indoor scene dataset, and the experimental results dem-
onstrate its effectiveness. © 2016 SPIE and IS&T [DOI: 10.1117/1.JEI.25.2.023008]
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1 Introduction
Alongside the rapid development of imaging techniques, the
amount of visual information has increased significantly,
providing richer data sources for image tasks such as
image annotation, retrieval, and classification.1,2 Manually
categorizing these visual data has thus become an almost
impossible mission. Consequently, developing efficient tools
for automatic scene analysis has drawn considerable atten-
tion. Scene classification is one of the primary goals in
computer vision, involving many subtasks, such as depth
estimation and object detection and recognition. These sub-
tasks have been studied intensely over the past few decades,
and there is still ample room for improvement.3 In general,
scene classification refers to the process of learning to
answer a “what” question from a given sample, where the
answer is naturally determined by what objects a scene con-
tains. Classifying indoor scenes is challenging, and there are
no universal models for describing such scenes.4,5 This is
because the layout and decoration of indoor scenes vary con-
siderably, and the classification performance is easily
affected by environmental factors. As a result, indoor scenes
are more confusing, and they are often difficult even for
human to classify.

Algorithms for scene classification can be roughly di-
vided into two types: traditional and bioinspired methods.6

Traditional methods use visual features to classify a scene,
and this strategy can be further divided into three strategies.
The first strategy is based on low-level features for classifi-
cation, such as color, texture, and shape.7 This strategy is

effective, provided that there are only a small number of cat-
egories. The second strategy is devoted to the development
of high-level features from a global perspective. This is done
by treating the image as a collection of image blobs, and by
introducing more descriptive features for precise scene
classification.5,8,9 This strategy is suitable for a larger number
of learning samples. The third one is to introduce semantic
features to address the problem of a semantic gap.10,11 In
addition to low-level-based models, researchers have applied
existing cognitive models such as the human visual system to
computer-vision applications to further improve perfor-
mance, and this have been proved effective.12–14 This strat-
egy is popular for visual tasks, including field-of-action
recognition, image processing, and scene classification.12,15–22

Last but not least, rule-based systems can also be used to
solve the problem of classification.23

Previous research in scene classification commonly used
the entire image and a predefined knowledge base for clas-
sification, restricting performance, and flexibility. Inspired
by the human visual system (HVS), the hierarchical structure
of scenes, and rule-based inference for determining the cat-
egory of a scene were investigated and a hierarchy-associated
semantic-rule inference (HASRI) framework was proposed
in this paper. With the proposed framework, semantic
hierarchies are extracted by deformable-parts model24 and
bag-of-visual-words (BoVW)25 in order to construct the rules
used to train a decision tree. This decision tree is responsible
for inferring the general category of the scene according
to hierarchical semantics of testing samples. Our approach
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is highly modularized and suitable for other related applica-
tions such as image retrieval and understanding.

The remainder of the paper is organized as follows.
Related work is introduced in Sec. 2. Then the bioinspired
HASRI indoor scene-classification framework is proposed in
Sec. 3. Experimental results are provided in Sec. 4. Finally,
ongoing and future work is summarized in Sec. 5.

2 Related Work

2.1 Object Detection and Classification
Object detection and classification are both active research
topics in computer vision. The discriminative part-based
model (DPM) proposed by Felzenszwalb et al.24 is a famous
object detection approach that models unknown part posi-
tions as latent variables in a support vector machine
(SVM) framework. The model contains three parts: histo-
gram of gradients (HoG) features, the part model, and the
latent SVM. Significant object detection performance has
been achieved on the PASCALVOC dataset. Roughly speak-
ing, the model can be considered as an improvement over the
original HoG by calculating and combining object templates
of different scales. Although DPM can solve the problem of
pose change to some extent, the computation cost is rela-
tively high. Thus, Felzenszwalb proposed the method for
building cascade classifiers for the DPM model to signifi-
cantly improve its detection speed.26

Object classification is a rapidly developing subfield of
computer vision and machine learning. Existing work can
be roughly categorized into two types:27 low-level visual fea-
tures and semantics. Low-level features include color, shape,
texture, and so on.28–32 One of the most common and effec-
tive methods for object classification using low-level visual
features is BoVW33 model. An image is treated as a collec-
tion of unordered appearance descriptors extracted from
local patches. These are then quantified with discrete visual
words by applying k-means clustering to the local features in
order to construct a histogram of the bag-of-feature (BoF)
that represents the image. Classifiers are then trained with the
BoF for categorization. The combination of a BoVW and a
scale-invariant feature transform (SIFT)34 algorithm is one
classic method for classifying images. Methods based on

low-level features cannot suitably bridge the semantic gap
between low-level features and manually supplied semantic
concepts.35 As a result, semantic approaches were proposed
to solve the problem caused by the semantic gap. With
this type of approach, semantic layers are constructed to nar-
row semantic gap and to generate an improved visual
vocabulary.36 In one previous study of Jaimes,37 descriptive
semantics can be classified into several levels: type, global
distribution, local structure, global composition, generic
objects, generic scene, specific objects, specific scene,
abstract objects, and abstract scene. Because it is natural and
human-like to represent semantic concepts abstractly,38 it has
become increasingly popular to organize and express seman-
tics in a hierarchical manner.39–44

Combining multiple high-level knowledge representa-
tions in classification tasks is one approach that is receiving
growing interest. However, there are two main drawbacks.
The first is that there are no effective universal models for
describing the knowledge of a scene with traditional classi-
fication tasks. Thus, effectively and uniformly modeling
abstract semantics requires further investigation. The second
drawback is that, since the knowledge of a scene cannot
be directly extracted from images, it is commonly prede-
fined, leading to an inflexible classification process, because
knowledge rules cannot be updated during the learning
process.

2.2 Human Visual System
Roughly speaking, HVS is built upon the combination of
receiver (the eyes) and a processor (the brain). The cognitive
process of HVS can be shown as shown in Fig. 1, where
long-term memory (LTM) function as a huge knowledge
warehouse that serializes all kinds of information, and short-
term memory (STM) is a much smaller volatile storage
space, acting as the initial location when handling short-
term knowledge learned from environmental stimulations.45

The HVS can be roughly divided into three successive stages:
encoding, representation, and interpretation.15 Encoding is the
lowest-level stage in vision, and it involves converting light
into electric signals. During the second stage, the representa-
tion of the encoded image is tuned to the specific character-
istics of the visual signal. Enlightened by these biometric
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Fig. 1 The human inferential process.
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characteristics, bioinspired visual models have been investi-
gated in computer vision14,46 over the past few decades.
Huang et al.14 proposed a robust and efficient method for
scene classification based on human visual cognition.
Rebai46 designed robotic visual memory and spatial cogni-
tion by exploiting characteristics of the human brain.

Typically, when more objects are detected, there is more
information that can be provided during the learning process
to improve the performance. To understand a scene, informa-
tion at multiple levels should be integrated, and the inter-
actions between scene elements should be analyzed.47

However, not all objects can be detected with existing meth-
ods, because the quality of images can be affected by several
factors, such as the angle and the intensity. This problem is
commonly ignored by most previous research. In this paper,
semantic hierarchical structure is used to detect more objects
in a scene. Different hierarchies are detected, and their
semantics are used to construct the decision tree to classify
scenes. Here, the hierarchies are used to represent objects
located in different positions, and the categories of the
objects are called semantics. Combination of different hier-
archies forms the hierarchical structure. This is beneficial for
scene classification, reducing environmental constrains and
simplifying the implementation to improve the performance.
These phenomena are shown in detail in Fig. 2.

2.3 Rule Establishment and Inference
Rule mining is a field driven by strong interests. The purpose
of rule mining is to recognize the strong database rules with
different measures of so-called “interestingness.” By analyz-
ing symbolic data, comprehensible patterns or models in data
are discovered. After decades of study, several mining algo-
rithms have been proposed, and these can be typically cat-
egorized as two techniques:48 predictive and descriptive
induction. For predictive induction, models are trained to
predict unseen examples. The aim of descriptive induction,
by contrast, is to find comprehensible patterns in unlabeled
data. These two techniques are commonly investigated by
different research communities: the machine-learning com-
munity targets predictive induction, and the data-mining
community deals with descriptive induction.

With the development of image analysis, there has been
an increasing interest in knowledge-based approaches to
interpreting and understanding image sequences. To over-
come problems such as the semantic gaps, knowledge-based
classification methods have been developed with amplified
descriptive abilities. Visual knowledge comprises terms that
describe labeled instances in scenes, objects, actions, and
attributes, along with the contextual relationships between
them.49 Knowledge representation and reasoning belong to

Objects detection Objects annotation

Upper hierarchy 
(window)

Lower hierarchy 
(bed)

Traditional 
methods

Proposed 
methods

Rule inference 
(window + bed = bedroom)

Rule 1

Rule 2

Rule n

Fig. 2 A simple example of scene annotation achieved by human and computer. The upper and lower
results, respectively, represent results of human and computer. It is obvious that one of the natural
advantages of humans over computers is the ability of object detection. It is easy for humans to detect
and annotate all objects in a scene even from a single image, while due to the environmental factors such
as the position of camera, some objects cannot be detected by existing algorithms. A hierarchical struc-
ture based on DPM for scene classification was introduced to overcome this disadvantage. Scene clas-
sification is achieved by rule inference constructed dynamically from the hierarchical structures of training
data.
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the field of artificial intelligence and are used to solve com-
plex tasks by analyzing how knowledge can be represented
symbolically, and automatically manipulated with reasoning
programs. This field is at the very core of a radical idea about
how to understand intelligence.50 For visual problems, expert
systems are designed to solve problems by reasoning about
knowledge that is represented primarily as if-then rules 51 or
first-order production rules.52 An expert system is usually
divided into two subsystems: an inference engine and a
knowledge base. The inference engine utilizes known rules
generated by extracted features for deducing new facts.53

Bischof and Caelli54 first investigated a knowledge-based
object-recognition problem using machine learning tech-
niques. Zhou et al.55 proposed a supervised rule-based video-
classification system using low-level features for information
browsing and updating. Amato and Di Lecce56 studied the
problem of automatic knowledge generation in a content-
based image-retrieval system, for which a knowledge base
was constructed with fuzzy clustering algorithms and used
to exhibit the organization of an image during the retrieving
process. Ang et al.57 proposed an evolutionary algorithm for
extracting rules from a local intensity search scheme that
complemented the global search capability of evolutionary
algorithms. Xu and Petrou58 explored a hierarchical knowl-
edge system by designing logical rules for defining an object
by answering “why” and “how” questions to decide object
characteristics. Chen proposed49 a system called never end-
ing image learner to automatically extract and enrich visual
knowledge bases from the internet without interruption.59

Porway et al.60 proposed a knowledge architecture that intro-
duced an illuminative nonrecursive hierarchical grammar
tree to predict the categories of objects in an image, signifi-
cantly reducing the difficulty involved in constructing a
knowledge base.

The goal of knowledge-based systems is to amass the
information needed for inferences, and these systems benefit
significantly from advances in knowledge representation.
The main drawback to such systems is that it is difficult to
extract and add knowledge to the base. The knowledge base
should only contain correct items, and this must be verified,
restricting the performance of the overall system.61 Mean-
while, it is challenging and tedious to construct a knowledge
base using existing rules exclusively. Moreover, it is inevi-
tably problematic to construct a dynamic knowledge base
that adaptively recognize scenes. In this paper, dynamic rule
base is constructed from visual data with a series of prepro-
cessing steps, including detection and annotation. The frame-
work for solving this problem is presented later.

3 Hierarchy-Associated Semantic-Rule Inference
Classification Framework

Seeing is not the same as understanding. Obtaining an image
is just one small step in the process of acquiring the infor-
mation associated with it, yet much work remains to be done.
Regarding the similarity of an indoor scene, it is often con-
sidered globally by analyzing the entire image. However, this
approach is sometimes inappropriate, because only part of
the image is similar. This is often ignored in previous studies
of indoor scene classification. It is common for both similar
and dissimilar structures to exist in different indoor scenes,
owing to the fact that the same kinds of subscenes are
common among images. Indeed, similarity is double-edged.
On the one hand, it is important for training classifiers. On
the other hand, it risks confusing the classifier and resulting
in misclassifications. One reason that the problem of indoor
scene classification is challenging is that both similarity and
dissimilarity exists among different scenes. Samples of simi-
larities of images are shown in Fig. 3.

Inspired by the human inference process, a hierarchical
framework is proposed for scene classification. The process
of scene classification is divided into two steps: empirically
based annotation (EBA), and match-over rule-based (MRB)
inference. The function of EBA is analogous to human
vision, which is responsible for detecting and analyzing the
hierarchies of indoor scenes. The hierarchical structures are
used to train the classifiers. MRB inference is similar to
human decision-making when classifying an entire scene
according to the annotated results of EBA. The rules are con-
structed as knowledge in order to determine the category of
the scene. In short, EBA corresponds to human vision, and
MRB corresponds to decision-making, including both the
STM and LTM. Moreover, the environmental context is con-
sidered, encapsulating rich information about how natural
scenes and objects are related to each other. The co-occur-
rence of objects within a scene is also considered, facilitating
coherence to an interpretation of a scene.62 The proposed
HASRI indoor scene-classification framework is shown in
Fig. 4. Details of the hierarchical structure of indoor scenes
are provided in the following subsection. Here, hierarchies
and their corresponding semantics are explicit knowledge
that can help to reduce uncertainty for classification.41 When
talked about hierarchical semantics, it is the category of each
hierarchy assigned by categorization method we refer to. For
semantics hierarchies, the main body is the hierarchies with
corresponding categories. The term, HASRI, indicates that
images are described by detected hierarchies. The categories

Greenhouse Airport

Similar

Dissimilar Similar

Dissimilar

(a) (b)

Fig. 3 Samples of indoor scenes with similar and dissimilar hierarchies. We can see that due to the
context of indoor scenes, despite the number of hierarchies between different images, similar areas
are on the same hierarchies. Thus, although there exist similarities between different images, it is
still able to distinguish them by the areas that are not similar. Thus the similarities between different
scenes are related to corresponding hierarchies.

Journal of Electronic Imaging 023008-4 Mar∕Apr 2016 • Vol. 25(2)

Yu et al.: Hierarchy-associated semantic-rule inference framework for classifying indoor scenes



of the images are inferred by rules, which is constructed from
the hierarchical semantics.

3.1 Constructing the Hierarchical Structure of an
Indoor Scene

Before classifying an indoor scene, samples are prepro-
cessed, and the hierarchies are annotated for the subsequent
learning process. Hierarchical methods can be roughly
divided into two types: building hierarchical seman-
tics,36,39–41,63 and developing hierarchical models.33,60,64

Building hierarchical semantics is helpful for improving the
performance of image classification, making it easier to deal
with a large-scale dataset. Developing hierarchical models is
another way of describing the classification process in detail.
For hierarchical semantics, the abstract and common hier-
archy of a scene is seldom explored, limiting the ability
to further improve the accuracy. Thus, semantic information
from the hierarchical structure is introduced to the learning
process in order to improve the performance of scene clas-
sification. The scene is inferred by combining the hierarchi-
cal semantics of different levels. By exploiting the structures
of semantic hierarchies, rules can be flexibly established.
Three hierarchies were defined for an indoor scene according
to the context of the image: the upper, middle, and lower
hierarchies. These hierarchies represent their corresponding
objects: the ceiling, wall, and floor. There is an obvious

distinction between these three hierarchies. Each hierarchy
chiefly contains a single dominant semantics that constitutes
the rules for training the classifier for indoor scenes. This
observation is beneficial for rule construction. Samples of
the hierarchical structure of indoor scenes with different
number of hierarchies are shown in Fig. 5. For each
image, the number of hierarchies is determined by the detec-
tion results. The motivation for proposing this hierarchical
structure is to focus the classifier on objects located in differ-
ent parts of the image to improve the quality of the visual
words. Unlike traditional methods, the proposed framework
is able to reduce the interference between corresponding
hierarchies caused by similarity, two images can be distin-
guished insofar as their hierarchy is different.

The process of automatically hierarchy detection is shown
in Fig. 6 by using the discriminative-parts model (DPM).24

The detected blocks are extended according to their spatial
context in the image in order to acquire the hierarchical struc-
tures. First, the objects marked by yellow boxes are detected.
Here, the location relationships of detected areas are consid-
ered as the spatial context.62 All boxes will extend to both left
and right direction as best as possible. The extended areas
are marked by black dashed boxes. The remaining areas
are treated as corresponding hierarchies. The final hierarchi-
cal structure is shown in an image with solid colors. The
number of hierarchies varies according to the results of

Upper hierarchy (ceiling)

Middle hierarchy (window)

Lower hierarchy (seat)
Waiting area (with 
three hierarchies)

Lower hierarchy (painting)
Studio (with 

one hierarchy)

Middle hierarchy (screen)

Lower hierarchy (seat)
Theater (with 

two hierarchies)

Fig. 5 Sample of indoor scenes with different hierarchical structures.

Indoor scene Data pre-processing Rule matching Conclusion

MRB
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(Seeing)

Fig. 4 The framework of HASRI for indoor scene classification.
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Fig. 6 Sample of hierarchical structure of an indoor scene.
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object detection. After area extension, relative location infor-
mation can be included in the corresponding hierarchies,
improving the quality of hierarchies and simplifying the
whole process.

3.2 Rule Construction
After annotating all of the hierarchies, the rules for inferring
the category of an indoor scene are generated. This process
will be described in the following subsections.

3.2.1 Mining for knowledge-rules

With the explosively growth of information, the scale of
databases has growing rapidly. During the past two decades,
research on knowledge mining has progressed from the prob-
lem of how to extract valuable information from large-scale
datasets to the introduction of machine learning theories,
expert systems, pattern recognition, and so on. Among this
research, one of the most successful methods for rule learn-
ing is a decision tree. Decision trees construct rules for data-
bases using mining techniques.65,66 For our work, C4.567 was
chosen as the decision-tree learning algorithm. In Fig. 5, infer-
ential rules can be generated by combining the semantic infor-
mation provided by their hierarchical structures as follows:
EQ-TARGET;temp:intralink-;e001;63;490

IF ðupper Hierarchy¼ lightÞ∨ðmiddle Hierarchy

¼windowÞ∨ðlower Hierarchy¼seatÞ
THENCategory¼airport

IF ðupper Hierarchy¼ lightÞ∨ðmiddle Hierarchy

¼boardÞ∨ðlower Hierarchy¼computerÞ
THENCategory¼computerˍroom: (1)

Missing hierarchies (not arbitrary values) are represented by a
question mark (“?”). For example, if there are only upper and

lower hierarchies for the categories “window” and “seat,”
respectively, in an “airport,” then the rule can be described
as follows:
EQ-TARGET;temp:intralink-;e002;326;719

IFðupper Hierarchy ¼ windowÞ ∨ ?

∨ ðlow Hierarchy ¼ seatÞ
THEN Category ¼ airport: (2)

The algorithm for generating a decision tree for indoor
scene classification is provided in Algorithm 1. There are
two advantages to our method that result in an improved
classification performance compared to previous works that
use a spatial pyramid8 for the local geometric correspon-
dence of subregions. First, images are marked as different
hierarchies according to the features of indoor scenes in
order to improve the quality of the visual words for better
annotation results. Second, a decision tree trained with
semantic hierarchies was used to combine local category
information for classification. Here, the local category infor-
mation is the semantics of hierarchies, i.e., the annotated cat-
egories of hierarchies, while the relative location information
is the spatial location of detected objects. Take Fig. 5 as
example. For the waiting area, there are three semantic hier-
archies, upper, middle, and lower hierarchies. The upper
hierarchy is assigned a local category information, ceiling.

3.2.2 Updating rules

Our proposed framework involves constructing a dynamic
set of rules during the learning stage, rather than relying on
a predefined set of rules. Figure 7 shows this process. For
each training image in the leftmost column of Fig. 7, the hier-
archies—marked by solid and dashed lines—are first con-
structed by detecting and annotating images with the
DPM and the BoVWmodel, respectively. After the detection
process, the corresponding rules with hierarchical semantics

Algorithm 1 The decision tree learning algorithm DTGenðDÞ.

Require: Rule set D.

Ensure: Decision tree T .

1: Build attribute set from D by the local and overall categories of different hierarchies and samples. ▹ Preprocessing of samples

2: Train the classifiers of the annotation module with D.

3: for each attribute ai ∈ A do ▹ Decision tree construction

4: Compute information gain of ai .

5: end for

6: Select the abest from A. Create a decision node Nbest in the root to test abest in 3.

7: Iteratively construct the child tree Tc under Nbest by subdatasets from D based on abest.

8: Attach Tc to the corresponding branch of T .

9: A ¼ A \ abest

10: If A ¼ ϕ, then Return T . Otherwise goto 6.
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are constructed from training images. Each newly generated
rule is verified in order to prevent repeated and conflict rules.
Repeated rules are simply discarded, and conflict rules are
withdrawn and moved to a pool. The conflict rule set is
empty before the training process. Then the verification
set is used to gradually rich it. Finally, the rules that pass
this verification process are added to the set of rules. The
learning process is dynamic, because the updating process
occurs during the learning step. There are two reasons for
generating conflict rules. First, the conflict rules occur
when the preprocessing module does not output the correct
results. Thus, the human expert is asked for verification.
Second, conflict rules arise when there is significant similar-
ity between some indoor scenes that are difficult for even a
human to distinguish. Thus, for conflict rules generated as a
result of the first reason, the human annotator will correct the
annotation and send the sample for retraining the corre-
sponding module in EBA. For conflicts arising as a result of
the second situation, the rules are maintained, and a category
is randomly selected during the testing stage. The process
mentioned above is summarized in Algorithm 2.

3.3 Proposed Framework for Indoor Scene
Classification

Inspired by the human cognitive process, the proposed
framework includes modules for EBA and MRB inference.
The EBA’s learning process involves annotating the semantic

hierarchy and constructing the rules. The proposed frame-
work differs from previous work68 insofar as it exploits seg-
mented hierarchical structures and a implementation of the
classifier. Our method introduces a hierarchical structure for
describing the scene according to the environmental context,

Rule ri
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Rule rk

? _ceiling seat airport inside→

ceiling board seat classroom→

Updated rule base

Rule r1

Rule r2
ceiling screen seat auditorium→

Rule rn
?ceiling bed bedroom→

Rule ri

Rule rj
? ? food buffet→

Rule rk

? _ceiling seat airport inside→

ceiling board seat classroom→

…
…

Fixed 
strategy

Flexible 
strategy Rule r1

Rule r2
ceiling screen seat auditorium→

Rule rn
?ceiling bed bedroom→

Rule ri

Rule rj
? ? food buffet→

? _ceiling seat airport inside→ceiling board seat classroom→

…
…

Training images

Conflict 
rules

_ceiling board seat meeting room→

Previously 
generated

Conflict pool

Expert check

_ceiling board seat meeting room→

DPM

DPM

DPM

DPM

DPM

DPM

Fig. 7 Example of detection results of DPM and the rule base update processes. Hierarchies are marked
by different line styles: red solid line for upper hierarchy, green long dashed line for middle hierarchy, and
yellow short dashed line for lower hierarchy.

Algorithm 2 The RCosðRÞ algorithm for rule base construction.

Require: Generated rule set R.

Ensure: Constructed rule base Rb , conflict rule set C.

1: for Every rule r i in R do

2: Check r i with every rules in R.

3: if is Conflict (r i , R) then

4: Move (r i , C)

5: else

6: Move (r i , Rb)

7: end if

8: end for
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and it generates a set of inference rules for classification.
With MRB inference, the test image is first passed to the
annotation module to acquire information regarding the
hierarchies. Then the overall category is inferred from
the learned rules, indicating the fact that the category of
an indoor scene is determined by what objects it contains.
Training a decision tree with a dynamically constructed set
of rules for inference allows it to adapt to variations in a
scene. The knowledge base that is generated can be extended
to different situations, because rules can be added or replaced
for each corresponding application. Moreover, there is no
need to modify the object-detection module. When advanced
object-detection methods are utilized, existing knowledge is
still useful for classification. The modularized design makes
the overall system easy to maintain and saves additional
costs. The whole framework is grammatically summarized
in Eq. (3).

EQ-TARGET;temp:intralink-;e003;63;360scˍcl → EBA ∪ MRB EBA → objˍan MRB → kbˍinf

objˍan → objˍdet ∪ objˍcl kbˍinf → conclusion:

(3)

Here scˍcl refers to the scene classification, objˍan refers to
object annotation, kbˍinf denotes rule-based inferences,
objˍdet and objˍcl refer to object detection and classifica-
tion, respectively. In EBA, the object-annotation process
includes both object detection and classification, based on
DPM and BoVW, respectively. At this stage, semantic hier-
archies are constructed for the visual data. In MRB, the infer-
ence process is implemented with a decision tree to derive
the category. Compared with previous works, there are sev-
eral advantages in the proposed framework. First, introduc-
ing a hierarchical structure decreases the influence of varying
backgrounds and highlights the differences between each
category. Unlike traditional methods, such as the BoVW that
simply extracts the features from the entire image, the pro-
posed framework introduces semantic hierarchies to first
extract the visual features from a locality; it then merges local
information with a global category to improve the flexibility
and performance of the classification. Second, compared
with low-level features, constructing rules from the hierar-
chical semantics improves the ability of expression. Multiple
categories can be subjected to the same set of rules on a

reduced scale, providing flexible, human-like knowledge
for classification. The entire process is summarized in
Algorithm 3.

4 Experimental Results
In this section, the overall performance of the proposed
HASRI framework was evaluated on Massachusetts
Institute of Technology (MIT’s) indoor scene-recognition
database. Tests were divided into two parts containing ver-
tical and horizontal comparison to demonstrate the effective-
ness of our work. First, we focus on the performance of the
HASRI with different module settings. Then, HASRI was
compared with other relevant methods for a horizontal com-
parison. Corresponding results are provided in the following
subsections.

4.1 Experimental Settings
4.1.1 Dataset

MIT’s indoor scene-recognition dataset69 contains 67 indoor
categories in a total of 15,620 images loosely divided into
five abstract categories: home, store, public places, leisure,
and working places. The resolution of the smallest axis for all
images in this dataset is larger than 200 pixels. The unique-
ness of this dataset lies in the fact that, unlike outdoor scenes
that can be roughly described with global scene statistics,
indoor scenes tend to be much more variable in terms of the
objects they contain. As such, unlike other datasets such as
Caltech-101, the distance between different categories is not
significant. With MIT’s dataset, it is sometimes confusing
even for humans to distinguish between pairs of samples.
The dataset was divided into three subsets: a training subset,
a verification, and a testing subsets. Modules in EBA were
trained using the training dataset, the rules for MRB infer-
ence were constructed using the verification dataset, and
the evaluation was conducted using the testing dataset. The
training images comprised 10% of the dataset. All categories
were utilized, and a one-versus-all strategy was used to
train the SVM classifiers. Gaussian kernel is used for
SVM classifiers.

4.1.2 Experimental settings

In this paper, DPM24 was used to extract the hierarchies of
images, which can be understood as an extension of the

Algorithm 3 The whole learning process.

Require: Training data Dt , verification data V , testing data Dm .

Ensure: Constructed rule base Rb and decision tree T .

1: Detect the hierarchical structure with DPM for Dt . ▹ Preprocessing stage

2: Train the BoVW based classifier C by Dt for object annotation.

3: Annotate V with C.

4: Extract and construct rule set R from V . ▹ Postprocessing stage

5: Rb ¼ RCosðRÞ.

6: T ¼ DTGenðRbÞ.
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HoG, because it contains trained detectors to speed up the
process. The method implemented by Vondrick70 was
used to visualize the results. A BoVW25 was used for anno-
tation. The mean-average precision (MAP) was used as a
metric to evaluate the performance of the approaches. To pro-
vide a fair comparison of the difference between traditional
and flexible rule-construction strategies, a fixed set of rules
was constructed such that it can accept new rules without
additional checks during the training stage. By contrast, flex-
ible rules could be edited, and conflict rules could be
addressed. The Waikato Environment for Knowledge
Analysis (WEKA)71 was used to implement the decision
tree. We manually select the training dataset, then randomly
and equally divided the remaining samples into verification
and testing dataset. For testing samples that matched multi-
ple rules in different categories, a category was randomly
selected during the inferential process. Two-fold cross vali-
dation was used to compare our proposal with other meth-
ods, and the mean precision was reported.

4.2 Vertical Experimental Results
In the vertical experiment, different settings were used to
evaluate the performance of the proposed framework. First,
the results of classification with and without hierarchical
structures were shown, and then the performances were dis-
cussed after constructing both fixed and flexible rules. In this
paper, we referred “rule” as the knowledge terms generated
from visual data to construct the knowledge base. As shown
in Fig. 7, the word “strategy” is used to describe how we
update the knowledge base.

Figure 8(a) shows the annotation performance achieved
by different hierarchical structures. For a single hierarchical
structure, the model’s performance degraded to that of a
common annotation method. The results show an obvious
improvement in the annotation performance with the pro-
posed hierarchical structure. This is due to the fact that
indoor scenes are typically complex. In such scenes, it is
common to find multiple objects in the same scene, and
annotating such samples merely with global features intro-
duces noise that affects the performance. The introduction
of a hierarchical structure divides and annotates the indoor
scenes into several hierarchies, and combines the categories
from each hierarchy to obtain a universal category, consid-
erably improving the quality of the annotation.

The performance of the proposed framework using differ-
ent rule-construction strategies is shown in Fig. 8(b). The
horizontal axis shows the ratio of the sizes of the verification
samples to the testing samples. The purpose of this
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Table 1 Detailed results measured by average precision of the pro-
posed HASRI framework.

Categories

Single
hierarchy +
flexible
strategy

Multiple
hierarchy +

fixed
strategy

Multiple
hierarchy +
flexible
strategy

Church inside 0.677 0.726 0.819

Elevator 0.676 0.652 0.795

Auditorium 0.649 0.651 0.769

Buffet 0.645 0.634 0.748

Classroom 0.640 0.629 0.730

Greenhouse 0.618 0.628 0.728

Bowling 0.617 0.625 0.720

Concert hall 0.606 0.625 0.671

Computer room 0.604 0.607 0.671

Dental office 0.601 0.600 0.659

Library 0.594 0.600 0.649

Inside bus 0.583 0.600 0.644

Closet 0.581 0.595 0.637

Corridor 0.581 0.593 0.630

Grocery store 0.575 0.593 0.629

Locker room 0.571 0.590 0.625

Florist 0.563 0.584 0.616

Studio music 0.561 0.574 0.612

Hospital room 0.548 0.573 0.608

Nursery 0.546 0.570 0.586

Bathroom 0.544 0.560 0.574

Laundromat 0.536 0.549 0.569

Stairs case 0.535 0.548 0.567

Garage 0.532 0.545 0.563

Gym 0.522 0.533 0.559

TV studio 0.520 0.533 0.556

Video store 0.506 0.531 0.548

Game room 0.502 0.528 0.547

Pantry 0.496 0.526 0.543

Pool inside 0.496 0.524 0.541

Inside subway 0.485 0.523 0.537

Kitchen 0.478 0.520 0.536

Wine cellar 0.478 0.515 0.532

Table 1 (Continued).

Categories

Single
hierarchy +
flexible
strategy

Multiple
hierarchy +

fixed
strategy

Multiple
hierarchy +
flexible
strategy

Fastfood restaurant 0.474 0.514 0.531

Bar 0.472 0.507 0.530

Clothing store 0.471 0.502 0.527

Casino 0.471 0.499 0.525

Deli 0.460 0.481 0.523

Bakery 0.444 0.480 0.522

Waiting room 0.431 0.479 0.497

Dining room 0.430 0.469 0.497

Bookstore 0.421 0.466 0.495

Living room 0.416 0.465 0.490

Movie theater 0.414 0.458 0.489

Bedroom 0.410 0.456 0.485

Toy store 0.406 0.451 0.483

Operating room 0.406 0.437 0.477

Airport inside 0.405 0.433 0.476

Art studio 0.405 0.431 0.474

Lobby 0.399 0.427 0.463

Prison cell 0.385 0.425 0.457

Train station 0.382 0.406 0.437

Hair salon 0.378 0.402 0.432

Subway 0.376 0.386 0.431

Warehouse 0.374 0.381 0.429

Meeting room 0.372 0.379 0.425

Children room 0.369 0.379 0.423

Shoe shop 0.358 0.374 0.418

Kindergarden 0.353 0.361 0.417

Restaurant 0.352 0.358 0.411

Museum 0.343 0.328 0.397

Restaurant kitchen 0.325 0.315 0.392

Jewelry shop 0.311 0.315 0.370

Laboratory wet 0.282 0.303 0.357

Mall 0.273 0.287 0.333

Office 0.268 0.231 0.306

Cloister 0.234 0.226 0.291
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Fig. 10 Statistical results on the number of rules for MIT indoor dataset. The percentage of categories
containing different number of rules are respectively 1.49% (five rules), 19.40% (four rules), 32.84%
(three rules), 32.84% (two rules), 13.43% (one rule).

Table 2 Rules constructed from the MIT dataset for category
inference.

Category Rules

Airport Ceiling ∪? ∪ floor

Ceiling ∪? ∪ people

Ceiling ∪ window ∪ seat

? ∪ window ∪ floor

Ceiling ∪? ∪ seat

Artstudio ? ∪ painting ∪?

?∪ people ∪ painting

? ∪ window ∪ drawing

Bar Ceiling ∪ wine_counter ∪?

? ∪ wine_counter ∪?

Bakery Ceiling ∪ bread ∪?

? ∪ bread ∪ people

Ceiling ∪ bread∪ shelf

Auditorium Ceiling ∪ seat ∪ stage

Ceiling ∪? ∪ seat

?∪ stage ∪?

Ceiling ∪ screen ∪ seat

Table 2 (Continued).

Category Rules

Bathroom Ceiling ∪ sanitary_ware ∪?

? ∪ sanitary_ware ∪?

Bedroom Ceiling ∪ bed ∪ painting

Ceiling ∪? ∪bed

Ceiling ∪ bed ∪?

Bookstore ? ∪ bookshelf ∪?

? ∪ people ∪?

Bowling Ceiling ∪? ∪ bowling_road

? ∪ people ∪ bowling_road

? ∪? ∪ bowling_road

Buffet ? ∪ food ∪?

Casino Ceiling ∪ gamble_facilities ∪?

? ∪? ∪ gamble_facilities

Children_room Ceiling ∪? ∪ bed

? ∪ bed ∪?

? ∪ toy ∪?

? ∪? ∪ people
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Table 2 (Continued).

Category Rules

Church_inside Gothic_ceiling ∪? ∪ seat

Classroom Ceiling ∪ board ∪ desk

? ∪ board ∪ desk

? ∪? ∪ desk

Ceiling ∪? ∪ desk

Closet ? ∪? ∪ closet

Cloister Ceiling ∪? ∪ floor

? ∪ pillar ∪?

Clothingstore Ceiling ∪ clothes ∪?

? ∪? ∪ clothes

Computerroom Ceiling ∪ computer ∪?

Ceiling ∪ board ∪ computer

Concert_hall Ceiling ∪ platform ∪ seat

Ceiling ∪? ∪ stage

? ∪ stage ∪ seat

Ceiling ∪? ∪ seat

Corridor ? ∪ corridor ∪?

Deli Ceiling ∪? ∪ goods

? ∪ people ∪ goods

Dental_office ? ∪ instrument ∪?

? ∪ people ∪ instrument

Dining_room Ceiling ∪? ∪ dining_table

? ∪? ∪ dining_table

Ceiling_lamp ∪ window ∪ dining_table

? ∪ window ∪ dining_table

Elevator ? ∪ elevator ∪?

Elevator ∪? ∪ people

Fastfood_restaurant Ceiling ∪ counter ∪ table

? ∪ counter ∪?

? ∪ counter ∪ people

Florist ? ∪ flower ∪?

? ∪ people ∪ flower

Table 2 (Continued).

Category Rules

Gameroom Ceiling ∪ billiard_table ∪?

? ∪ billiard_table ∪?

? ∪? ∪ billiard_table

? ∪ people ∪ billiard_table

Garage Ceiling ∪ vehicle ∪?

? ∪ vehicle ∪?

Ceiling ∪ tools ∪?

? ∪ tools ∪?

Greenhouse Ceiling ∪ plants ∪?

? ∪ plants ∪?

Grocerystore Ceiling ∪ goods ∪?

? ∪ goods ∪?

Gym Ceiling ∪ fitness_facilities ∪?

? ∪ fitness_facilities ∪?

? ∪ human ∪ fitness_facilities

Inside_bus Bus_ceiling ∪ seat ∪?

? ∪ people ∪ seat

Hairsalon Ceiling ∪ hairdressing_facilities ∪?

? ∪ hairdressing_facilities ∪?

? ∪? ∪ hairdressing_facilities

Hospital_room ? ∪ hospital_bed ∪?

Ceiling ∪ hospital_bed ∪?

? ∪ patient ∪ hospital_bed

Inside_subway Carriage_ceiling ∪ carriage_seat ∪?

Carriage_ceiling ∪ people ∪?

? ∪? ∪ carriage_seat

Carriage_ceiling ∪? ∪ people

Jewelryshop Ceiling ∪ Jewelry_counter ∪?

? ∪ Jewelry ∪?

? ∪ Jewelry_counter ∪?

Kitchen Ceiling ∪ cupboard ∪?

? ∪? ∪ operating_desk
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Table 2 (Continued).

Category Rules

Kindergarten Ceiling ∪ toy ∪?

Ceiling ∪ table ∪?

? ∪ toy ∪?

Laboratorywet ? ∪ reagent ∪?

Ceiling ∪ reagent ∪?

? ∪ equipment ∪?

Laundromat Ceiling ∪ washing_machine ∪?

? ∪ washing_machine ∪?

Library ? ∪ bookshelf ∪?

Ceiling ∪ bookshelf ∪?

? ∪ bookshelf ∪ table

Living_room ? ∪ sofa ∪?

? ∪ window ∪ sofa

Ceiling ∪ window ∪ sofa

Ceiling ∪? ∪ sofa

Lobby Ceiling ∪? ∪ floor

Locker_room Ceiling ∪ locker

? ∪ locker ∪?

? ∪ locker ∪ bench

? ∪ rack ∪?

Mall Ceiling ∪ corridor ∪?

? ∪ corridor ∪?

Ceiling ∪ escalator ∪?

Meeting_room Ceiling ∪ screen ∪ table

? ∪ table ∪?

Screen ∪? ∪ table

? ∪ window ∪ table

Pantry Food_shelf

Movietheater ? ∪ screen ∪ seat

Ceiling ∪ screen ∪ seat

Ceiling ∪? ∪ seat

Table 2 (Continued).

Category Rules

Museum Ceiling ∪? ∪ floor

? ∪ painting ∪?

Nursery ? ∪ crib ∪?

Ceiling ∪ crib ∪?

Office Ceiling ∪ computer ∪ office_table

? ∪ shelf ∪ table

? ∪ board ∪ table

Operating_room Ceiling ∪ operation_table ∪?

Doctor ∪ operation_table

? ∪? ∪ operation_table

Poolinside Ceiling ∪ pool ∪?

? ∪? ∪ pool

Prisoncell ? ∪ prisoncell ∪?

Restaurant Ceiling ∪ window ∪ table

? ∪ painting ∪ table

Ceiling ∪ people ∪?

Ceiling ∪ painting ∪ table

Restaurant_kitchen Ceiling ∪? ∪ kitchen_facility

? ∪ human ∪ food

Shoeshop Ceiling ∪ shoe_shelf ∪?

? ∪ shoe_shelf ∪?

? ∪ human ∪ shoe_shelf

Ceiling ∪ human ∪ shoe_shelf

Staircase Ceiling ∪? ∪ stairs

Studiomusic Ceiling ∪? ∪ instrument

Subway Ceiling ∪ train ∪?

Ceiling ∪? ∪ track

? ∪? ∪ train

Toystore Ceiling ∪? ∪ toy_shelf

? ∪? ∪ toy_shelf

? ∪ human ∪ toy
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experiment is to show the relationship between the error rate
and the number of training samples. With more training data,
there is a higher probability of introducing conflict rules that
affect the classification performance. We can see from these
results that, compared with the traditional strategy, using a
flexible rule-updating technique was beneficial for classifi-
cation. With fixed rules, the error rate increased when the
ratio reached 0.8, whereas by adopting a flexible strategy, the
error rate continued to decrease as more samples were added.
This is because the flexible strategy for constructing rules is
more effective at reducing conflict rules than the fixed strat-
egy. The confusion tables for the proposed HASRI with a
hierarchical structure and a flexible strategy for categories
of different abstract semantics are provided in Figs. 9(a)
and 9(b). Here the size of the visual vocabulary was set
to k ¼ 6 × 103, and T∕N ¼ 0.6 to achieve a balance between
the performance and the computational cost. Details for the
classification results with the aforementioned settings are
provided in Table 1. From the results, we can see that the
introduced hierarchical structure and the flexible rule updat-
ing strategy have positive effect on the performance. By
modeling the images with the structure of multiple hierarchy,
there is significant performance increment compared with
those that treat the image as single hierarchy. This is consis-
tent with our observation that there exists much similarities

between different categories of indoor scenes, and univer-
sally modeling the images is not appropriate. Using the hier-
archical structure, it is able to classify the categories more
properly. Meanwhile, we attempt to learn the relationships
of indoor scenes by using flexible rule base updating strat-
egies to reduce the effect of conflict rules. The results have
proven the effectiveness of the proposed framework.

The distribution of the generated rules for MIT’s indoor
dataset is shown in Fig. 10, and the generated rule base is
given in Table 2. In this figure, it is clear that most categories
can be summarized using a maximum of five simple rules,
indicating that there are semantic similarities among objects
in the same category. Furthermore, the combination of sim-
ple rules can effectively describe complex scenes. This is
because semantic similarities are ubiquitous in the real
world. Indoor scenes can thus be described effectively with
rules for semantic hierarchies.

Table 2 (Continued).

Category Rules

Trainstation Ceiling ∪ train ∪ platform

Ceiling ∪? ∪ human

Ceiling ∪? ∪ train

Tv_studio Ceiling ∪ human ∪?

Ceiling ∪? ∪ instrument

? ∪ human ∪ instrument

Videostore Ceiling ∪? ∪ disk

? ∪ human ∪ disk

Ceiling ∪ human ∪ disk

Waitingroom Ceiling ∪ window ∪ seat

? ∪? ∪ seat

Ceiling ∪ human ∪?

Warehouse Ceiling ∪? ∪ cargo

Ceiling ∪? ∪ shelf

? ∪? ∪ shelf

Winecellar Ceiling ∪? ∪ barrel

? ∪ barrel ∪?
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Fig. 11 Comparison results of corresponding methods on MIT-Indoor
dataset. Performance is evaluated by MAP. Here SIFT was chosen
for BoVW,25 SIFT, and Gist were chosen for the prototype model,68

HoG was chosen for DPM,24 HoG, texture, location, and geometry
for Object bank,72 SIFT for multiscale BoVW,73 HoG for ISPRs.74

Discussion on the results was listed in Sec. 4.3.

Table 3 Comparative results of all methods with different features.

Methods MAP

BoVW (HoG) 10.4

BoVW (SIFT)25 12.7

Prototype (HoG + Gist) 22.4

Prototype (SIFT + Gist)68 26.1

DPM (HoG)24 30.4

Object bank (HoG)72 37.6

Multiscale BoVW (HoG) 43.7

Multiscale BoVW (SIFT)73 46.5

ISPRs (HoG)74 50.1

Proposed 51.6
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4.3 Horizontal Experimental Results
In this subsection, we compare the proposed framework with
traditional and state-of-the-art methods, including the classic
BoVW,25 the prototype based model,68 the DPM,24 the object
bank,72 a method based on multiresolution classification
method,73 and the important spatial pooling regions
(ISPRs).74 The DPM is a successful object detector that
directly improves the traditional HoG. The concept of an
object bank proposed by Li,72 and this method offers
high-level encoding of an object’s appearance and spatial
location information for image recognition. Zhou et al.73 pre-
sented a scene-classification framework by introducing mul-
tiscale information to the original BoVW. ISPRs74 jointly
learn spatial-pooling regions with discriminative part appear-
ance in a unified framework for scene classification.

Figure 11 shows the results of the proposed HASRI com-
pared to other scene-classification methods. Results of meth-
ods with HoG feature were also provided in Table 3. The
BoVW was used as baseline. We can see that the proposed
method achieved best performance compared with other
methods. The proposed HASRI framework detected the
objects in each hierarchy, exhibiting their spatial relationship
according to the semantic hierarchical structure.
Furthermore, the HASRI constructed and updated rules
dynamically from the dataset in order to generate a knowl-
edge base for the decision tree, rather than relying on pre-
defined rules. Thus, the proposed HASRI framework is
effective for indoor scene classification, and it consistently
outperformed state-of-the-art methods, in which other fea-
tures were used, including SIFT and GIST.

5 Conclusion
In this paper, we investigated the scene classification prob-
lem and proposed a novel HASRI framework modeled on the
biological processes of human cognition. The performance
of the indoor scene classification is substantially affected
by the number of detected objects and their spatial relation-
ship. The semantic hierarchical structure in the HASRI
framework can detect more objects and better represent
their spatial relationship. With the proposed framework, the
rules for a decision tree are constructed using a flexible strat-
egy based on the semantic hierarchical structure, and these
rules are updated during the learning process. Experimental
results demonstrated that the HASRI framework is effective,
and that it outperforms other methods for indoor scene
classification.
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