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Abstract. Fetal motion manifests as signal degradation and image artifact in the acquired time series of blood
oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) studies. We present a robust
preprocessing pipeline to specifically address fetal and placental motion-induced artifacts in stimulus-based
fMRI with slowly cycled block design in the living fetus. In the proposed pipeline, motion correction is optimized
to the experimental paradigm, and it is performed separately in each phase as well as in each region of interest
(ROI), recognizing that each phase and organ experiences different types of motion. To obtain the averaged
BOLD signals for each ROI, both misaligned volumes and noisy voxels are automatically detected and excluded,
and the missing data are then imputed by statistical estimation based on local polynomial smoothing. Our exper-
imental results demonstrate that the proposed pipeline was effective in mitigating the motion-induced artifacts in
stimulus-based fMRI data of the fetal brain and placenta. © The Authors. Published by SPIE under a Creative Commons Attribution
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1 Introduction
Advances in in vivo functional magnetic resonance imaging
(fMRI) of the fetus are improving our understanding of fetal
brain development in healthy and high-risk pregnancies.1–3

Similar to traditional fMRI studies,4 fetal fMRI studies are per-
formed by measuring either stimulus-based activity or sponta-
neous activity at rest. Recently, changes in the oxygenation of
the fetal brain and placenta during maternal hyperoxia have been
explored using blood oxygenation level dependent (BOLD)
fMRI to study the compromised fetus in utero.5,6

However, such hyperoxia studies are technically challenged
by degradation of the BOLD signal attributed primarily to fetal
and maternal movement. The fetus often moves continuously
during the MR study7 while the adult has the tendency to
exhibit slow drift or intermittent spike-like head motion.8–10

Consequently, fetal motion has a significant impact on BOLD
intensities given that the signal depends on both the spatial posi-
tion8 and the spin excitation history of magnetization.11–13 This
motion becomes more problematic in stimulus-based fMRI than
in stimulus-free fMRI, given that the fetus tends to move more in
response to the stimulus, which in turn causes serious spatial
misalignment between volumes at different time points.14,15

Moreover, each fMRI volume includes both the fetal brain

and placenta, which exhibit different types of motion. The
fetal brain behaves as a rigid body with high range of motion,
while the placenta exhibits a passive, low range of motion—but
because of its flexible underlying structure, it often undergoes
deformations due to fetal and maternal movement. The placenta
may also exhibit nonisotropic motion due to maternal breathing,
local contraction and relaxation, and movement of tissues sur-
rounding the uterine cavity.

In addition to motion-induced artifacts, a number of other
artifacts of physiological origin perturb the BOLD fMRI signals.
While breathing and cardiac pulsation are considered major
non-neuronal sources of physiological noise in the adult
brain, the BOLD signals in fetal fMRI are also strongly influ-
enced by other physiological artifacts originating from amniotic
fluid flow and maternal bowel movement in the abdominal cav-
ity. Air or iron in the maternal intestines may also lead to sig-
nificant signal loss in regions of interest (ROI), the so-called
bubble artifact.13

These artifacts observed in stimulus-based fMRI of the fetus
limit the success of traditional approaches for motion correction
that are based on rigid-body image registration (implemented in
AFNI,16 AIR,17,18 FSL,19 and SPM20,21). This is in large part due
to the fact that these approaches make assumptions such that the
MR image data contain either the brain or a single rigid-body
object, and that the background intensity variation is negligible.

To date, technical advances in motion correction for MR
images of the moving fetus22–25 have focused on anatomical
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MR images of the fetal brain. Very few studies have addressed
fetal motion correction in fMRI studies.1,2,13,26,27 Fulford
et al.28,29 eliminated maternal signals outside the fetal skull to
avoid the independent movement between maternal and fetal
parts, and then applied conventional image registration using
visual inspection to stimulus-based fMRI of the fetal brain.
Ferrazzi et al.13 suggested an MR-based preprocessing pipeline
for resting-state fMRI of the fetus, which consisted of bias field
correction, slice-to-volume registration, and spin history correc-
tion. More recently, Seshamani et al.12 suggested a method
based on a bias field model to correct intensity inhomogeneity
caused by fetal motion. Despite these technical advances,
motion correction methods for fMRI studies of multiple organs
of the fetus remain sparse. Less than a handful of studies on
hyperoxia fMRI data of the placenta and fetal organs have
addressed the motion artifact problem;5,6 however, they
attempted to segment ROIs manually in each volume to circum-
vent the practical limitation of typical motion correction in such
a complex environment.

While available fetal fMRI studies have commonly adopted
traditional image registration with minor variations for fetal
motion correction, they have shown that the typical approach
to motion correction was not always successful due to instanta-
neous high motion, which led to a considerable number of vol-
umes remaining significantly misaligned after motion correction
was applied.2,26,27 Those misaligned volumes were identified
either manually through visual inspection or automatically by
thresholding the mean voxel displacement, and were indispen-
sably excluded as volume outliers so that only the “surviving”
volumes could be exploited for postprocessing analyses. One
important issue in volume outlier rejection (VOR) is that the
typical criteria enforced for identifying a volume as an outlier

are not ideally suited for fetal fMRI data. For example, one study
attempted to remove such contaminated volumes manually,
which reliability might be limited by subjective visual inspec-
tion used to assess the quality of volumes.1,30 The other issue
is that VOR ultimately leads to irregularly distributed missing
data points in voxel-wise BOLD time series, which markedly
restricts the scope of available postprocessing data analyses.

Therefore, the objective of this paper was to develop a robust
preprocessing pipeline dedicated to stimulus-based fMRI con-
taining more than one independently moving ROI such as the
placenta and fetal brain. We have previously introduced our ini-
tial strategies using a robust motion correction method for fMRI
data of the fetal brain and placenta acquired with a single block
paradigm of maternal hyperoxia.31 This paper presents the
underlying mathematical foundations in which these prelimi-
nary strategies are extensively applied to more extensive stimu-
lus block designs with slow cycle of phase transition (i.e., the
phase length >30 s) as well as multiple ROIs of the moving
fetus. In addition, we report an initial clinical application of
our proposed method, by analyzing the group differences in
fetal motion between healthy fetuses and fetuses diagnosed
with complex congenital heart disease (CHD).

2 Materials and Methods

2.1 Data Acquisition

The BOLD fMRI data were acquired from eight pregnant
women with healthy fetuses and eight pregnant women with
fetuses diagnosed with CHD between 25 and 40 weeks of ges-
tation (33.29� 4.08). The study was performed by the
Department of Radiology at the Children’s National Medical
Center (CNMC) and approved by the CNMC Institutional
Review Board. Written informed consents were obtained
from all study participants.

Echo planar imaging (EPI) sequences were acquired on
a 1.5T MR scanner (GE Healthcare, Inc., Waukesha,
Wisconsin) using an eight-channel receive-only cardiac coil
(USAI, Inc., Aurora, Ohio) with the following parameters: a
matrix size of 128 × 128, in-plane field of view (FOV)
420 × 420 mm2 or 440 × 440 mm2, slice thickness 5 to
8 mm with between-slice gap of 2 mm, repetition time (TR)
of 2000 or 3000 ms, echo time of 1000 ms, a flip angle of
90 deg, and 144 or 288 volumes per acquisition. Each EPI
sequence was obtained in an interleaved slice order to minimize
cross-talk between adjacent slices. The fMRI acquisition proto-
col included both the placenta and fetal brain as shown in Fig. 1.
The data were acquired in both tilted-coronal and axial planes to
assess the effect of imaging plane on motion correction. The
protocol parameters for both acquisition planes are summarized
in Table 1.

Fig. 1 An example of fMRI data acquired from a healthy fetus in the
coronal plane. It includes both the placenta (in red) and the fetal brain
(in green).

Table 1 Protocol parameters for both axial and coronal acquisition planes.

Plane

#Subjects

TR (s) Volumes Slices Thickness (mm)

Acquisition time (min)

Control CHD P1 P2 P3 Total

Coronal 4 4 2 288 17 to 18 7 to 8 2:00 4:00 3:36 9:36

Axial 4 4 3 144 23 to 46 5 to 6 2:00 3:00 2:12 7:12
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The hyperoxia task paradigm consisted of three phases: a 2-
min normoxia (baseline, 21% oxygen), followed by 100% oxy-
gen (15 L∕min) administered via a maternal facial oxygen mask
for 3 to 4 min, and an additional 2:12 to 3:36 min of normoxia
(21% oxygen) to quantify return to baseline.

2.2 Preprocessing Pipeline

As shown in Fig. 2, the fMRI data were processed according to
the following pipeline which consists of four steps: (1) bias
field correction, (2) motion correction, (3) VOR, and (4) data
imputation. First, the inhomogeneous distribution of MR
receiver sensitivity was corrected using the four-dimensional
nonparametric bias estimator based on the B-spline field
approximation32,33 previously used for BOLD signal analysis
of in vivo fetal fMRI of the brain.12

The fMRI dataset was temporally divided into three indepen-
dent phases (baseline, hyperoxia, and return to baseline) accord-
ing to the block design paradigm. The initial five volumes were
excluded from each phase, since these are usually affected by
phase transition. The phase-specific global motion correction
(GMC) was carried out separately in each phase using six
degrees of freedom rigid-body image registration using
FLIRT as a part of the FMRIB Software Library (FSL).34

The registration parameters were as follows: normalized
cross-correlation ratio cost function, 256 histogram bins, trilin-
ear interpolation, and search angle of −20 deg to 20 deg in X, Y,
and Z axes. The temporal mean (t-mean) volume of each phase
was used as the reference or template for image registration.

For local motion correction (LMC), two ROI masks of the
placenta and fetal brain were manually defined from the
t-mean volume of each phase using ITK-SNAP.35 A total of
six ROI masks of the brain and placenta (two for baseline,
two for hyperoxia, and two for return to baseline) were created.
The quality of the created masks was verified and corrected by
an experienced clinician scientist. The ROI masks were dilated
using a 3 × 3 × 3 box kernel (in voxels) to allow a tolerance for
the search window of local motion into a neighborhood of the
ROI. In each phase-specific fMRI sequence, the FOV was
restricted to the ROI masks of the fetal brain and placenta.
LMC was then performed in each ROI. The LMC parameters
were the same as the ones used in GMC. Both global and
LMC steps were accelerated using sun grid engine parallel
processing based on graphic processing units of the supercom-
puting system so that image registration could be performed
simultaneously on multiple volumes.

The outlier volumes, which were significantly misaligned
even after motion correction, were automatically detected and
rejected by setting all voxels of those volumes as zero. To deter-
mine if a volume was rejected or not, the temporal outlier score

(TOS) was computed for all voxels in the ROIs using the pro-
gram 3dToutcount from AFNI where any signal falling outside
1.5 times the interquartile range (IQR) was regarded as an out-
lier. The motion outlier probability (MOP) was then computed
by counting the number of outlier voxels, and the volume out-
liers were determined by thresholding the MOP values.
Following VOR, all three phases were concatenated for each
ROI again, and the BOLD fMRI signals were averaged as
the median value over all voxels in each ROI. In this step, outlier
voxels with abnormal intensities due to either physiological
noise or other MR artifacts were automatically detected and
excluded from the ROI-averaging process. Finally, all the miss-
ing data (set to be zero by VOR) in these ROI-averaged time
series were replaced with the values estimated through statistical
data imputation based on local polynomial regression whose
kernel bandwidth (s) and the degree of polynomials (p) were
set to be s ¼ 40 and p ¼ 3, respectively. The theoretical details
underlying the above preprocessing pipeline are summarized in
the next section.

2.3 Design-Optimized Motion Correction

The traditional approach to motion correction in fMRI data of
the brain is to align a volume to a predefined template using a
geometrical transformation.34,36,37 Without imposing any con-
straints, it can be treated as an image registration problem of
finding the optimal geometric transformation that maximizes
the similarity between volume and template. However, this typ-
ical approach is not directly applicable to fMRI data that include
independently moving objects (i.e., the placenta and fetal brain)
and are acquired with the epoch-based paradigm of sequential
block design (i.e., short-term maternal hyperoxia) where the fre-
quency of phase transition is slow.

To address such practical limitations of these unique motion
correction challenges in stimulus-based fMRI of the moving
fetus, we propose the design-optimized motion correction
(DOMC) framework that is specific to the experimental para-
digm design. It consists of two steps including LMC as well
as GMC. While the local motion is specific to an individual
moving object, the global motion, defined as a movement
which has a common impact on all voxels, may originate
from various aspects such as subject movement, maternal res-
piration, cardiovascular motion, and instrumental intervention
(e.g., vibration).

The DOMC procedures for the hyperoxia studies of the pla-
centa and fetal brain are shown in Fig. 3. The DOMC framework
consists of two steps. The first step is to temporally split a whole
volume sequence into independent phases and to define a phase-
specific template which enables independent image registration
at each phase. The phase-specific template can be chosen as

Fig. 2 The proposed preprocessing pipeline for slowly cycled block design fMRI of the fetus.
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either a single arbitrary volume inside the phase, or the mean
volume averaged over the phase sequence in order to reduce
the vulnerability of significant temporal variation of BOLD
intensities, spin history artifact (induced by fetal motion), and
data loss due to between-slice gap.34 The second step is to
restrict the FOV for image registration to the ROI and its sur-
rounding adjacent regions in order to estimate the local motion
of each moving object. This is in contrast to typical (or global)
motion correction where the FOV is chosen to cover the full
volume.34 The ROI-restricted FOV can be obtained using the
ROI masks which are usually defined from the phase-specific
template.

All the above strategies can be mathematically formulated in
a synthesized manner as follows. Let us consider an fMRI
sequence X ≡ fXt; t ¼ 1; : : : ; Ng of length N where Xt is a
three-dimensional volume and XtðqÞ denotes the intensity at
voxel q in the volume Xt. Assume that X includes K independ-
ently moving objects and can be separated into P independent
phases according to a sequential block design. Then, the
image registration is posed as the problem to estimate the com-
bination of optimal global and local motion parameter set
½mGðtÞ;m1ðtÞ; · · · ;mKðtÞ� at time t where mGðtÞ and miðtÞ
denote the global and local motion parameters corresponding
to the i‘th ROI, respectively, and can be summarized as

EQ-TARGET;temp:intralink-;e001;63;251ðm̂G; m̂1; : : : ; m̂KÞt
¼ argmin

mG;m1;: : : ;mK

X
k∈Ψ

X
q∈R 0

k;i

ξðXtðqÞ; Tk;ifL½Gðq;mGÞ;mk�gÞ;

(1)

where k ∈ Ψ ¼ ½1; : : : ; K�, Tk;i denotes the template of the k’th
ROI in the i’th phase, G and L denote the geometric transfor-
mations of global and local motion, respectively. In the DOMC
framework, the global and local motions can be separately esti-
mated in a hierarchical manner. In the i‘th phase sequence, the
motion parameter mkðtÞ of the k’th ROI at time t can be esti-
mated by localizing the cost function ξ to the voxels inside the
dilated ROI mask R 0

k;i.
38 This in turn prevents the cost function

from being stuck in local minima by excluding other moving

objects and the dynamically changing background from the
search field.34

2.4 Outlier Rejection

2.4.1 Volume outlier rejection

VOR is the process of eliminating significantly misaligned
outlier volumes even after motion correction, which can be
regarded as a complementary method for removing spurious
data from misaligned volumes. There exist some automatic
tools of evaluating volume outliers, including AFNI
(3dTqual) and FSL (fsl_motion_outliers).39–41

However, these tools do not adequately address small subject
motion as well as the temporal variation of BOLD signals
since volume outliers are detected based on spatial correlation
between a motion-corrected volume and the template. In this
section, we propose a method for VOR, using a probabilistic
approach based on the temporal outliers of BOLD time series,
which is optimized to be robust for temporal variation of signals.

Suppose that we have a series of volume outlier scores (VOS)
as a measure of evaluating the accuracy of volume alignment;
that is, ρ ¼ fρ1; · · · ; ρNg where ρt denotes the VOS at time t.
The volume outliers can then be detected by thresholding the
VOS values. In other words, the VOR is formulated as the prob-
lem of computing the missingness vector g ¼ ½g1; : : : ; gN � such
that gt ¼ 0 if ρt < ρth, otherwise gt ¼ 1where ρth is a predefined
threshold.

Let us consider the k‘th ROI Fk which has been wrongly
aligned to a phase-specific template at time t; in other words,
the motion parameter m̂k;t has been wrongly estimated so
that the t’th volume should be rejected as a volume outlier
by setting the missingness as gt ¼ 1. Let qk;0 ∈ Fk be a
voxel with fixed coordinates inside the k‘th ROI of the template
)‘0 ’ denotes a template volume), and let qk;t be the actual loca-

tion at time t corresponding to the voxel qk;0. The volume mis-
alignment leads to the spatial mismatch between qk;0 and qk;t.
For the sake of simplicity, the rotational components of volume
misalignment are considered negligible. The geometric distance
nk;t between two positions is then equivalent to the measurement
error of object motion; that is, nk;t ¼ qk;t − qk;0 ¼ mk;t − m̂k;t.
As a result, the actual area of the ROI at time t is updated as

Fig. 3 The structure of the DOMC. The DOMC consists of global and LMC steps. Each block corre-
sponds to a volume consisting of voxel-wise BOLD signals at a specific time point.
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Fk;t ≡ fqk;tjqk;t ¼ qk;0 þ nk;t; qk;0 ∈ Fkg, and consequently the
background at time t would be given as Bk;t ≡ U − Fk;t

where U is a set of whole voxels. Finally, the volume misalign-
ment leads to the spatial mismatch between Fk and Fk;t as illus-
trated in Fig. 4.

To represent it in terms of probability, let
PqðBk;tÞ ≡ Pðqk;0 ∈ Bk;tjnk;tÞ denote the probability of the
voxel qk;0 not belonging to the updated ROI Fk;t in time t
due to the error motion nk;t. As long as the shape of ROI Fk
is always convex, the mean of PqðBk;tÞ over the ROI voxels,
denoted by ρkðtÞ, is a monotonically increasing function fR
over jnk;tj < jnmaxj; that is,

EQ-TARGET;temp:intralink-;e002;63;437ρkðtÞ ≡
1

Vk

X
qk;0

Pðqk;0 ∈ Bk;tjnk;tÞ ¼ ζRðjnk;tjÞ; (2)

where jnmaxj is the maximum geometric error, Vk ≡ NðFk;0Þ is
the number of all voxels in the k‘th predefined ROI, and ζqð·Þ is
a monotonically increasing function over the degree of transla-
tion jnk;tj.42,43 If we especially assume that the function ζR is
approximately proportional to jnk;tj, it can be exploited as the
VOS ρt to evaluate the degree of translation. (Note: this is
not exactly proportional in practice because of the dependence
of PqðBk;tÞ on the object shape).

Let ρkðtÞ be the MOP of the k‘th ROI at time t. The MOP can
be computed by estimating PqðBk;tÞ. According to the law of
large numbers,44 PqðBk;tÞ can be approximated as VðbÞ

k ðtÞ∕Vk
where VðbÞ

k ðtÞ ¼ NðFk;0 ∩ Bk;tÞ denotes the number of voxels
in the k‘th ROI not belonging to the updated ROI due to motion
in time t; therefore, ρkðtÞ ≈ VðbÞ

k ðtÞ∕Vk. While VðbÞ
k ðtÞ is deter-

mined depending on nk;t, the geometric error is unknown. To esti-
mate the MOP ρkðtÞ, the temporal variation of BOLD signals can
be exploited as an alternative. As depicted in Fig. 4, the volume
misalignment leads to temporal outliers in BOLD signals at some
boundary voxels of the predefined ROI. The typical approach
to detecting temporal outliers is to calculate the TOS based
on the Euclidean distance of intensities from the median
absolute deviation (MAD) of the BOLD signals.16 Let
Sq ¼ ½s1; s2; · · · ; sN � be a vector of TOSs corresponding to
the BOLD signal xq ¼ ½xqð1Þ; xqð2Þ; : : : ; xqðNÞ� at the voxel
qk;0. Then, the voxel q is regarded as an outlier at time t if st >
so where the threshold so is automatically determined as the
voxel-wise IQR boundary, in other words, so ¼ 1.5 × STDðSqÞ.

Let us consider the probability of a boundary voxel having
temporal outlier in its BOLD signal due to volume

misalignment. Let PqðOk;tÞ ≡ P½ωðxq; tÞ ¼ O� be the outlier
probability, that is, the probability of a voxel qk;0 belonging
to the outlier class O in time t where ωð·Þ denotes the class
of BOLD signal. Then, we have the following relationship
according to the Bayes’ rule:45

EQ-TARGET;temp:intralink-;e003;326;697PqðOk;tÞ ¼ PqðOk;tjBk;tÞPqðBk;tÞ
þ PqðOk;tjFk;tÞ½1 − PqðBk;tÞ�. (3)

In a similar manner with PqðBk;tÞ, PqðOk;tÞ can be approxi-
mated to VðoÞ

k ðtÞ∕Vk where VðoÞ
k ðtÞ is the number of all outlier

voxels in U in time t. From Eq. (3), we obtain

EQ-TARGET;temp:intralink-;e004;326;614ρkðtÞ ≈
VðoÞ
k ðtÞ∕Vk − PqðOk;tjFk;tÞ

PqðOk;tjBk;tÞ − PqðOk;tjFk;tÞ
. (4)

As shown in Fig. 5(a), the posterior probabilities PqðOk;tjBk;tÞ
and PqðOk;tjFk;tÞ can be computed by integrating the
corresponding posterior probability density function (PDF)
over the outlier region where the TOS st is larger than the thresh-
old so; for instance, PqðOk;tjBk;tÞ is given as follows

EQ-TARGET;temp:intralink-;e005;326;510PqðOk;tjBk;tÞ ¼
Z

∞

so

pðsjBk;tÞds. (5)

The background posterior probability PqðOk;tjBk;tÞ depends on
how far apart two PDFs are from each other as well. Let us sup-
pose that the BOLD intensities in the k‘th ROI Fk;t have sta-
tistically significant differences from those of the surrounding
background Bk;t so that two density distributions pðstjFk;tÞ
and pðstjBk;tÞ get further away from each other, as exemplified
in Fig. 5(b). There exists a critical point sc of TOS as the boun-
dary between two classes where all voxels with TOS st < sc are
assigned to the k‘th ROI, otherwise to the background. As two
PDFs become further apart from each other, sc becomes larger
than TOS threshold so; that is, so ≤ sc. As a result, most voxels
in the background would have temporal outliers in time t as
illustrated in Fig. 5(a). Finally, the background posterior prob-
ability PqðOk;tjBk;tÞ would have a high value close to 1.

Normally, χob ≡ PqðOk;tjBk;tÞ and χof ≡ PqðOk;tjFk;tÞ can be
determined as some high and small values which satisfy χof <
min VðoÞ

k ðtÞ∕Vk and max VðoÞ
k ðtÞ∕Vk < χob since ρkðtÞ ∈ ½0;1�

and we assume that χob and χof are almost constant over
time. Note that those probabilities do not need to be precisely
estimated practically, since their inaccuracy can be compensated
by adjusting the threshold ρth. Finally, the missingness vectorm,
which describes whether each volume is trimmed or not, is pro-
duced by thresholding the MOP ρkðtÞ in each volume.

2.4.2 Voxel outlier rejection

The BOLD intensities may be affected by various artifacts such
as imprecise motion correction, physiological noises, and unex-
pected MR artifacts. For example, the limbs of the fetus may
instantaneously deform the placenta due to its intense motion.
Since it changes the local shape of the placenta, it is not easily
captured by either motion correction or outlier rejection. A sec-
ond example would be a gas bubble artifact which can be fre-
quently introduced due to the maternal intestines surrounding
the womb, which may result in significant signal loss in the
local area of either the fetal brain or placenta. Such voxel out-
liers can be detected and rejected using the generalized extreme

Fig. 4 Motion-induced overlapping of ROI between two subsequent
images. Fetal motion produces a nonoverlapping part of ROI between
two subsequent volumes. Large motion leads to the large nonoverlap-
ping area, which means that the probability of temporal outliers in the
nonoverlapping region increases. The MOP can be used as the VOS
on the basis of the Bayes’ rule.
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studentized deviate (ESD) procedure46 which is appropriate,
compared to other typical methods such as Grubb’s test
and Dixon’s test. Refer to Appendix A for its theoretical
descriptions.

2.5 Data Imputation

The process of VOR produces missing data in ROI-averaged
time series, which results in the discontinuity in BOLD signals,
or irregular time intervals between two subsequent volumes.
The problem can be overcome by imputing the missing data
in a statistical manner.

Let us consider K ROI-averaged signals of length N which
were averaged at each ROI; ỹi ¼ ½ỹið1Þ; · · · ; ỹiðNÞ�T denotes
the mean BOLD signal of the i‘th ROI (i ¼ 1; · · · ; K).
Assuming that the signals are incomplete in that they
have zero value at each missing data point, let Mi ¼
diag½gi;1; · · · ; gi;N � be the missingness matrix for the i‘th
ROI where gi;t ¼ 1 if observed at time t and gi;t ¼ 0 other-
wise; it is simply the matrix extension of the missingness vec-
tor g. Let yi denote the complete data without missing data
corresponding to ỹi, and consider the regression model yi ¼
f i þ εi where fiðt0Þ ¼ Eðyijt ¼ t0Þ is a finite continuous func-
tion and εiðtÞ is an independent and identically distributed
random variable with zero mean and variance σ2i , that is,
εi ∼ Nð0; σ2i Þ. Our goal is to estimate the complete data yi
from the incomplete data ỹi ¼ Miyi by imputing missing
data as follows

EQ-TARGET;temp:intralink-;e006;63;169ŷi ¼ Miỹi þ ð1ðNÞ −MiÞðf̂ i þ ε̂iÞ; (6)

where 1ðNÞ is the N × N matrix whose all entries are 1,
and the error ε̂i satisfies ε̂i ∼ Nð0; var½vi�Þ with
vi ≡ fxjx ∈ Miðỹi − f̂ iÞ; x ≠ 0g. It indicates that the missing
data can be obtained from the estimated regression function
f i. A nonparametric estimator called the local polynomial
smoother (LPS) can be effectively used to estimate the

regression function f i for diverse types of complex time
series.47 In the LPS-based regression, the low degree polyno-
mial is fitted, through weighted least squares, not to the whole
time series but to temporal segments localized by a kernel (or
moving window) with specific bandwidth (or smoothing
parameter) as depicted in Fig. 6. Refer to Appendix B for
mathematical descriptions.

2.6 Performance Evaluation

The performance of motion correction was evaluated using the
voxel-wise mean absolute residual variation (m-ARV) score as
well as the ratio of temporal outliers in the resulting BOLD
signals, and was compared with the FMRIB’s Linear
Image Registration Tool (FLIRT)34 which has been one of
the conventional motion correction tools used in fMRI studies.
The m-ARV score rq for the voxel q is defined as the absolute
mean value of residual intensity variations over time; that is,
rq ¼ N−1 PN

t¼1 jXtðqÞ − X̄ðqÞj where X̄ is the t-mean volume
over a phase.34

While the linear registration method has been used as the
default in each phase sequence for each ROI through the pro-
posed DOMC pipeline, we also tested the effects of advanced
image registration methods specialized for fetal motion correc-
tion. The test methods were made up of a possible combination
of slice-to-volume registration and nonlinear image registration
which can be regarded as two key features of the existing meth-
ods for fetal motion correction.13,48 One of the simplest methods
for slice-to-volume registration was implemented according to
the slice timing correction algorithm, proposed in Ref. 48, which
decomposes each volume into two subvolumes of odd and even
slices, and aligns two subvolumes to remove the spatial mis-
match between slices due to interleaved data acquisition. On
the other hand, the FMRIB tool for small-displacement non-lin-
ear registration (FNIRT) was utilized for nonlinear image
registration.49

Fig. 5 The class-conditional probability density functions of temporal outliers in the foreground and back-
ground. (a) A theoretical model is visualized where the PDFs pðsjBk Þ and pðsjFk Þ are assumed to be
normally distributed over TOSs s. The decision of a voxel being foreground or background is made at the
critical point sc where pðsc jFk ÞPðFk Þ ¼ pðsc jBk ÞPðBk Þ. On the other hand, the decision of a voxel being
a temporal outlier is made at the boundary so corresponding to a predefined rate of the normal distri-
bution. (b) The difference in probabilities of relative BOLD intensities, corresponding to outlier score s, is
illustrated between the fetal brain and its surrounding background by using intensity histograms.
Equation (5) is still valid although the intensity distribution of surrounding background is not perfectly
normal.
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To determine the impact of either fetal motion or acquisition
plane on the quality of fMRI data, we analyzed the association
between estimated motion parameters and the ratio of rejected
volume outliers (RVO), defined to be the fraction of rejected
volumes to total volumes. The performance of the proposed
LPS-based data imputation was evaluated through the random
attack experiment where some data are randomly removed in a
time series, and quantified using the data imputation score (DIS)
which is defined as the correlation coefficient between ground
truth and recovered time series. To compare the statistics of esti-
mated motion parameters either between different temporal
phases or between healthy and CHD fetuses, the absolute dis-
tance of translation (ADT) was defined as the norm of a trans-
lation vector.

3 Results

3.1 Design-Optimized Motion Correction

The quality of each EPI sequence was first visually inspected
using the FSL viewer before preprocessing. Four subjects
were found to have several erroneous slices due to either
Nyquist ghosting or slice shifting effects. These erroneous slices
were excluded from image registration.

Figure 7 shows examples of fetal fMR images after applying
either the proposed DOMC method or FLIRT. The top row
images depict examples where the motion of the fetal brain
was not well aligned to the actual location when FLIRT was
applied for motion correction. On the other hand, the image
registration for the fetal brain was improved using the proposed
DOMC method as shown in the bottom row, where the regis-
tered ROIs coincided with the actual corresponding regions.

Figure 8 illustrates the effect of the proposed DOMC method
and FLIRT on a ROI-averaged BOLD time series. The averaged
time series were corrupted by many temporal outliers caused by
volume misalignment after applying the standard preprocessing
pipeline based on FLIRT. Once the proposed DOMC method
was applied, the number of temporal outliers in the averaged
BOLD time series was reduced.

Figure 9 summarizes the quantitative comparison of perfor-
mance in motion correction between the proposed DOMC
method and FLIRT. The ratios of temporal outliers in the result-
ing BOLD signals after motion correction were significantly
reduced using the proposed method compared to FLIRT in
both the fetal brain (1.18� 1.36 vs. 4.55� 3.03, p < 0.0001
using the paired one tail t-test) and placenta (0.16� 0.37 vs.
0.78� 0.83, p ¼ 0.009).

Figure 10 shows that the mean m-ARV score exhibited the
tendency of decreasing progressively over the sequential steps
of GMC and LMC in both the fetal brain and placenta, which
indicates that the similarity between volumes was improved.
Figure 10 also shows the quantitative comparison of motion cor-
rection performance between five different image registration
methods applied to the DOMC pipeline. The nonlinear registra-
tion approach consistently exhibited more enhanced perfor-
mance of motion correction, with lower m-ARV scores
(28.6� 5.5 vs 38.7� 4.7 for the fetal brain, 24.5� 1.1 vs
44.4� 3.3 for the placenta), than the linear registration in
both the fetal brain and placenta. However, its computation
speed was approximately 2.62 times slower (729 vs 278 minutes
on average). On the other hand, the effect of slice-to-volume
registration on image quality was conspicuous only in the
fetal brain when it was followed by nonlinear motion correction
(N vs NS: 25.4� 3.8 vs 31.8� 5.5 for m-ARV), while its
effects were negligible in the placenta. Regardless of image
registration methods, the motion correction was always more

Fig. 6 An example of data imputation based on local polynomial regression. The derivatives at a time
point are obtained by applying a kernel to its neighboring data inside the predefined bandwidth of finite
size. All missing data points are estimated based on the regressed time series.

Fig. 7 Comparison of DOMC with FLIRT in the fetal brain. The fMRI
image registered by DOMC (b) was spatially well matched with the
predefined ROI area (highlighted by red) while the image registered
by FLIRT (a) was not as indicated by arrows.
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effective in the baseline compared to hyperoxia or return to
baseline.

3.2 Outlier Rejection and Data Imputation

Figure 9 quantitatively demonstrates that some outlier volumes
may still exist due to the failure in estimating the motion param-
eters. Figure 11 illustrates a detailed example which shows how
the failure in motion correction leads to a volume outlier. The
top row shows two consecutive images with a large rotation of
the fetal brain resulting in a considerable difference in the shape

and location of the brain projected to a specific plane. This
resulted in a number of temporal outliers especially on the boun-
dary voxels of the fetal brain. The TOS was obtained in each
voxel, and the sum of TOS over all ROI voxels was computed
and converted into the MOP as a VOS. As shown in the bottom
row graph, the VOS at the ðtþ 1Þ’th volume was greater than
the threshold which was set as 0.3, and therefore the volumewas
rejected.

Table 2 shows the dependence of RVO according to types of
acquisition plane. The RVO was consistently higher in axial
view compared to the coronal view, regardless of subject
types. Figure 12 shows an example of detected outlier voxels
in the placenta before averaging voxel-wise BOLD signals,
demonstrating that the (red-highlighted) voxels corrupted by
fetal body or nonplacental tissues were automatically detected
as outliers.

Figure 13 shows the comparison of the proposed LPS-based
data imputation method (based on local polynomial smoothing)
with other traditional methods based on global curve fitting
which was applied in Ref. 31. In the LPS-based data imputation,
the DIS was maximized over the whole range of missing vol-
umes in both the fetal brain and placenta when the bandwidth of
local smoothing was set to be 20. In the fetal brain, the DIS
gradually decreased as the percentage of missing data increased.
On the other hand, the DIS in the placenta was maintained over

Fig. 8 The effect of the proposed DOMC method on an ROI-averaged BOLD time series of the fetal
brain, compared to the standard motion correction approach based on FLIRT. Some temporal outliers
induced by fetal motion (indicated by arrows) were prominently reduced when the proposed DOMC
method was applied.

Fig. 9 The ratios of temporal outliers in the mean BOLD signals of the
brain and placenta comparing the DOMC and FLIRT. The asterisk
symbol indicates that the group difference in the ratio of temporal out-
liers is statistically significant with p value <0.05.

Fig. 10 The effects of nonlinear image registration and slice-to-volume registration applied to the
common DOMC pipeline on the motion correction performance. Lower m-ARV scores correspond to
better image quality after motion correction. GMC denotes applying the GMC only while LMC denotes
applying both the global and LMCs. For the latter case, we compared four possible variations: linear
motion correction (L) which was set as the default of the DOMC pipeline, linear motion correction
along with slice-to-volume registration (LS), nonlinear motion correction (N), and nonlinear motion cor-
rection along with slice-to-volume registration (NS).
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0.95 until 30% of the data were missing while it sharply declined
when more data than 30% were missing. The traditional method
based on the Fourier series model exhibited similar performance
to the LPS-based method; however, the DIS was slightly

improved, particularly with 15% to 30% missing data, using
LPS-based data imputation compared to the Fourier series
model.

3.3 Clinical Application

Table 3 summarizes the statistics of estimated motion parame-
ters in different phases for both healthy and CHD fetuses. The
mean ADTs were smaller in GMC than in LMC regardless of
phases and subject type (i.e., controls and CHD cases). On the
other hand, the mean ADTs were higher in CHD fetuses com-
pared to healthy control fetuses for both global and LMC; how-
ever, the differences in mean ADTs were not statistically
significant. Specifically, the mean ADTs of the fetal brain
were 20.7, 51.1, 14.7 times those of the placenta at baseline,
hyperoxia, and return to baseline, respectively. Interestingly,
the standard deviation of ADTs for the fetal brain of CHD
cases was larger than that for healthy controls in all phases.

The phase-dependent mean ADTs of global motion were
commonly increased during both hyperoxia and return to base-
line compared to baseline before oxygen supply. In the LMC,
the phase-dependent changes in the mean ADTs of local motion
were considerably different between healthy controls and CHD

Fig. 11 An example of VOR. The high motion between two images causes temporal outliers in the boun-
daries of the fetal brain and finally leads to the substantial increase in the VOS.

Table 2 The ratios of rejected volume outliers (RVO) in coronal and axial planes.

Plane Category Baseline Hyperoxia Return to baseline Total

Coronal Control 1.3� 2.5% 0.6� 0.8% 2.5� 5.1% 1.5� 2.5%

CHD 11.3� 8.9% 13.5� 13.4% 14.4� 11.8% 13.4� 11.6%

Axial Control 10.0� 15.3% 6.3� 7.2% 9.7� 12.4% 8.3� 11.0%

CHD 15.6� 17.7% 21.3� 22.5% 9.1� 12.3% 16.0� 17.7%

Fig. 12 An example of voxel outliers in the placenta. The original
ROIs were shaded with yellow color while the voxel outliers were
shaded with red color.
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fetuses. In the healthy controls, the mean ADTs of the fetal brain
and placenta were maintained or slightly increased during both
phases of hyperoxia and return to baseline. Conversely, the
mean ADTs of brain motion in CHD fetuses were decreased
after hyperoxia.

The group differences in RVO between healthy and CHD
fetuses are shown in Table 2; the RVO was reduced during
hyperoxia in healthy controls, while it was increased in fetuses
with CHD. The RVO was normally higher in CHD fetuses com-
pared to healthy control fetuses.

4 Discussion

4.1 Methodological Issues

This paper proposed a preprocessing pipeline to overcome the
practical limitation of fetal motion correction and eliminating sig-
nificant noise artifacts that are unique challenges in stimulus-

based fMRI of the living fetus. The novelties of this paper can
be summarized as follows. First, motion correction is optimized
to the experimental design. Second, the misaligned volumes are
automatically detected using a probabilistic approach optimal to
fMRI data, and missing data resulted from VOR are recovered
through data imputation to allow for advanced and reliable
BOLD time-series analysis retrospectively.

Through the analyses of motion parameters estimated by the
proposed DOMC method, we also found that the pattern of fetal
motion changes over different stimulus phases.50 Fetal motion
tended to be dependent on the task design where the degree
of fetal motion changed over the study phases. In addition,
the degree of absolute translation was significantly smaller in
the placenta compared to the fetal brain by visual inspection
of EPI sequences. These results support the need for DOMC,
based on the assumption of heterogeneous patterns of movement
over different phases and ROIs.

Fig. 13 The comparison of performance among data imputation techniques both in (a) fetal brain and
(b) placenta. Some time points were randomly eliminated according to a controlled percentage of missing
data, and were recovered using a diversity of data imputation techniques. Then, the correlation coeffi-
cient between the original ROI time series (as a ground truth) and the recovered time series was com-
puted to evaluate the performance of data imputation. Both ‘Poly1’ and ‘Fourier3’ denote the linear
polynomial model and the Fourier series model with three degrees, respectively, and W denotes the
bandwidth of local polynomial smoother with the polynomials with degree 5.

Table 3 The statistics of absolute translations estimated by global and LMC. P1, P2, and P3 correspond to baseline, hyperoxia, and return to
baseline, respectively.

Motion type Phase

Control CHD

Value (mm) Change (%) Value (mm) Change (%)

Global P1 0.29� 0.17 0.42� 0.20

P2 0.38� 0.26 30.33 (p ¼ 0.12) 0.47� 0.40 13.11 (p ¼ 0.31)

P3 0.33� 0.30 12.83 (p ¼ 0.40) 0.54� 0.51 28.34 (p ¼ 0.40)

Brain P1 0.95� 0.64 19.67� 34.13

P2 1.24� 0.86 30.55 (p ¼ 0.20) 63.40� 138.66 222.36 (p ¼ 0.15)

P3 1.24� 0.89 30.54 (p ¼ 0.50) 18.28� 30.04 −7.05 (p ¼ 0.18)

Placenta P1 0.96� 0.65 1.20� 0.94

P2 0.97� 0.48 0.81 (p ¼ 0.48) 1.24� 0.87 3.10 (p ¼ 0.46)

P3 1.20� 0.82 24.28 (p ¼ 0.18) 0.93� 0.56 −22.43 (p ¼ 0.13)
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The different pattern of movement over phases does not mat-
ter in resting state fMRI where no stimulus is assigned. Since an
EPI sequence acquired at rest does not need to be temporally
split into several phases, the DOMC method becomes roughly
identical to the typical image registration which has been
applied in other fMRI studies on the fetal brain.2,26,27 On the
other hand, if the EPI sequence is acquired at rest but contains
multiple organs moving independently, it still needs to be split
into different ROIs so that the DOMC method can be applied.
As such, the proposed DOMCmethod may also be beneficial for
resting state fMRI of the moving fetus.

The performance of the proposed DOMC method was com-
pared with FLIRT. We showed (Fig. 9) that the number of out-
liers was significantly reduced in the resulting averaged BOLD
signals after DOMC. Although the reduction of temporal out-
liers in averaged BOLD signals is not a direct metric for perfor-
mance evaluation, it might have been indirectly attributed to the
improved performance of motion correction, assuming that the
volume outliers are dominated by high fetal motion.

We also compared four advanced variations of image regis-
tration in the proposed DOMC pipeline with linear image regis-
tration to determine the effect of nonlinear image registration
and slice-to-volume registration. Our results demonstrate that
nonlinear image registration leads to better performance in
motion correction than linear registration in both the fetal
brain and placenta. This is not surprising, particularly in the pla-
centa which is nonrigid but deformable as shown in Fig. 12.
Nevertheless, we used linear image registration in the present
study to minimize the computational complexity. On the
other hand, the slice-to-volume registration did not always
lead to a substantial improvement in motion correction, with
the exception of nonlinear registration when applied to the
fetal brain. This negligible effect might be attributed to the sim-
plicity of the applied slice-to-volume motion correction algo-
rithm in which two sub-datasets of odd and even slices are
simply realigned. More advanced methods, as proposed in
Ref. 13, need to be developed to improve the accuracy of
slice-to-volume registration for both the fetal brain and placenta.
Taken together, these results demonstrate that the existing meth-
ods for motion correction could be effectively incorporated into
the proposed DOMC pipeline to improve the performance of
motion correction although their high computational complexity
needs to be enhanced for practical use.

The performance of LPS-based data imputation was quanti-
tatively evaluated through the random attack experiments. We
showed (Fig. 13) that the performance is highly dependent to
the bandwidth of local smoothing. While the bandwidth was
empirically determined in our study, it would be valuable to
develop an algorithm to determine the optimal bandwidth auto-
matically according to the statistical properties of individual
time series to maximize the performance of data imputation
compared to other traditional methods. Interestingly, the data
imputation was more successful in the placenta than in the
fetal brain as long as the missing rate is kept low (<30%).

In this study, we compared coronal and axial acquisitions to
examine the impact of the acquisition plan on the performance
of motion correction. The number of rejected volume outliers in
the fetal brain was higher with axial acquisitions compared to
coronal acquisitions. These data demonstrate that the motion
correction of the fetal brain is less effective in the axial plane
than in the coronal plane. This effect may be attributed to the
interleaved data acquisition given that the interleaved scan

resulted in spatial mismatch between slices due to fetal motion
and finally led to the inaccuracy in estimating motion parame-
ters relevant to the between-slice movement. In the case of axial
acquisitions, the performance of motion correction may be
deteriorated since the EPI sequence includes more between-
slice movement of the fetal brain while it appropriately captures
the in-plane rotation of the brain. On the other hand, in the coro-
nal plane, motion correction was more successful in estimating
the translational movement of fetuses and less accurate in
detecting the rotation of the fetal brain which is normally related
to the between-slice motion in EPI volume. Our data suggest
that the coronal acquisition may be more beneficial than the
axial acquisition resulting in improved performance of motion
correction of the fetal brain.

Conversely, the acquisition plan had a different impact on
motion correction of the placenta. The placenta demonstrated
periodic motion attributed to maternal respiration. As observed
empirically in our study, the anterior-posterior components of
respiration-related placental motion artifact could be mitigated
using data acquired in the axial plane compared to the coronal
plane, which may be attributed to the anthropometric features
of the placenta which is a flat organ and is typically attached to
the lateral wall of the uterus. However, this conflicts with our
conclusion that the coronal plane is better for the fetal brain.
Since placental motion was not as pronounced compared to the
fetal brain, we chose the coronal plane as a trade-off to correct
more serious motion of the fetal brain. Indeed, the changes in
the number of rejected volume outliers were fewer in the
placenta.

Although there are a number of strengths to our preprocess-
ing pipeline, the limitations also deserve mention. The first
limitation is that a unique set of parameters in computing of
VOS for VOR were uniformly applied to all subjects; however,
they may be different over subjects or over ROIs. The VOS is
determined depending on background and foreground pos-
terior probabilities [as described in Eq. (4)] which may be dif-
ferent according to either ROI or subject types. For example,
the temporal outliers tend to frequently occur in the inner local
part of an ROI with spatially inhomogeneous intensities. In
other words, an ROI voxel is more likely to have a temporal
outlier in the case that the ROI is highly textured, which leads
to the increase in the foreground posterior probability.
Moreover, those posterior probabilities have been approxi-
mately established under such an inherent assumption that
each ROI has significantly different BOLD intensities com-
pared to the surrounding background. While this assumption
is broadly appropriate for most ROIs including the placenta,
fetal liver, and heart, it does not always hold true for the
fetal brain which tends to have fewer intensity differences
compared to the surrounding amniotic fluid and uterine
tissues.13 Therefore, an automatic algorithm for deciding the
threshold for VOS adaptively in each subject or each ROI
would be instrumental to enhance the accuracy in computing
the VOS and ultimately improve the performance of VOR.
Another limitation is that our proposed preprocessing pipeline
does not directly address physiological artifacts such as cardiac
pulsation and respiratory motion which may have considerable
effects on fetal motion correction and missing data imputation.
Although the physiological artifacts could be compensated in
part by the outlier rejection process, an advanced method of
eliminating such physiological noises found in fetal MRI
will need to be developed.
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4.2 Clinical Application to Congenital Heart Disease

We showed that the proposed preprocessing pipeline can be
effectively employed to characterize fetal motion in healthy
controls and CHD fetuses. Our preliminary data suggest that
the degree of fetal motion tends to increase during hyperoxia
in CHD fetuses (but not significantly). In addition, the motion
of the fetal brain in CHD cases showed higher variance during
hyperoxia compare to controls. These observations suggest
that the CHD fetus may be more responsive to maternal hyper-
oxia. However, these pilot data need to be validated on a larger
cohort of healthy and high-risk CHD fetuses. Investigating the
mechanisms underlying the differences observed between
these two groups was beyond the scope of this study but cur-
rently underway.

4.3 Conclusion

In conclusion, the proposed preprocessing pipeline including
DOMC and outlier rejection can be effectively used to eliminate
noise artifacts induced by fetal and placental movement in
stimulus-based fMRI. Although the pipeline needs to be
improved through further studies to ensure accurate and reliable
signal analyses, this work makes an important technical advance
for robust preprocessing in stimulus-based functional neuroi-
maging studies of the fetal brain and placenta, and lays the foun-
dation not only for noninvasive functional assessment of fetal
brain-placenta unit, but also for enabling early detection of
impaired fetal brain-placenta circulation in future.

Appendix A: Extreme Studentized Deviate
Procedure
Let us consider the k’th ROI Fk containing Q voxels. Let FðsÞ

k ¼
fq1; q2; · · · ; qQg be the set of ordered voxels such that
Ri > Riþ1 where Ri is the absolute z-score for the i’th ordered
voxel qi with intensity xðqiÞ; i.e., Ri ¼ jxðqiÞ − μj∕σ for the
mean μ and standard deviation σ of intensities over the voxel
set FðsÞ

k . Then, a voxel qi, whose index i is less than a predefined
maximum, is considered as an outlier if its absolute z-score Ri is
larger than its corresponding critical value λi; i.e., Ri > λi where

EQ-TARGET;temp:intralink-;e007;63;294λi ¼
tðb;Q−i−1ÞðQ − iÞ

ðQ − i − 1þ t2ðb;Q−i−1ÞÞ1∕2ðQ − iþ 1Þ1∕2 ; (7)

tðb;tÞ is the b’th percentile of the Student’s t-distribution with t
DOF, and b ¼ 1 − α∕ðQ − iþ 1Þ for the significance level α
(which was set to be 0.05 in this study).

Appendix B: Local Polynomial Smoothing
Assuming that the ðpþ 1Þ’th derivatives of f i at any t exist, the
regression function fi can be estimated by finding the polyno-
mial parameter vector αiðtÞ ¼ ½αi;0ðtÞ; · · · ; αi;pðtÞ�T where
αi;jðtÞ ¼ fðjÞðtÞ∕ðj!Þ; in other words,

EQ-TARGET;temp:intralink-;e008;63;121f̂iðtÞ ¼ α̂i;0ðtÞ ¼ eT1 α̂iðtÞ; (8)

where e1 is a binary vector of length pþ 1 having 1 in the
first entry and 0 for the rest. The parameter vector αiðtÞ is

estimated by minimizing the kernel-weighted local least squares
as follows:

EQ-TARGET;temp:intralink-;e009;326;730

α̂iðtjW;MiÞ¼argmin
αiðtÞ

½ỹi−PðtÞαiðtÞ�TWðtÞMi½ỹi−PðtÞαiðtÞ�

¼½PTðtÞWðtÞMiPðtÞ�−1PTðtÞWðtÞMiỹi; (9)

where the polynomial matrix PðtÞ is given by PðtÞ ¼
½ðti − tÞj−1�i;j for any t. The kernel weight matrix W is
given by WðtÞ ¼ diagfðNsÞ−1K½ðti − tÞ∕s�gi;i where K is a
symmetric kernel function and s is a smoothing parameter.
We assume that the data are missing at random (MAR); i.e.,
P½mi;t ¼ 1jyiðtÞ� ¼ pðtÞ ∈ ½0;1�.51 Then, the estimator is
unbiased as N → ∞ but has lower efficiency (in other words,
the increase in var½f̂iðtÞjW;Mi�) as the observation probability
pðtÞ decreases.47
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