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Abstract. Computed tomography is a standard diagnostic imaging technique for patients with traumatic brain
injury (TBI). A limitation is the poor-to-moderate sensitivity for small traumatic hemorrhages. A pilot study using
an automatic method to detect hemorrhages <10 mm in diameter in patients with TBI is presented. We have
created an average image from 30 normal noncontrast CT scans that were automatically aligned using deform-
able image registration as implemented in Elastix software. Subsequently, the average image was aligned to the
scans of TBI patients, and the hemorrhages were detected by a voxelwise subtraction of the average image from
the CT scans of nine TBI patients. An experienced neuroradiologist and a radiologist in training assessed the
presence of hemorrhages in the final images and determined the false positives and false negatives. The 9 CT
scans contained 67 small haemorrhages, of which 97% was correctly detected by our system. The neuroradi-
ologist detected three false positives, and the radiologist in training found two false positives. For one patient,
our method showed a hemorrhagic contusion that was originally missed. Comparing individual CT scans with
a computed average may assist the physicians in detecting small traumatic hemorrhages in patients with TBI.
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1 Introduction
Traumatic brain injury (TBI) is a leading cause of morbidity and
mortality with an estimated 1.6 million hospitalized and 66,000
deceased patients in Europe every year.1 Computed tomography
(CT) is generally performed as a primary standard imaging
modality for acute TBI.2 The advantages of CT include large-
scale availability and short preparation and study time.3,4 CT reli-
ably detects intracranial hemorrhages and contusions, bone path-
ology, cerebral edema, and incipient herniation.4,5 Limitations of
noncontrast CT include a poor sensitivity for small hemorrhages,
diffuse axonal injury (DAI), arterial dissection, and vascular
damage.6,7 In particular, in TBI patients with secondary progres-
sion of initially undetected small cerebral hemorrhages might
cause a decline in the functional status of the patient, which moti-
vates the need of early detection of these traumatic lesions.8

Several approaches for automatic detection to assist in visual
analysis have been proposed, ranging from machine learning on
whole images9,10 to computer-assisted segmentations and
morphological operations.11,12 In recent years, machine learning
gained broad attention in the field of medical imaging by
detecting several abnormalities. Kumar et al.13 introduced a
robust method by expanding multivariate generalized Gaussian
distribution to a reproducing kernel Hilbert space for mixture
modeling. According to the authors, this statistical learning
method is robust compared with the previous studies that were
highly sensitive to the outliers caused by several errors, includ-
ing motion and imaging artifacts. The method was examined

using retinopathy and gastric and esophageal cancer datasets.
After comparing the results with seven other methods, the stat-
istical learning method showed a higher accuracy.13 Another
study published by Schlegl et al.14 used generative adversarial
networks to find the markers that provide information regarding
the progression and treatment of a certain disease. The method
was examined on 8792 two-dimensional retina images for the
detection of retinal fluid and other retinal lesions. This technique
was able to identify several abnormalities.

An alternative technique is comparing findings with an aver-
age head CT that was first performed by Rorden et al.15 A tem-
plate of subjects with a mean age of 65 years was intended for
the detection of brain damage in stroke patients. Gillebert et al.16

used this template in comparing CT scans of stroke patients and
showed detection of lesion boundaries with a sensitivity of 75%.

The aim of our study was to design and realize a simple and
robust automatic detection method for intracranial hemorrhages
smaller than 10 mm in diameter in patients with TBI, as these are
most easily missed on the CT scan images in an emergency OR
situation. In some cases, secondary injury occurs if these lesions
are not detected promptly. Our main goal was to develop
a method with the ability to detect the presence of any type
and size of intracranial hemorrhage so that the emergency
room physicians can call in a neuroradiologist, a resource not
likely available 24/7 in smaller regional hospitals.

2 Materials and Methods

2.1 Data Acquisition

We retrospectively collected noncontrast CT scans from the
radiology database of the Medisch Spectrum Twente, The
Netherlands (for details, see Appendix Table 3). As controls,
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we used CT scans from 30 patients (mean age 20.9, age range 18
to 24 years, 13 males) with normal findings. Two CT scans were
made for reasons of persisting headache, whereas the other 28
patients were neurotrauma patients. We further collected CT
images from nine TBI patients (mean age 49, age range 18 to
77 years, seven males) with hemorrhages smaller than 10 mm in
diameter on the original CT. Images were obtained from
TOSHIBA (Toshiba Medical Systems Corporation, Tokyo,
Japan) and SIEMENS (Siemens Healthcare GmbH, Erlangen,
Germany) CT scanners. CT scans with artifacts, a large amount
of head asymmetry, or patients with excessive head rotation
were excluded. The Medical Ethics Committee Twente waived
the need for informed consent as data were obtained as part of
standard care.

2.2 Preprocessing

Axial CT images of both the study group and control group
were reconstructed to obtain a straight position of the head
using IntelliSpace software (IntelliSpace Portal 7.0, Philips,
Eindhoven, The Netherlands). Irrelevant slices, defined as slices
above the skull and below the foramen magnum, were removed.
Additionally, we reconstructed new slices with a slice thickness
of 1 mm (range: 1.00 to 1.06 mm) using the thin submillimeter
slices of the original scans (for details, see Appendix Table 3).
Finally, the surrounding structures, such as hair, pillows, and
sheets, around the brain visible on the original CT scans of
the control group were removed by thresholding.

2.3 Registration Framework

In medical imaging, image registration is performed by spatially
mapping different datasets. This procedure involves alignment

of the moving image to the reference image, the fixed image.17

The goal of image registration is to find a coordinate transfor-
mation that ensures the spatial alignment between the fixed and
moving image. The transformation, which affects the registra-
tion between the fixed and moving image, is calculated in an
iterative process, in which an optimizer minimalizes the value
of the cost function.18 In this study, registration techniques
from Elastix software (Elastix Image Registration, The
Netherlands) were applied.17,19 Using Elastix, both rigid body
registration (rigid and affine) and nonrigid body registration
(B-spline) were performed.19 The registration components are
shown in Table 1.

2.4 Creating the Average Image

The CT of one of the patients in the control group was selected
as the fixed image. Subsequently, all 30 CT scans (including the
fixed image) were defined as moving images and were aligned
to the fixed image. After image registration, all images had equal
size and number of slices. Following registration, an average
image from the 30 resulted images was generated. The average
image was used for the detection of hemorrhages in the brains of
TBI patients.

2.5 Detection of Small Hemorrhages

Since the skull shape, slice number, and size of the CT image of
the TBI patient differed from the average image, deformation of
one of the images was required. Using image registration, the
average image was deformed to obtain the same features as
the CT images in the TBI group. This step ensured an average
image and a CT image of each TBI patient with the same dimen-
sions but different intracranial information. The final step of

Table 1 Registration steps of Elastix software with the specific components.19

Registration steps Components used

Scale space to reduce data complexity Four levels, Gaussian smoothing with standard deviation values of 4, 2, 1, and 0.520,21

Image sampler Random coordinate sampler:18,19,22 3000 random coordinates

Interpolator B-spline interpolator:18,23,24

• Linear interpolation: first three levels of scale space

• Cubic interpolation: final level of scale space

Cost function Mutual information:23,25–27

• Number of histogram bins: 32

• Minimum required coordinate alignments to trigger the image registration: 150

Transformation Rigid:22,24 translation and rotation

Affine: translation, rotation, scaling, and shearing

B-spline:22 nonrigid transformation

• Control point spacing: 20 mm

Optimization Adaptive stochastic gradient descent:18,28

• Rigid and affine: 1500 iterations

• B-spline transformation: 2500 iterations
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this method was subtraction of the average image from the CT
images of TBI patients. On the resulted images, only the tissue
that is not present in the average image will remain. Since sub-
traction of the CT images is sensitive for the deviating densities,
small hemorrhages can be detected. The resulted images were
visualized using a look-up table of ITK Snap software.29

2.6 Examining the Hemorrhages

A neuroradiologist and a radiologist in training were independ-
ently asked to examine the intensity differences in the resulted
images and determine the regions of hemorrhage. The clinical
reports of the original CT scans were used as the gold standard.
The findings of the neuroradiologist and radiologist in training
were compared with the clinical notes. False positives and neg-
atives were noted, and the sensitivity was calculated.

3 Results
As shown in Fig. 1(a), the skull of each patient in the control
group was altered to fit the skull shape of the fixed image (white
arrow), while the intracranial details differed. From these three-
dimensional images, an average image was generated where
each voxel in the average image represented the average of
30 voxels at that point [Fig. 1(b)].

The data of the average image of patients in the control group
were compared with the CT images of TBI patients, and the
hemorrhages were automatically visualized. According to the
clinical notes, 67 lesions were detected where the type and
the region of hemorrhage differed per patient (Table 2). The neu-
roradiologist and the radiologist in training missed the same two
hemorrhages (sensitivity of 97%) that were present in the tem-
poral lobe near the bone. The neuroradiologist found three false
positives, and the radiologist in training detected two of these
false positives. Figure 2 shows one of the true positive slices
of the original CT of a TBI patient and the resulting image
after automatic detection. The original CT image shows two
small hemorrhages at the edge of the lateral ventricles. After
applying the automatic detection technique, the hemorrhages
are highlighted in green/yellow. Also, the edges of the skull
were visualized as a high-intensity region. Since our main
goal was detection of small intracranial hemorrhages, the skull
was ignored in the visual assessment. However, to maintain the
anatomical orientation in the resulted image, skull stripping was
not performed. For one patient, our method showed a cerebral
hemorrhagic contusion that was originally missed. In the
resulted images of this TBI patient, the radiologists detected

a minor asymmetry in the temporal lobe, which was not
noted in the clinical data of the patient. After re-examining
the original CT image of the patient, a cerebral contusion in
the temporal lobe was detected. Figure 3(a) shows the original

Fig. 1 (a) The fixed image (white arrow) with 29 resulted images after image registration of the CTs of
patients in the control group. All images are obtained from the same slice in the scan. The heads of
the patients on the CT images have similar skull shapes with different detailed information in the brain.
From these images, (b) an average image is generated.

Table 2 Type and location of hemorrhages in the brain of TBI
patients.

Patients
Number of

hemorrhages Type and location of the hemorrhages

Patient 1 12 Subarachnoid: left temporal

Cerebral contusions: left parietal and
bilateral frontal and temporal

DAI: bilateral randomly present

Patient 2 2 Cerebral contusions: left temporal

Patient 3 11 DAI: corpus callosum

Subarachnoid: right temporal

Intraventricular: bilateral

Patient 4 16 DAI: left parietal, temporal, and
basal ganglia

Subarachnoid: bilateral frontal

Cerebral contusions: left temporal

Patient 5 3 DAI: near the right ventricle

Subarachnoid: right temporal

Patient 6 14 Cerebral contusions: bilateral frontal

DAI: bilateral randomly present

Subdural: left frontoparietal

Patient 7 2 Subdural: bilateral temporal

Patient 8 1 Subarachnoid: right frontotemporal

Patient 9 6 Cerebral contusions: left parietal

Subarachnoid: bilateral occipital

DAI: bilateral randomly present

Journal of Medical Imaging 024004-3 Apr–Jun 2018 • Vol. 5(2)

Afzali-Hashemi et al.: Detection of small traumatic hemorrhages using a computer-generated. . .



CT image of the patient with bilateral small subdural hemor-
rhages along Meckel’s cave (green arrows) and small initially
undetected hemorrhagic contusion in the left temporal area
(red arrow).

The final images of TBI patients also showed high-intensity
regions along the cerebellar tentorium, pons, and around the lat-
eral ventricles. Furthermore, the radiologists had no difficulties
in discerning dense vessels and calcifications from hemorrhages
in the obtained images.

4 Discussion
In this pilot study, we mimicked the visual analysis of the
neuroradiologists with an automatic detection method by easily
identifying small cerebral hemorrhages in TBI patients using

a computer-generated “average brain” from 30 control patients.
From 67 lesions, the automatic detection method missed only
two lesions that were present in the temporal fossa near the
bone. The middle temporal fossa is highly variable in shape
and size per individual. These variations were observed on
the original CT scans of 30 patients in the control group.
Since only 30 young patients were included in the control
group, the average image will be affected by these individual
differences. The shape of the fossa media is partially race
dependent; therefore, development of several templates based
on race may solve a part of the problem.

The automatic method detected a hemorrhage that was ini-
tially missed by a resident. After detecting the hemorrhage by
our automatic method, two neuroradiologists and a radiologist

Fig. 2 (a) A slice of the original CT image of a TBI patient with two small regions of hemorrhage (green
arrows). (b) After applying the automatic detection method on the original image, the two hemorrhages
were easily distinguishable from the healthy tissue. However, high intensities were also detected at
the edges of the skull.

Fig. 3 (a) A slice of the original CT image of a TBI patient with bilateral small subdural hemorrhages
along Meckel’s cave (green arrows) and an originally missed cerebral hemorrhagic contusion (red
arrow). (b) After applying the automatic detection method on the original image, the two subdural hem-
orrhages were detected, while the hemorrhagic contusion was partially detected. However, the hemor-
rhagic contusion was not noted in the clinical notes of the patient.
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in training critically re-examined the original CT image. The
three physicians were able to confirm the presence of hemor-
rhage on the original CT image.

In most hospitals, the examination of the (neuro)radiologist
and the resulting clinical notes are used as a gold standard for
TBI patients. Since autopsy is usually not an option and our
work is a retrospective pilot study, we used the visual analysis
of our neuroradiologists as the gold standard.

Al-Ayyoub et al.9 examined CT images of 74 patients clas-
sified into normal, epidural, subdural, and intraparenchymal
hemorrhages. They applied several techniques, such as image
preprocessing, segmentation, region growing, feature extraction,
and classification, resulting in an accuracy of 100% for the
detection of hemorrhages. Shahangian and Pourghassem30 per-
formed automatic brain hemorrhage segmentation and classifi-
cation algorithm based on weighted grayscale histogram feature
in a hierarchical classification structure. Detection accuracies of
epidural, subdural, and intracerebral hemorrhages were 96.15%,
94.87%, and 95.96%, respectively. Liu et al.10 used machine
learning for the detection of cerebral hemorrhages in neuro-
trauma patients with a detection accuracy of 80%. The authors
included mostly large hemorrhages that were not easily over-
looked on the original CT images. In contrast to these studies,
we focused on hemorrhages smaller than 10 mm in diameter.
Comparing our pilot results to the results of these studies, our
method generally falls in the same accuracy range. However,
it is noteworthy that we have only included 9 CT scans in the
TBI group and 30 CT scans in the control group. Additionally,
our method did not require any segmentation of the skull,
ventricles, or cerebrospinal fluid (CSF).

The original CT images of the brain are often initially read by
a radiology resident or sometimes by a nonradiologist. Our auto-
matic method may assist the radiology resident and other physi-
cians in the detection of small traumatic hemorrhagic lesions.
Since our method visualizes normal tissue with a blue color
and other findings with other colors, the physicians may quickly
know where to focus on the image. Automatic detection can
save time by directly distinguishing lesions from healthy
brain areas. Moreover, it may reduce the interobserver variation
between radiologists.

In this study, we compared the CT scans of a relative young
control group with TBI patients of different age groups. Since
aging changes the brain, sometimes reducing it in size,31 it is
more precise to compare patients with age-matched control
groups. This may reduce misdetection and may cause less defor-
mation of the average image to correctly align to the TBI images.

To initiate the image registration, a reference image was
required to align the images. In this work, a CT image of
a patient in the control group was selected as the fixed image.
Since there was one fixed image and 30 moving images, the fixed
image had a higher influence on the resulted images. An approach
for eliminating the bias is a groupwise image registration where
all images are aligned to a common space. Applying a groupwise
registration, the information of all images will have an equal in-
fluence on the average image.32–34 Recently, Elastix introduced
the method of Huizinga et al.32 in its database for groupwise regis-
tration of MRI images. To our knowledge, using Elastix software,
this approach has not been applied on CT images.

Several registration steps were applied to obtain a good
trade-off between quality and speed. The goal was to create
an average brain CT from several CT images to include the nor-
mal variability in brain tissue. After applying rigid and affine

transformation, the details of the brain tissue in the resulted
images looked nearly the same as the fixed image. Since the
images were obtained from different patients, rigid transforma-
tion was not able to correctly align the images and to include the
details of the moving images in the results. To perform the regis-
tration more precisely, nonrigid B-spline transformation was
applied. The B-spline method uses a grid with automatically
placed control points on the vertices of the grid squares that
are overlaid on the image. The spacing of the control points
determines the deformation. Large spacing describes a global
deformation, whereas small spacing defines a local deformation.
To match the small structures in the images, different spacing
values were tested. As larger values of 30 and 40 mm resulted
in a mismatched registration image, a spacing of 20 mm between
two control points was preferred for the CT registration. The
results of nonrigid transformation showed a good brain overlap
that was confirmed by visual inspection. Using nonrigid trans-
formation, the tissue density may change locally, especially in
the transition regions from white to gray matter, CSF, and paren-
chyma. However, these density differences are still lower than
the density of a hemorrhage. The densities of CSF and brain
tissue are between 3 and 40 HU, and the density of blood is
generally higher than 60 HU.35,36 The automatic method is
developed for detecting intracranial hemorrhages and will not
be affected by other focal lesions, such as white matter lesions.

The resulted images of TBI patients showed higher intensity
regions around the lateral ventricles. The reason for these
high-intensity regions may be the large differences in contrast
between the ventricles and the brain parenchyma. Since the
shape and position of the ventricles differ per individual,
voxel resampling to another brain may cause this misdetection.
Furthermore, some TBI patients develop a midline shift that
causes a displacement of the ventricles. This displacement
can have an influence during the comparison of TBI scans to
the control group and may cause the false positives in the
regions around the ventricles. The neuroradiologist and radiolo-
gist in training did not identify the high-intensity regions around
the ventricles as pathologic. It is, however, possible that other
physicians may interpret these areas as false positives. A pos-
sible solution for this problem could be the segmentation of
the ventricles before image registration.

Similar problematic areas were regions around the pons and/
or cerebellar tentorium. A reason for these areas being high-
lighted could be artifacts on the original CT images that are dif-
ficult to distinguish from hemorrhage. Other reasons for the high
intensities in the cerebellum could be subarachnoid blood or
a consequence of our method. Subarachnoid blood is usually
quickly diluted by the CSF, so it may not be present on a fol-
low-up study. For these types of findings, prospective research
with a follow-up MRI could provide additional information.
Using this information, we can examine if these high-intensity
regions are caused by our method or by other factors.

5 Conclusion
We have introduced an automatic detection method for the
detection of small traumatic brain hemorrhages in TBI patients
using a computer-generated average CT. Our automatic detec-
tion method showed encouraging pilot results and a good cor-
relation with the visual analysis of the neuroradiologists. The
automatic comparison of individual CT scans with the computed
average may assist the physicians in early detection of small
hemorrhages.
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Appendix
The patients obtained a CT scan with varied settings in some
cases. A overview of these settings are listed in Table 3. Since
the slice thickness differed in some scans, the images were
reconstructed to equalise the thicknesses.
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