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Abstract. Organometallic photoresists are being pursued as an alternative photoresist material
to push the current extreme ultraviolet lithography (EUVL) to the next generation of high-NA
EUVL. In order to improve the photoresist performance, an understanding of the photoresist’s
response to different process conditions is required. In this endeavor, a stochastic development
model is implemented, integrated into full photoresist process steps, and applied for photoresist
performance investigations. The model is applied to Inpria-YA photoresist, which works mainly
by the process of aggregation. Previously published modeling approaches for metal-organic pho-
toresists assume that the development characteristics of these materials depend only on the size
of the created oxo-clusters. In contrast to that, we propose a modeling approach that provides
a more detailed description of the interaction among the developer, ligands, and oxo-bonds.
Further, the calibration procedures conducted to extract the model parameters to match exper-
imental data are discussed. The model approximated the experimental data with CD RMSE and
LWR RMSE of 0.60 and 0.40 nm, respectively. We also investigated the impact of photoresist
parameters on the process metrics, line width roughness (LWR), critical dimension (CD), dose-
to-size (DtS), and exposure latitude (EL) with the calibrated model. The investigation shows that
details of the interaction of photoresist and developer, especially, the so-called development criti-
cal value, have a significant impact on the LWR and DtS. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or
in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMM.20.1
.014801]
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1 Introduction

Extreme ultraviolet lithography (EUVL) increases the resolution using a smaller wavelength
(13.5 nm) for exposure compared to DUV lithography (193 nm). However, this improvement
using smaller wavelength also led to several problems, such as stochastic effects.1 These
stochastic effects deteriorate the photoresist performance and limit the economically viable
scaling. So far, even if the feature size is decreasing, the line width roughness (LWR) remained
constant, which makes the LWR as the limiting factor.

Due to the small number of photons (large shot noise) in EUV lithography and the small
absorption efficiency of chemically amplified photoresists (CARs), new photoresist materials are
essential. As a result, the industry is pursuing different photoresist materials for the next gen-
eration of EUV high-volume manufacturing (HVM). Molecular organometallic resists for EUV
are one of the alternative photoresist materials. They have a higher absorption (∼16 to 20 μm−1)
compared to CARs (∼4 μm−1).2 These photoresists have a core–shell structure where the core
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contains metal oxide molecules, and the shell contains radiation-sensitive ligands. The absorption
efficiency depends mainly on the type of metal used. Inpria-YA photoresists have a tin-oxide core
that enables their high photon absorption.2–4 The radiation-sensitive ligands control the reaction
behavior of the photoresist, preventing background condensation reaction.5 Organometallic photo-
resists are designed to absorb photons that lead to cleavage of the ligands and subsequent chemical
reactions to change the solubility. The cleavage of the ligands site creates an “active” site that can
create a bond with another “active” site on an adjacent metal-oxide core. As this condensation
reaction continues and active sites on neighbor metal-oxide cores form a bond, it creates a large
networked structure (oxo-network) that is resistant to the development.6

Previously, several modeling approaches and investigations of organometallic photoresists
have been reported.6–11 The presented models provide a good understanding of the organometal-
lic photoresist behavior during exposure. In this paper, a modeling procedure to characterize and
quantify the development process is presented together with a calibration of the model with
experimental data to contribute further to understanding of the photoresists’ response to different
processes. Section 2 explains the modeling procedures applied for exposure, condensation, and
development. The calibration of the developed model with experimental Bossung data and veri-
fication procedures of the calibration results are discussed in Sec. 3. A simulation study on the
impact of photoresist parameters on the lithography metrics, LWR, critical dimension (CD),
exposure latitude (EL), and dose-to-size (DtS) is presented in Sec. 4. Finally, the results and
findings are summarized, and an outlook for future work is discussed.

2 Modeling Procedure

2.1 Exposure

The photoresist simulation volume is discretized into lattice cells of size δx, δy, and δz, where
δx � δy � δz is the volume of the photoresist molecule (metal-oxide core with ligands). The x and
y represent directions perpendicular to the exposure direction, and −z represents the direction of
exposure. The intensity distribution inside the photoresist (bulk image) is simulated using the
Fraunhofer lithography simulator, Dr. LiTHO.12 Then the intensity absorbed by the photoresist
molecule is computed from the bulk image according to the Beer–Lambert law, as described in
the following equation:

EQ-TARGET;temp:intralink-;e001;116;345Iabs;i ¼ Ii � ð1 − e−α�δzÞ; (1)

where Ii and Iabs;i are the bulk image intensity and the absorbed intensity for the ith lattice cell,
respectively. α is the absorption coefficient and δz represents the thickness of a single lattice cell.

From the computed absorbed intensity distribution, the average number of photons absorbed
ðhNp;iiÞ in the ith single lattice cell is given by

EQ-TARGET;temp:intralink-;e002;116;263hNp;ii ¼
Iabs;i �D � δx � δy

hc∕λ
; (2)

whereD is the exposure dose and ðδx � δyÞ is the surface area of a single lattice cell. h represents
the Plank’s constant (6.62607004 × 10−34 Js), c is the speed of light (3 × 108 m∕s), and λ is the
wavelength of the exposure (13.5 nm for EUV).

The stochastic distribution of the photons in the photoresist volume follows a Poisson
distribution.13,14 Therefore, the actual number of photons absorbed by the photoresist molecules
is distributed according to a Poisson distribution from the average number of absorbed photons.

The absorbed photons trigger subsequent chemical changes to modify the solubility of the
photoresist. For EUVL, the chemical change is mainly initiated by the photoelectric effect where
photon absorption leads to the generation of electrons.7,15 The generated photoelectron, in turn,
produces secondary electrons for further ionization of the photoresist molecules at a distance
from the point of photon absorption—resulting in a blurring effect on the distribution of the
absorbed photons.16 As tracking each electron and its interaction with the photoresist molecules
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is computationally intensive, a simplified approach is implemented in our model to simulate
these processes.

The average number of generated electrons per absorbed photon is approximated by the
quantum yield.

EQ-TARGET;temp:intralink-;e003;116;687Ne ¼ Np �Φ; (3)

where Ne and Np represent the number of generated electrons and absorbed photons, respec-
tively. Φ is the quantum yield, the actual number of electrons generated per absorbed photon.
The actual number of electrons generated per photon is computed by generating the actual quan-
tum yield according to the Poisson probability distribution from the average quantum yield hΦi
and Eq. (3).

After the computation of the generated electrons, the electron blur due to the electrons’
random walk is approximated by Gaussian convolution. Such approach enables a significant
reduction of computing time. The Gaussian kernel applied for the convolution is defined as in
the following equation:

EQ-TARGET;temp:intralink-;e004;116;547Gðx; y; zÞ ¼ 1�
2πσ2blur

�3
2

e
−x2þy2þz2

ð2σ2blurÞ ; (4)

where σblur is the electron blur length in nm. Application of this convolution results in a (deter-
ministic) blur of the location of the generated electrons with respect to the point of photon
absorption.

Typical photon and electron distributions that are computed from the bulk image (generated
by Dr. LiTHO) are shown in Fig. 1.

2.2 Condensation Reaction

The photoresist changes its solubility after exposure due to physical or chemical structure
changes. Several studies demonstrated that the metal-oxide cores absorb the photons to generate
photoelectrons. However, the ligands act only as non-reactive spacers inhibiting the metal-oxide
cores from reacting.17,18 During exposure, the protecting ligands are cleaved by electrons. This
cleavage of the ligands leads to a creation of what is called an “active site,” i.e., a site where a
condensation reaction [i.e., the creation of a bond (M–O–M oxo-bridge) with an active site of
another adjacent metal-oxide core] can occur.6,17

The number of active sites generated on each particular metal-oxide core follows directly
from the number of electrons that land in the δx, δy, δz volume element of the metal-oxide
cluster. Whether or not an active site will lead to the formation of an M–O–M bridge is simulated
in a probabilistic approach, using percolation theory.6,9,19

In the model used in Ref. 6, a metal-oxide core and a neighbor metal-oxide core are randomly
selected, and if both cores have active sites, a bond is created. If there are no available active
sites, another core and its neighbor are randomly selected. However, this implementation is

Fig. 1 EUV lithography exposure simulation of 18 nm vertical lines with 36 nm pitch with dipole
illumination and 52 mJ∕cm2 dose for a 0.33-NA system. (a) Bulk image computed using
Dr. LiTHO. For the computation of the electron distribution, Φ of 8 and blur length of 2.4 nm are
used. (b) Stochastic photon distribution and (c) stochastic electron distribution.
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computationally intensive, and it is not well suited for the large number of computations required
for a calibration procedure and for extensive modeling studies.

Therefore, our model uses a different, pseudo-random, approach that is faster without losing
the stochastic nature of the process. The operation scheme is summarized in the pseudo-code in
Algorithm 1. The metal-oxide cores with active sites are visited sequentially. Then one (and just
one) of the six nearest neighbor metal-oxide cores is randomly selected. If this particular neigh-
bor core also has an active site, an oxo-bond between the two cores is created, replacing the two
active sites (i.e., the bond consumes the two active sites). Otherwise, the active site remains
active. Then the next active site on the given metal-oxide core is selected, and another neighbor
metal-oxide core is randomly selected. This process is iterated until all metal-oxide cores, and
all of their active sites are visited. The pseudo-code of the implementation is presented in
Algorithm 1.

A periodic boundary condition is applied for x- and y- directions. If the randomly selected
neighbor’s index gets out of the simulation domain, a bond is created with the metal-oxide core
on the opposite side.

Post exposure bake (PEB) impacts the condensation reaction and, in turn the sensitivity of the
photoresist.20 However, our investigation focuses on the modeling of the stochastic development
process for a finished condensation reaction. Therefore, we do not consider explicit modeling of
the PEB process.

The oxo-networks computed from the electron distribution, for a contact feature, with expo-
sure doses of 20, 40, and 90 mJ∕cm2 are shown in Fig. 2. For a small exposure dose, the created
oxo-networks are small in size. As the dose increases, the size of the oxo-networks that are
created in the exposed region increase, whereas small oxo-clusters are created in the unexposed
regions. For large exposure dose, a large oxo-cluster is created in the exposed region [Figs. 2(c)
and 2(d)].

2.3 Development

After the solubility is changed for the exposed regions of the photoresist due to the condensation
reaction, the photoresist is developed with a solvent. This development step creates the final
photoresist profile.

The development behavior of organometallic photoresist that aggregates during exposure, to
create a large oxo-network, is mainly dependent on the size of the created oxo-cluster. Small
oxo-clusters can develop quickly, whereas large oxo-clusters are resistant to the developer. There
are several alternatives to implement the development process, such as simple threshold,8 per-
colation model,22 or tracking of the oxo-network in contact with the photoresist.6 The investi-
gation of stochastic effects during the development requires a more detailed description of the

Algorithm 1 Quasi-random implementation of condensation reaction

1: start

2: for k←1 to number of cores with active sites do

3: for l←1 to number of actives sites do

4: randomly select one single neighbor (from the six nearest neighbors)

5: if randomly selected neighbor has active site then

6: create bond

7: consume active sites from current and neighbor cell

8: else

9: ignore

10: end
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dissolution mechanism. Several experimental investigations23–27 demonstrated that the photore-
sist dissolution behavior depends on the behavior of the ligands on the metal cores.

Our stochastic development model tracks the substitution of the ligand and oxo-bond sites by
the solvent molecules based on balance equations. If the number of these solvent substituted sites
per metal-oxide core is above a certain number and all the oxo-bonds on the core are broken, the
core is washed away. This procedure is iterated until the developer time is reached. For this
purpose, we employed the basic approach of the critical ionization model to track the interaction
of the ligands with solvent molecules in stochastic development model, based on the implemen-
tations described in Refs. 28 and 29. The reasoning and details of the model formulations are
explained below.

At the beginning of the development process, the metal-oxide cores in the photoresist have
three kinds of sites, as shown in Fig. 3.

1. Ligand site. The ligand is not cleaved, i.e., it is not affected by the exposure.
2. Active site. An active site is created, but it did not form an oxo-bond during condensation.
3. Oxo-bond site. An active site created during exposure is replaced by a bond during

condensation.

The illustrations in Fig. 3 place the components on a specific geometrical location in the grid
cell. In the simulation, however, no such geometrical-location information is used. In each cell,
we only keep track of the number of L, A, B, and S components.

Fig. 2 Size distribution of the oxo-networks (represented by the colors) created for dose values of
(a) 20, (b) 40, (c) 90 mJ∕cm2 for 18 nm contact with 72 nm pitch. (d) The largest oxo-network
created for 90 mJ∕cm2 exposure dose [from the figure shown in (c)]. For the simulation, an attenu-
ated phase shift mask with thickness of 31.6 nm and quasar illumination with σouter ¼ 0.4 are used.
The parameters are taken from Ref. 21.
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During the development in organic solvents, the ligands and active sites can be dissociated
from the metal-oxide core and substituted by a solvent molecule.30,31 Ligands from the developer
bulk can also substitute a solvent site on a metal-oxide core again, in a reverse reaction. Oxo-
bond sites are normally assumed to be resistant to the developer. With strong developer solutions,
however, the bonds can be broken and substituted by solvent molecules. A metal-oxide core is
removed from the photoresist into the developer solution, if the number of solvent substituted
sites per metal-oxide core is larger than the development critical number of sites (Lth).

In order to reduce the complexity and the number of parameters in our model, ligand and
active sites are assumed to be similar and will be treated identically in the development step. In
this case, the active sites will be treated as ligand sites. This limits the types of sites on the metal-
oxide cores, at the start of the development process, to only two kinds—ligand and oxo-bond
sites. For example, MOL2AB is treated as MOL3B. Using this assumption, the population bal-
ance equations for substitution reactions of the development processes at the interface between
the developer and the photoresist can be defined by the following equation:30

EQ-TARGET;temp:intralink-;e005a;116;343MOLnB6−n þ S⇄
K1

K2

MOLn−1B6−nSþ L; (5a)

EQ-TARGET;temp:intralink-;e005b;116;286B6−n−1LnMO −|{z}
oxo-bond

OMLmB6−m−1 þ 2S→
K3

MOLnB6−n−1SþMOLmB6−m−1S; (5b)

where S is the solvent and, K1, K2, and K3 are the rate constants for the ligand substitution, the
solvent substitution, and the oxo-bond substitution, respectively. M, O, L, and B represent metal,
oxygen, ligand, and oxo-bond on the photoresist molecule and n and m represent the number of
ligands on the given metal-oxide cores. The mechanisms of the population balance equations,
Eqs. (5a) and (5b) are illustrated in Figs. 3(e) and 3(f), respectively. Note that, as we consider
MO-bonds with one of the six direct neighbors of each cell, and our model only counts the
number of L, A, B, and S in each cells, we need to distinguish no more than six ligands per
core, even if the real resist molecules may well have more than six ligands per core.

Our model describes the process of stochastic events during the development by an imple-
mentation of the Gillespie algorithm. This algorithm employs Eq. (5) and given reaction rates to
generate stochastically correct, possible trajectories of the developer front. This means that
the reactions are simulated explicitly as a stochastic process instead of solving the equation
analytically.

In the model’s implementation, the solvent molecules’ reaction with ligand and oxo-bond
sites of the cores are simulated by discrete events with probabilities that are governed by the
reaction rates. Only the cores that are in contact with the developer are considered. To track the

Fig. 3 (a)–(d) Possible states of the molecules in the photoresist during the development:
(a) MOL4; (b) MOL2AB; (c) MOL2AS; and (d) MOLABS. The cube represents a single grid cell
that contains the molecule. The circles, the line, and the star represent the components in the
molecules. Metal-oxide core (MO), ligands (L), and solvent (S) are represented by green, gray,
and purple circles, respectively. Red stars represent active sites (A) and the oxo-bonds (B) are
represented by a green line. (e) and (f) Reactions of solvent molecules with ligand and oxo-bond
sites during development (active sites are treated as ligands and are therefore not shown).
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reactions by separate events, a time step, with a probability that a single reaction occurs in this
time interval, must be first defined. This time step is computed based on the reaction rates
(K1, K2, and K3) and the corresponding number of sites on the cores. Then the time is updated.
In each time step, substitution reactions are determined with a probability for all the cores on the
development front. The reaction can be either ligand or oxo-bond or solvent substitution reac-
tion. The probability of the selected substitution reaction depends on the reaction constants and
governs the update of the sites on the cores. If the number of solvent substituted sites on a core is
larger than the development critical value (Lth), and all oxo-bonds are broken, the core is
removed, and its neighbor cores are added to the developer front. Then the next time step is
computed, and the process is repeated. These processes are iterated until the total development
time is reached. The developer front trajectory, tracked by the steps described above, creates the
final photoresist profile.

Details on this implementation are given in Appendix A.
The implemented development model transforms an oxo-bonds distribution, as obtained

from the condensation reaction, into the final latent profile. The distribution of the oxo-bonds
per core is shown in Fig. 4(a) and the developer front at different development time steps are
shown in Figs. 4(b)–4(d).

For a standard implementation of the model in Python, simulation of a vertical line with
36 nm pitch and 100 nm line length, carried out on only a single-core on a PC with Intel-
Core i7-4770 at 3.4 GHz (CentOS Linux 7) and 4 GB RAM, requires ∼9.5 h. The optimized
implementation of the algorithm described in Appendix A reduces the computation time to
only ∼100 s.

2.4 Illustrations of the Complete Process Flow

A schematics that illustrates the working principle of the model is presented in Fig. 5. The sche-
matics shows the photoresist molecules and the effect of the different processes on the sites of the
metal-oxide cores; the activation of the ligands during exposure, random creation of oxo-bonds
during condensation, and the evolution of the developer front during development.

Representative simulation results for the modeling process flow of the organometallic photo-
resist are shown in Fig. 6. The process starts with the computation of the bulk image [Fig. 6(a)]
based on the exposure conditions, such as the source and mask specifications. The average num-
ber of photons absorbed in the photoresist is computed from the bulk image by specifying the
exposure dose and and the absorption coefficient (α) based on Eq. (2). The average number of
photons absorbed in the photoresist is redistributed according to the Poisson probability distri-
bution. This redistribution process generates a stochastic distribution of the photons [Fig. 6(b)].

The electrons generated from the absorbed photons are computed from the stochastic dis-
tribution of the photons and the quantum yield (Φ), based on Eq. (3). To describe the electron
blur effect, the distribution of the electrons is convoluted with the Gaussian distribution with
a standard deviation equal to the blur length (σblur), as described in Eq. (4). The final electron
distribution is shown in Fig. 6(c). Afterward, the electrons’ distribution is related to the activation
of ligands on the metal-oxide cores, and oxo-bonds are created between activated sites of neigh-
boring cores by applying the percolation model (see Algorithm 1). This procedure results in the
distribution of oxo-bonds, displayed in Fig. 6(d). Finally, the development step is simulated

Fig. 4 (a) Distribution of the oxo-bonds per core after the condensation reaction. (b)–(d) Developer
front at time = 10, 15, and 30 s from the computed oxo-network (or number of bonds per core) for
EUV lithography exposure simulation of 18 nm vertical lines with 36 nm pitch with dipole illumi-
nation and 52 mJ∕cm2 dose.

Belete et al.: Stochastic simulation and calibration of organometallic photoresists. . .

J. Micro/Nanopattern. Mater. Metrol. 014801-7 Jan–Mar 2021 • Vol. 20(1)



based on the distribution of oxo-bonds, applying the model parameters, the development critical
value (Lth), the rate constants (K1, K2, and K3), and the development time (see Algorithm 2 in
Appendix A). The final result of the development simulation, the developer arrival time (DArT),
is shown in Fig. 6(e).

Table 1 summarizes the model parameters and sources of variability in each process step,
together with the implementation procedures that are applied to capture these variabilities. The
variability that is expressed by the LWR is a combined result of stochastics in the photon absorp-
tion, the electron generation, the bond creation, and the interaction of the developer molecules
with the ligands and bonds of the photoresist molecules.

3 Calibration of Model with Experimental Data

The parameter values for the developed photoresist model, summarized in Table 1, are extracted
by a model calibration with experimental data. The calibration procedure is conducted using
lines-and-space (L/S) Bossung data (CD and LWR values) with exposure dose values ranging

Fig. 6 Stochastic distributions (cross-section plots) for different process steps for simulation of
EUV exposure of 18 nm vertical lines with 36 nm pitch with dipole illumination, 34 mJ∕cm2 dose
and 0.065 μm focus. Simulation parameters: α ¼ 20 μm−1, Φ ¼ 8.2, σblur ¼ 3.18 nm, Lth ¼ 3,
K 1 ¼ 11.9 s−1, K 2 ¼ 5.5 s−1, and K 3 ¼ 7.4 s−1. (a) The bulk image; the stochastic distributions
of (b) absorbed photons; (c) generated electrons; (d) oxo-bonds per core; and (e) the DArT.

Fig. 5 Molecular representation of the modeling process flow (2D scheme).
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from 41 to 63 mJ∕cm2 and focus values from −0.05 to 0.15 μm in steps of 0.02 μm. The
Bossung experimental data were obtained from Imec for Inpria-YA photoresist, with pixelated
dipole illumination, shown in Fig. 7(b) at NA ¼ 0.33. The mask contains a multi-layer with 40
layers of Mo/Si bilayers with a Ru cap layer. On the top of the multi-layer, a patterned 55 nm Ta
absorber is used. The wafer stack is composed of 22 nm Inpria-YA photoresist on 10 nm spin-on-
glass underlayer.

The experimental data contain 758 measurement points for vertical L/S patterns with 5 mask
CD and pitch variations, as shown in table in Fig. 7(a) for a center-slit position. For our model
calibration, only 73 data points are selected to keep the computation time to a minimum but also
include enough data points that can define the model behavior, simultaneously. The calibration
data points are shown in red X marks in Fig. 10. All measurement data points are used for
verification of the calibrated parameter values.

The experimental data are from CD-SEM measurements conducted for 16 scans (or frames).
During multiple scans of the CD-SEM measurement, the electron beam shrinks the photoresist
lines. Our calibration is based on CD-SEM data from the single-frame and 16th-frame. These
data exhibit a CD shrinkage in the range of 2.5 to 6 nm between single frame and 16th-frame.
Single-frame SEM images have a non-negligible but small shrinkage compared to the 16th-
frame image. In our calibration and verification, we used the CD data from the single-frame
measurement. However, the single-frame measurements are noisy and cannot provide a reliable
LWR measurement. Therefore, we used the LWR data from the 16th-frame SEM image for the
calibration. The effect of the SEM on the roughness due to the photoresist lines shrinkage is

(a) (b)

Fig. 7 (a) Feature types and (b) source used for the measurement. The feature types are specified
as P “pitch” V “mask CD,” with the specified mask CD and pitch. “V” stands for vertical line.

Table 1 Model parameters, sources of variability, and implementation procedure.

Module Model parameters Source of variability Variability implemented by

Exposure α, σblur, Φ Probabilistic photon absorption Poisson probability function

Probabilistic electron generation Gaussian probability for spatial
distribution of electrons

Condensation Random bond creation Random probing of neighbor
cores (Algorithm 1)

Development K 1, K 2, K 3, Lth Probabilistic substitution
of L, B, and S

Gillespie algorithm

Probabilistic selection of
reacting cores

Probabilistic selection of
reaction types

Poisson probability number
of reactions
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neglected. For further details on SEM measurement impact on the photoresist shrinkage and
a correction procedure, refer to the discussion in the Appendix of Ref. 32.

3.1 Simulation Parameters and Process Conditions

The process conditions and simulation parameters in Table 2 are used to compute the bulk image
using the imaging module of Dr. LiTHO. The computed bulk images provide the input for the
photoresist model—to compute the final latent image. The molecular volume (δx � δy � δz) of
the photoresist is assumed to be 2.3 nm3.6

Due to computation constraints, our calibration runs are simulated for line lengths of 100 nm
to compute the CD and LWR, for this prototype photoresist model implementation, with a loss of
small accuracy but with faster computation time. CD and LWR values are extracted from the CD
values computed along the line and over a certain thickness range of the final latent image. Maas
et al.8 investigated the probe depth of the electron beam for 300-eV CD-SEM measurement for
organometallic photoresist to be the top 8 nm of the photoresist. For our calibration data, CD-
SEM with a 500-eVelectron beam was employed, close to double the CD-SEM voltage used for
the simulation by Maas et al. Therefore, we assumed that only the top 16 nm of the photoresist,
twice the probe depth calculated for 300 eV, could affect the CD-SEMmeasurement. As a result,
the top 16 nm thickness of the photoresist is considered for the computation of CD and LWR,
without considering any thickness loss. For a simulation of a line feature with 100 nm line length
and 22 nm photoresist thickness, this corresponds to 900 CD values computed from the final
latent profile. The corresponding LWR value for the simulated profile is computed from these
computed CD values and the selected sampling along the line and versus height, respectively.

Pythmea,34 a python multi-objective evolutionary algorithm from Dr. LiTHO, is used for the
calibration of the model to the experimental data. The model parameters are calibrated for CD
and the LWR simultaneously using a multi-objective optimizer. The fitness of the calibration was
determined, for both LWR and CD, from a root-mean-square error (RMSE) of simulation results
from the experimental data. After the model is calibrated, the verification runs were conducted
with 300 nm line length for 758 data points for a calibration result selected from the Pareto-
optimal solutions.

The photoresist model parameters, absorption coefficient, quantum yield, electron blur
length, and development model parameters, were varied during the calibration (Table 4).
Because the simulation zero-focus position deviates from the exposure tool zero-focus position
with an unknown offset, a focus offset parameter is included in the calibration. Additionally,
metrology offset parameters, to compensate for systematic deviations of CD and LWR measure-
ments, are also included in the calibration.

3.2 Model Options, Calibration Results, and Verification of the Models

Calibration was conducted under three different assumptions.

1. Model 1. In this model, it was assumed that the developer does not affect the oxo-bonds
created during the condensation reaction. For this procedure, only Eq. (5a) is considered
and the metal-oxide cores are developed if the number of solvent substitute sites is above

Table 2 Fixed parameters used in the simulation for the calibration of the model.

Input parameters Symbols Value Reference

Molecular volume (nm3) V cell 2.3 6

Refractive index n 0.998 33

Number of ligands per core Lcore 12 6

Development time (s) tdev 30

Photoresist thickness (nm) th 22
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the critical value, irrespective of the number of oxo-bonds on the core. This assumption is
valid for a solvent with a small dielectric constant or low polarity.35 The CD RMSE and
LWR RMSE values for the calibration and the verification, for one of the selected solution
from the Pareto front, are summarized in Table 3.

2. Model 2. This model includes the substitution reaction for the oxo-bonds. Yeh et al.23

demonstrated that developers with high dielectric constants, such as ethanol, break
oxo-bonds, and damage the oxo-networks created during the condensation reaction.
AFM images of the patterned lines, patterned using ethanol as a developer, exhibit a rough
surface with apparent damage to the oxo-cluster. In contrast, patterned lines developed in
1-propanol have a smooth surface. Even though the patterned lines developed in 1-prop-
anol have a smooth profile, it does not necessarily mean the breaking of the oxo-bonds
does not occur. Therefore, in this model, both balance equations [Eqs. (5a) and (5b)] are
considered. Moreover, it is enforced that every oxo-bond on a photoresist core should be
broken before the core is considered as developed. This condition has to be satisfied even
if the number of solvent substituted sites on the core is above the development critical
value. The addition of this assumption increased the sensitivity of the development model
with respect to number of oxo-bonds per core. As summarized in Table 3, model 2 fits the
experimental data better than model 1. Figure 8 compares the RMSE data that were
obtained in the verification of the models with and without breaking of the oxo-bonds.

3. Model 2 with mask bias. An additional calibration parameter, mask bias, is applied. The
verification RMSE for CD exhibited an unreasonably high value for P60V27 compared to
the other feature types for both models. The occurrence of a large RMSE of CD values at a
single pitch is hard to explain by chemical effects in the photoresist. As a result, an addi-
tional calibration parameter, a mask bias only for P60V27 feature, is applied and a new
calibration run was conducted. The results show a further improvement of the RMSE

Table 3 Verification results for the different calibration procedures.

Calibration RMSE Verification RMSE

CD (nm) LWR (nm) CD (nm) LWR (nm)

Model 1 1.17 0.78 1.07 0.75

Model 2 1.15 0.58 1.06 0.47

Model 2 with mask bias 0.64 0.56 0.60 0.40

Fig. 8 RMSE for verification of the model 1 and model 2, in comparison with the calibration pro-
cedure with mask bias applied to P60V27 for model 2. (a) CDRMSE (nm) versus feature types and
(b) LWR RMSE (nm) versus feature types.
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value for the CD and LWR (Fig. 8). This calibration run results in good accuracy for the
CD and LWR (results shown in Table 3).

The verification results of the three calibration runs are summarized in Table 3. The model
approximates the experimental data with CD RMSE of 0.60 nm and LWR RMSE of 0.40 nm for
the verification run. These results are comparable to the observed results of well-established
CAR photoresist models.

The relative errors of all data points, shown in Fig. 9, were calculated from the verification
errors normalized by the corresponding experimental CD or LWR values. The model can
approximate the experimental data with 30% maximum error for LWR and 6% maximum error
for the CD. Uncertainties in CD computation for profiles with higher roughness can lead to
minor deviations on the final CD and LWR values. The parameter values for the “best” cali-
bration solution selected from the Pareto front are summarized in Table 4.

The Bossung data for verification of the calibration parameters for the smallest pitch
(P36V18) and the largest pitch (P70V27) are shown in Fig. 10. For P70V27, the simulated LWR
and CD errors vary from 0 to 1.3 nm and 0 to 1.0 nm, respectively. Similarly, for P36V18,
simulated LWR errors vary from 0 to 2.0 nm and simulated CD errors vary from 0 to
1.14 nm. The experimental data for feature type P36V18 contain outlier data that could not
be approximated by the model [marked by blue circles in Fig. 10(b)]. Excluding the outlier data,

Fig. 9 Relative RMSE for verification of the calibration parameters for model 2 with mask-bias for
P60V27. The percentage value is calculated from the experimental data (a) CD and (b) LWR
values. The colors of the dots represent the different feature types of the data points.

Table 4 Model parameters calibrated with experimental data, the ranges used for the calibration,
and parameter values of a calibration result selected from the Pareto front.

Calibration parameters Symbols Range Model 1 Model 2 Model 2 with MB

Absorption coefficient (μm−1) α 15.0 to 22.0 18.88 18.2 20.2

Electron blur length (nm) σblur 1.5 to 4.0 3.41 2.86 3.28

Quantum yield Φ 7.0 to 9.0 8.1 8.55 7.98

Critical number of sites Lthr 2 to 5 4 4 3

Ligand substitution rate (s−1) K 1 1.0 to 50.0 18.13 27.1 26.9

Solvent substitution rate (s−1) K 2 0.0 to 35.0 19.77 23.99 13.49

Oxo-bond substitution rate (s−1) K 3 0.0 to 35.0 28.28 13.63

Focus offset (μm) −0.08 to −0.06 −0.062 −0.064 −0.062

CD metrology offset (nm) −2.0 to 2.0 0.03 0.36 −0.94

LWR metrology offset (nm) −1.0 to 1.0 −0.62 −0.89 −0.97
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for P36V18, simulated LWR errors vary from 0 to 1.0 nm and simulated CD errors vary from
0 to 1.05 nm.

4 Relation Between Photoresist Parameters and the Lithography
Metrics

This section studies the impact of the parameters of the implemented model on important lithog-
raphy metrics CD, LWR, dose-to-size, and exposure latitude. To perform a qualitative analysis of
observed dependencies and to derive general tendencies, we extend previously published work36

on the application of correlation analysis (CA) for photoresists parameters. The generation of
appropriate datasets for CA requires a preprocessing to provide an efficient sampling of the data
space and to avoid defects in the simulated photoresist profiles. To focus our investigations on
the impact of the photoresist parameters and to include knowledge from previously published
work on the scaling of lithography metrics,37,38 some of the computed lithography metrics are
normalized by factors that describe the impact of imaging parameters.

4.1 Methodology

First, the parameter values of the datasets have to be randomly generated. For this purpose,
parameter values are selected from the given bounds with Latin hypercube sampling (LHS)
instead of random sampling to cover the entire parameter space with a minimum number of
datasets.39 Each dataset contains values of process settings (mask CD, focus, and pitch) and
photoresist parameters (α, σblur, Φ, Lth, K1, K2, K3, and th) summarized in Table 5. 600 samples
are generated for the 11 parameters to ensure a good convergence for the CA. The pitch, unlike

Fig. 10 Verification results for CD and LWR of the model with the experimental data points (model
2). Bossung data plots are shown for P36V18 [(a) and (b)] and P70V27 [(c) and (d)] feature types.
The dots represent the experimental data values and the lines represent the simulated values. The
red X represent the data points used for the calibration. The dose values are represented by color;
red color represent small doses. The blue circles represent the outlier LWR data points.
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the other parameters, is not directly generated. Instead, the duty ratio is sampled; and the pitch is
computed from the mask CD and the duty ratio.

The specifications of the lower and upper bounds used for LHS, summarized in Table 5, are
determined by the effect of the parameter values on the final results of the simulation, to avoid
defects on simulated profiles. In addition, the bounds are also limited to keep the monotonic
relation of the parameter with the metrics because a non-monotonic data can suppress the correct
results of the correlation. The relation of the LWR with the blur length is monotonic for a small
range of blur length values. Careful selection of the parameter range and the application of the
Spearman’s rank correlation (see below) helps to address the characteristics behavior of blur in
our CA.

After the generation of parameters, simulations are performed for the computation of the
metrics. First, the CD values, corresponding to the randomly generated process settings (mask
CD, pitch, and focus), are computed with the calibrated parameters of model 2 from Table 4 with
the nominal dose of 52 mJ∕cm2. In the following simulation with variable photoresist param-
eters, the CD values, obtained from the calibrated model 2 parameters, are used as target-CD for
the computation of DtS and EL. LWR was extracted at the computed DtS. Finally, the CD was
computed with the nominal dose of 52 mJ∕cm2.

The final step in the preprocessing of the data before CA addresses the simultaneous variation
of process settings (mask CD, pitch, and focus) and photoresist parameters and their impact on
the obtained results. In theory, it would be possible to vary only the photoresist parameters and
apply the CA. However, the study of the photoresist response for fixed exposure conditions will
not provide representative data for a wide range of applications. In order to include a wide range
of process variations, the process settings are varied as well, but their dominating impact on
certain lithography metrics has to be considered. This is done by appropriate normalization tech-
niques and application of scaling rules for lithography metrics that have been described by sev-
eral authors.37,38,40 For example, it is known that the LWR decreases with increasing normalized
image log-slope (NILS) and dose. Therefore, we normalize the variation of exposure conditions
by application of appropriate scaling rules.

These impacts of the process settings are normalized in two steps.

1. The impact of the investigated process settings on the image quality and lithography met-
rics is typically quantified by image log-slope (ILS) and NILS. Here we employ analytical
dependencies from Refs. 37, 38, and 40, to account for the impact of image quality and
exposure dose on LWR and EL. Specifically, we normalize LWR according to

Table 5 The lower and upper bounds for parameters sampled with LHS.

Parameters Symbols Lower bound Upper bound

Focus (from best focus position) (μm) −0.65 0.45

Mask CD (nm) 18.0 30.0

Duty ratio η 2.0 2.5

Photoresist thickness (nm) th 18.0 32.0

Absorption coefficient (μm−1) α 17.0 22.0

Quantum yield Φ 7.0 12.0

Electron blur length (nm) σblur 2.0 6.0

Critical number of sites Lthr 2 3

Ligand substitution rate (s−1) K 1 1.0 50.0

Solvent substitution rate (s−1) K 2 0.0 35.0

Oxo-bond substitution rate (s−1) K 3 0.0 35.0
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EQ-TARGET;temp:intralink-;e006;116;735LWRn ¼ LWR �
ffiffiffiffiffiffiffiffiffiffiffiffi
DtS

DtSref

s
� ILS; (6)

where DtSref is the nominal dose (52 mJ∕cm2) applied for computation of the target-CD.
The values of the EL are normalized to

EQ-TARGET;temp:intralink-;e007;116;671ELn ¼
EL

NILS
: (7)

In the case of CD, we use the change in CD (ΔCD) instead of the absolute value,
deviation of the simulated CD from the target-CD. For DtS, we use the data without any
normalization.

2. The impact of some photoresist parameters on the metrics is dependent on the process
settings, and these indirect contributions of the process settings should be normalized.
For example, the effect of blur length on the metrics depends on the pitch. In order to
remove the pitch dependency and treat only the blur length impact, the modulation transfer
function (MTF), defined in Refs 38 and 40, is fed to the CA instead of the blur length

values. MTF, defined asMTF ¼ e−2ð
πσblur

P Þ2 , is the Fourier transform of the Gaussian kernel
(Eq. 4) that we applied for the approximation of the electron blur effect.41 However, the
inverse relation 1∕MTF is applied because the increase in blur length values corresponds
to a decrease in MTF values. Otherwise, the sign of the correlation coefficients for the blur
length will be inverted.

Fig. 11 Comparison for the impact of blur length (σblur) variation on the LWR and quantum yield
(Φ) variation on the CD, before [(a) LWR versus σblur and (b) CD versus Φ] and after [(c) LWR
versus 1/MTF and (d) ΔCD versus Φ] postprocessing. The red lines exhibit linear fits of the data
before and after postprocessing. r and p represent correlation coefficient and p-value,
respectively.
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Figure 11 demonstrates the impact of these postprocessing procedures. It can be seen that
the application of the normalization increases the correlation between the photoresist parameters
and the lithography metrics.

Finally, the combined impact of the parameters on the lithography metrics has to be con-
sidered in the CA of the lithography metrics. To decorrelate the combined impacts of the param-
eters on the lithography metrics, we compute the semipartial correlation coefficients.36 To
consider the monotonic, but non-linear relation between some of the parameters and the lithog-
raphy metrics, Spearman’s rank correlation coefficient is computed instead of Pearson’s linear
correlation coefficients. To address both non-linear dependencies and decorrelate the impact of
the photoresist parameters, we calculate semipartial rank correlation coefficients (SRCCs).39,42

SRCC values are in the range from −1 to 1. Negative SRCC values mean the increase in the
photoresist parameter value leads to a reduction of the lithography metrics, whereas positive
SRCC values mean the increase in the photoresist parameter value leads to an increase in the
metrics. On the other hand, an absolute value of SRCC above 0.2 indicates that the photoresist
parameter’s variation significantly impacts the metric for the defined parameter space.
Otherwise, the impact is insignificant.

4.2 Results of the Analysis

The results of our CA, shown in Fig. 12, provide several expected findings that are consistent
with the literature. As shown in Fig. 12(a), the quantum yield (Φ) has a significant effect on the
reduction of the LWR. The increase in the blur length (σblur) and the photoresist thickness (th)
leads to an increase in LWR. The CD of lines increases with increasing absorption coefficient (α)
and quantum yield [Fig. 12(b)]. In turn, the increase in the CD for the increase in these param-
eters means a decrease in the DtS. EL is mainly affected by the blur length; the increase in the
blur length leads to a reduction of the EL.

Fig. 12 The SRCCs for (a) LWR; (b) CD; (c) DtS; and (d) EL. The green color bars represent the
development model parameters and the blue color bars represent the other remaining photoresist
parameters.
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The findings on the development parameters are less obvious. The development critical
value (Lth) exhibits a significant correlation with LWR and DtS and increases the CD of the lines.
The correlation of the other development parameters with the process metrics is insignificant.
The development critical value has a linear effect on the lithography metrics—its value decides
the number of oxo-bonds per core that create the edges of the profiles. Its variation leads to a
variation in the shift of the edge position. The other development process parameters impact the
path of the development,14 but their impact on the CD and LWR is less seen in the final results of
the lithography metrics variation. Nevertheless, the inclusion of these parameters and the cor-
responding path is important to obtain a fitness of the model calibration. The full understanding
of the impact of these parameters on the process metrics needs further investigation.

Finally, we have to emphasize that the CA results are dependent on the parameter bounds
chosen for the investigations. Consideration of different ranges of values can lead to deviations
from the presented results.36 Nevertheless, the observed tendencies especially for the significant
impact of the development critical value on LWR are observed for all reasonable choices of
parameters ranges.

5 Conclusion and Summary

A development model for organometallic photoresists that tracks the developer’s effect on the
ligand and oxo-bond sites of the metal-oxide cores for negative-tone development was proposed
and implemented in a complete imaging and resist process simulation flow. The model approx-
imates the experimental Bossung data, of lines and spaces with different features and pitches,
with CD RMSE of 0.60 nm and LWR RMSE of 0.4 nm. Notably, the application of multi-objec-
tive optimization and the detailed description of the dissolution process by the model resulted in
good approximations of both CD and LWR simultaneously. The model also demonstrated that
the development behavior of the investigated organometallic photoresist can be approximated
based on the number of created oxo-bonds on the cores. The calibration results show that, for
Inpria-YA photoresists, three ligands on the photoresist core should be substituted by solvent
molecules before the photoresist core is assumed to be developed.

The correlation analysis confirms that both exposure and development photoresist
parameters have a significant impact on the lithography metric. The most important impact
of the development parameters is seen for the development critical value that impacts the
LWR, CD, and DtS. The increase in the development critical value leads to a reduction in
LWR and DtS, and an increase in the CD of the lines. The increase in quantum yield has
a significant influence on the reduction of the LWR and the DtS. However, the quantum yield
has no significant effect on the EL. The increase in the quantum yield also leads to an increase
in the CD.

Application of the model to other feature types including contact holes and line ends could
provide further insights on its predictivity. In addition, calibration of the models including the
LER in addition to the LWR and CD data can improve the model and give better understanding
of the development process. Further investigation and extensions of the photoresist parameter
CA could help to separate and optimize the impact of exposure and development effects on the
trade-off among resolution, LWR, and sensitivity.

6 Appendix A: Implementation of the Development Model

A discrete stochastic development model is implemented by simulating each reaction explicitly
using the Gillespie algorithm.28,43 The evolution of the development process through time can be
tracked by computing the reaction of the solvent molecules with the sites of the metal-oxide
cores that are in contact with the developer, based on Eq. (5).

The probability that a reaction occurs in time interval ½t; tþ δt� is given by Ri � δt, where i is
a reaction type and Ri is a reaction rate. At the start of the simulation, the developer front contains
only the cores at the top of the photoresist as the cores in contact with the developer constitute
the developer front.28 The reaction rates of the population balance equations in Eq. (5) are
defined based on the number of ligand, oxo-bond, and solvent sites on the metal-oxide cores.
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These reactions rates determine not only the “stochastic state” of the developer front but also the
next reaction. For our case, the state of the developer front is computed by the following
equation:

EQ-TARGET;temp:intralink-;e008;116;699Rtot ¼ RL þ RS þ RB RL ¼ K1NL RS ¼ K2NS RB ¼ K3NB; (8)

where NL, NB, and NS are the total number of ligand sites, oxo-bond sites, and solvent sites on
the developer front, respectively. These total number of sites are the sums of the respective num-
ber of sites on metal-oxide cores that are on the developer front. The cell for the next reaction and
the reaction type are randomly selected based on reactivity rates, RL, RB, and RS.

First, a core i is randomly selected from the cores on the developer front. Then the procedure
based on Von Neumann rejection from Ref. 28, instead of the original Gillespie algorithm pro-
cedure, is applied for acceptance of the randomly selected core. The Von Neumann rejection is
adapted for our application as shown in the following equation:

EQ-TARGET;temp:intralink-;e009;116;567if r0 ≤
RL;i þ RS;i

max
i
fRL;i; SL;ig ∀ i

accept if r0 >
RL;i þ RS;i

max
i
fRL;i; SL;ig ∀ i

reject; (9)

where r0 is generated from a uniformly distributed random numbers.
For the acceptance of the randomly selected core, the sum of the reaction rates of the core,

excluding the oxo-bond substitution reaction rate, is compared with the maximum of the ligand
or the solvent substitution rate. This is because a metal-oxide core without an oxo-bond is
expected to be developed—probability of reaction is 1—while a core that created oxo-bonds
on all of the possible sites is resistant to the developer—probability of reaction is 0. As a result,
the probability that the core reacts is computed from the solvent and ligand substitution rates
compared to the maximum value of the ligand substitution rate.

If the selected core is accepted, the reaction type is randomly selected and the number of sites
on the core (i) is updated, as described in Eq. (10):

EQ-TARGET;temp:intralink-;e010a;116;398

if r1 < RL∕Rtot ligand substitution

NL;iðtþ δtÞ ¼ NL;iðtÞ − 1

NS;iðtþ δtÞ ¼ NS;iðtÞ þ 1; (10a)

EQ-TARGET;temp:intralink-;e010b;116;319

if r1 > RL∕Rtot and r1 < ðRL þ RBÞ∕Rtot oxo-bond substitution

NS;iðtþ δtÞ ¼ NS;iðtÞ þ 1

NL;iðtþ δtÞ ¼ NL;iðtÞ − 1; (10b)

EQ-TARGET;temp:intralink-;e010c;116;261

if r1 > ðRL þ RBÞ∕Rtot solvent substitution

NB;iðtþ δtÞ ¼ NB;iðtÞ − 1

NS;iðtþ δtÞ ¼ NS;iðtÞ þ 1; (10c)

where i represents the selected core on the developer front. r1 is generated from the uniformly
distributed random numbers and Nj;i is the number of sites of type j (ligand or oxo-bond or
solvent sites) on core i selected from the developer front.

The time step for the reaction, in the Gillespie algorithm, is calculated from the state of the
system using Eq. (11). Then the time will advance from t to tþ δt:28

EQ-TARGET;temp:intralink-;e011;116;154δt ¼ − lnðr2Þ∕Rtot; (11)

where r2 is generated from a uniformly distributed random numbers.
If the number of solvent substituted sites per core is larger than the critical number of sites

(Lth), and all the oxo-bonds on the core are broken, the core is developed. If the core meets the
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development criteria, the developer front is updated by removing the core and inserting the
neighbor cores to the developer front.

These steps—random selection of the core and the reaction type, update of the sites on the
core, and update of the developer front—are executed for each time step. These processes are
iterated until the development time is reached.

Similar to the previous process steps of exposure and condensation, a periodic boundary
condition is applied for x and y directions.

6.1 Computational Optimization Approach

The exact stochastic simulation approach for the Gillespie algorithm (the naïve implementation),
discussed above, is computationally intensive.44 Randomly selecting a single core and the reac-
tion type for the selected core requires several iterations until all the cores on the developer front
are visited. Also due to the large Rtot, because the developer front contains several cores, the
update time (δt) is small. Until the development time is reached, the simulation requires several
iterations. Furthermore, after each iteration, the reaction rate is recalculated, and the developer
front is updated. The developer front update is also a computationally intensive process. As a
result, especially for simulation of profiles with long lines, as it is required for proper compu-
tation of the LWR, the development model becomes inefficient. Therefore, to reduce the com-
putation time, optimization of the processes is required.

In order to reduce the number of updates, the tau-leaping approximation procedure44,45 is
included the implementation. In the tau-leap method, the number of sites updated at a time
is randomly selected based on Poisson probability, instead of executing a single reaction for
each iteration. The generated random number of reactions is used to update the sites on the
core based on the selected reaction type. Due to the Poisson distribution’s unbounded nature,
the maximum numbers of reactions are limited to the number of available sites on the core cor-
responding to the reaction type, to avoid negative values for the sites on the core.46 Note that, in
our implementation, a single reaction is executed if the Poisson generated number of reactions
is zero.

However, the tau-leaping method-based optimization is still insufficient for the model to be
fast enough to be applied for calibration. For a single metal-oxide core, six reaction sites are
available with three possible reactions types. Each core requires several reaction steps—at a
minimum, reactions equal to the critical value—before it is developed. In addition, due to the
large size of the developer front, several iterations are still required to change the state of the
developer front. As a result, an aggressive optimization approach is required.

The development process is a weakly coupled reaction network.47,48 This means that the
development behavior of a core on the developer front is affected only by the immediate neigh-
bor cores, irrespective of the developer front’s size. In addition, a reaction on a metal-oxide core
affects the neighbor cores or changes the state of the developer front significantly if the reaction
leads to the development of the core. Due to these reasons, the metal-oxide cores on the devel-
oper front can be treated to be spatially independent. In other words, the developer front can be
subdivided into smaller systems where the reactions types are probabilistically selected for each
subsystem.49 As a result, the developer front is partitioned into subsystems of single cores. In this
assumption, each core can be treated as a separate system, and the reaction type is sampled
independently for each core. Therefore, all the cores can simultaneously undergo substitution
by a solvent or by a ligand.

In the current implementation, the cores on the developer front are visited sequentially, and
depending on the reaction rates of the corresponding core, the reaction type is randomly selected.
The next reaction’s time step is computed separately for each core from its total reaction rate
based on Eq. (11). The computed update time is multiplied by the Poisson generated number of
reactions, to account for the number of reactions generated based on Poisson probability. Then
based on the selected reaction type, the sites on the current core are updated. After all the cores
are visited, the reaction rates are recalculated, and the developer front is updated. These proc-
esses are iterated until the development time is reached. The pseudo-code for the optimized
procedure is presented in Algorithm 2.
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Algorithm 2 Development algorithm

1: start

2: initialize the developer front

3: while t < tdev do

4: calculate reaction rates for each core on the front

5: for k←1 to number of cores on the developer front do

6: generate random numbers, r 0, r 1, r 2

7: compute the update time according to Eq. (11)

8: accept or reject the reaction on the current core according to Eq. (9)

9: choose the reaction type and update sites on the core according to Eq. (10)

10: end for

11: Update the developer front

12: end while

13: end
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