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Abstract. The Visible Infrared Imaging Radiometer Suite (VIIRS) imaging instrument on
the polar-orbiting Suomi-National Polar-orbiting Partnership and National Oceanic and
Atmospheric Administration-20 satellite platforms has infrared window bands but no carbon
dioxide and water vapor absorption bands; the latter are essential for accurately deriving atmos-
pheric variables (such as temperature and moisture profiles, cloud properties). An approach for
fusing a high spatial resolution imager (e.g., VIIRS) and a high spectral resolution sounder
[e.g., Cross-track Infrared Sounder (CrIS)] offers the opportunity to construct new spectral band
radiances (radiance fusion) as well as sounder retrieval products (product fusion) at high spatial
resolution. Furthermore, temperature and humidity profiles can also be provided at a high tem-
poral resolution when geostationary imager [Advanced Baseline Imager (ABI)] data are used in
combination with polar orbiting sounder (CrIS) data in a fusion approach. Promising results from
VIIRS/CrIS and ABI/CrIS fusion are presented. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOIL. [DOI: 10.1117/1.JRS.13.034506]

Keywords: satellite remote sensing; data fusion; multi-sensor; infrared spectral range; high spa-
tial resolution imager; high spectral resolution sounder; remote sensing of clouds.

Paper 190205 received Mar. 19, 2019; accepted for publication Jul. 3, 2019; published online
Jul. 27, 2019.

1 Introduction

Synergistic use of high spatial resolution imager data with high spectral resolution infrared (IR)
sounder data provides advantages in various applications over the use of individual datasets
alone. The “imager plus sounder” (or imager/sounder) data fusion method to construct high
spatial resolution radiances (radiance fusion) have been demonstrated previously in Ref. 1.
In this paper, we follow a similar fusion approach, called product fusion, where high vertical
resolution (roughly 1 km) sounder temperature and water vapor (H,O) mixing ratio (also referred
to as humidity in this paper) profile retrievals are being constructed at imager high spatial
resolution (750 m to 2 km).

Product fusion transfers high spectral resolution (0.6 cm™! in the longwave IR) soundings
(at ~14 km horizontal spatial resolution with an accuracy of 1 K temperature and 20% relative
humidity for 1-km vertical layers in the troposphere) to imager high spatial horizontal resolution
to reveal gradients in temperature and moisture at 750 m to 2 km horizontal scales at roughly 10
levels in the troposphere. The instruments of interest here include the following. The Cross-track
Infrared Sounder (CrlIS), onboard the National Oceanic and Atmospheric Administration
(NOAA) operational Suomi-National Polar-orbiting Partnership (S-NPP) and NOAA-20 plat-
forms in low Earth orbit (LEO), is a high spectral resolution (also simply referred to as hyper-
spectral) IR interferometer providing very accurate IR radiance measurements in more than
1300 channels, which are used to produce high vertical resolution temperature and humidity
profile retrievals. On the same platforms, the Visible Infrared Imaging Radiometer Suite (VIIRS)
is a high spatial resolution visible, near-IR, and IR imager of ocean, land, and atmospheric
features providing data colocated with the CrIS. Onboard the Geostationary Operational

*Address all correspondence to Elisabeth Weisz, E-mail: elisabeth.weisz@ssec.wisc.edu

Journal of Applied Remote Sensing 034506-1 Jul-Sep 2019 « Vol. 13(3)


https://doi.org/10.1117/1.JRS.13.034506
https://doi.org/10.1117/1.JRS.13.034506
https://doi.org/10.1117/1.JRS.13.034506
https://doi.org/10.1117/1.JRS.13.034506
https://doi.org/10.1117/1.JRS.13.034506
mailto:elisabeth.weisz@ssec.wisc.edu
mailto:elisabeth.weisz@ssec.wisc.edu
mailto:elisabeth.weisz@ssec.wisc.edu
mailto:elisabeth.weisz@ssec.wisc.edu

Weisz and Menzel: Imager and sounder data fusion to generate sounder retrieval. ..

Environmental Satellite (GOES)-R series, in geostationary orbit (GEO), the Advanced Baseline
Imager (ABI) is a radiometer sensitive in the visible, near IR, and IR parts of the spectrum pro-
viding high spatial and temporal (i.e., hourly and better) resolution radiance measurements
and imagery used for monitoring changes in the Earth’s weather. Sounder and imager data from
these LEO and GEO instruments are combined to generate retrieval products with both the high
vertical resolution and high spatial resolution that can identify small-scale atmospheric features,
especially changes in moisture concentration. ABI fusion with CrIS also offers hourly (or better)
temporal changes in the tropospheric temperature and moisture that are important in nowcasting
to monitor for the onset of convective activity.

In the radiance fusion approach,’ a multidimensional nearest neighbor search, specifically a
k-d tree search algorithm, is performed between imager radiances at the original high spatial
resolution and imager radiances brought to sounder spatial resolution (through imager/sounder
collocation and geographical averaging). This radiance search is used to find the coarse field-of-
view (FOV) resolution radiances that best match the high pixel resolution radiances. For VIIRS,
the split window radiances near 11 and 12 um are used in the search. Then, the CrIS radiance
measurements [convolved with the desired spectral response functions (SRFs) such as those
from the Moderate Resolution Imaging Spectroradiometer or MODIS] associated with the pre-
viously found best matches are averaged to yield the final fusion estimates of the MODIS-like
spectral band radiances at pixel resolution. It has been shown (in Ref. 1 and in global compar-
isons done since) that radiance fusion increases the spatial resolution of IR window radiances by
an order of magnitude at the cost of adding roughly 0.5 K noise to the brightness temperatures.
For the moisture and carbon dioxide (CO,) sensitive spectral bands, the noise increases by about
1.0 K and 0.7 K, repectively, since the split window search emphasizes surface as well as total
column moisture features, but not mid- or upper tropospheric CO, or H,O absorption
characteristics.

To achieve sensitivity to atmosphere temperature and moisture vertical and horizontal
gradients at imager spatial resolution, we explore two approaches for generating imager plus
sounder fusion products. One approach is to use heritage sounding retrieval algorithms to derive
atmospheric profile retrievals from the fusion radiances for each imager pixel. It is anticipated
that these radiance fusion-based sounding products for the current S-NPP and NOAA-20 (and
future NOAA) platforms will be more consistent with those from MODIS (on the NASA Earth
Observing System Aqua and Terra platforms) than those derived from VIIRS radiances alone.
Another approach, called product fusion, is to use the imager/sounder fusion approach directly
on the sounder profile retrievals at sounder FOV resolution to infer them at imager pixel
resolution. Specifically, in product fusion, the hyperspectral sounder retrieval products (i.e.,
instead of convolved radiance data) from the FOVs, selected in the k-d tree search between the
imager radiances at coarse and high resolution, are averaged to create the new sounding products
at imager high spatial resolution.

In both the VIIRS/CIrIS radiance fusion as well the VIIRS/CrIS product fusion, the nearest
neighbor search is using the VIIRS radiances from the split window near 11 and 12 ym. But,
if the imager (e.g., ABI on GOES-platforms in GEO) has other bands in addition to the split-
window bands, then the sensitivity to mid- and upper tropospheric levels can be improved.
Therefore, the impact of performing the k-d tree search using the radiances in the split window
plus additional IR spectral bands is studied as well.

A brief description of the satellite sensors and the data fusion methodology is provided in
Sec. 2. Product fusion results for VIIRS/CrIS and ABI/CrIS pairings are presented and discussed
in Sec. 3, whereas Sec. 4 summarizes the work and its implications for simulating geostationary
hyperspectral soundings.

2 Satellite Sensors and the Product Fusion Methodology

2.1 Satellite Instruments

Table 1 provides some of the main features of the CrIS, VIIRS, and ABI sensors. CrIS and VIIRS
are together on the S-NPP platform launched on October 28, 2011, and on the NOAA-20
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Table 1 CrlS, VIIRS, and ABI sensor characteristics.

IR spectral No. of IR FOV size

Instrument Satellite range (um) channels (nadir) Swath width Scanning

CrlS S-NPP, NOAA-20 3.9-154 1305 (NSR) 14 km 2200 km +48.5 deg
2211 (FSR)

VIIRS S-NPP, NOAA-20 3.7-12.0 4 750 m 3060 km +56.3 deg

ABI GOES-16, -17 3.9-13.3 10 2 km Full disk

Note: NSR, normal spectral resolution; FSR: full spectral resolution.

platform launched November 18, 2017. Both are in a low Earth Sun-synchronous (or polar) orbit
with an afternoon equatorial crossing time near 1330 UTC. ABI has been launched into GEO on
November 19, 2016, on GOES-16 and placed the east position at 75.2°W. The second ABI was
launched on March 1, 2018, on GOES-17 and placed in the west position at 137.2°W.

2.1.1 Cross-track Infrared Sounder

The CrIS is a Michelson interferometer with 1305 channels in normal spectral resolution cover-
ing from 3.92 to 15.38 ym with a nadir resolution of 14 km and cross-track scanning width of
2200 km.” The spectral resolution of CrIS is 0.625, 1.25, and 2.5 cm™!, respectively, in the long-
wave, mid-wave, and short-wave spectral bands, with an option of providing observations with
0.625 cm™! in all the spectral regions (the full spectral resolution option). Soundings derived
from high spectral resolution CrIS measurements provide temperature and humidity profiles at
single FOV resolution (13.5 km at nadir) with vertical accuracies of 1 K and 20% relative humid-
ity per 1-km layer. Retrievals are computed at 101 levels going from 1100 to 0.005 hPa.

2.1.2 Visible Infrared Imaging Radiometer Suite

The VIIRS has 22 spectral bands covering the spectrum between 0.412 and 12.01 gm, including
16 moderate resolution bands (M-bands) at spatial resolution of 750 m, 5 imaging resolution
bands (I-bands) at 375 m, and 1 panchromatic day—night band at 750-m spatial resolution
throughout the scan covering a swath width of 3060 km.* The M-bands include 11 reflective
solar bands and 5 thermal emissive bands (centered at 3.7, 4.0, 8.5, 11, and 12 um). These IR
bands are in atmospheric window spectral regions, so they are relatively insensitive to atmos-
pheric absorbers, such as CO, and H,O.

2.1.3 Advanced Baseline Imager

The ABI, an imaging radiometer on the GOES, measures radiation in 16 spectral bands covering
the visible, near-IR, and IR spectral regions.* The coverage rate for full disk scans is at least every
15 min, the continental U.S. (CONUS) is scanned every 5 min, and mesoscale coverage is pro-
vided at least every minute. ABI spatial resolution is 0.5 km for the 0.64-um visible band, 1 km
for selected near-IR bands, and 2 km at the subpoint for 10 IR spectral bands. The ABI bands 7
through 16 (centered at 3.9, 6.2, 7.0, 7.3, 8.5, 9.6, 10.3, 11.2, 12.3, and 13.3 um, respectively)
have some sensitivity to atmospheric CO, and H,O but not enough for retrieving temperature
and moisture profiles.

It should be noted that ABI is not a sounder.’ The operational ABI sounding products are
minor modifications of the time-interpolated National Centers for Environmental Prediction
(NCEP) Global Forecast System (GFS) model first guess. Hence, ABI/CrIS fusion offers the
opportunity to include actual measurements sensitive to CO, and H,O in the troposphere
(i.e., measured by the high spectral resolution CrlIS) that provide independent information
about the vertical structure of tropospheric temperature and moisture beyond that offered by
the GFS.

Journal of Applied Remote Sensing 034506-3 Jul-Sep 2019 « Vol. 13(3)



Weisz and Menzel: Imager and sounder data fusion to generate sounder retrieval. ..

2.2 Product Fusion Method

The imager/sounder radiance fusion method, which is described in more detail in Refs. 1 and 6,
can be summarized as follows. To infer sounder radiances and products at imager spatial res-
olution, the fusion process requires two steps. In the first step, imager data are used as the input to
a nearest neighbor search—specifically a multidimensional k-d tree search—to find the best
pairing of imager single pixel radiances (usually in the split window at 11 and 12 ym) with
a selected number (usually five) of nearby coarse resolution imager radiances. The latter are
imager split window radiances averaged over collocated sounder FOVs. The collocation of
VIIRS and ABI pixels within the CrIS FOV follows the process described in Ref. 7. The search
finds, for each imager pixel, the closest, in radiance and geometrical space, low spatial resolution
FOVs. In the second step, the mean of the sounder data (radiances or retrievals) at these selected
FOVs is computed to provide the final fused product at imager pixel resolution. In the case of
radiance fusion, the hyperspectral sounder data are first integrated over a selected SRF to
produce a convolved radiance (and repeated for other desired spectral bands) before the nearest
neighbor averaging is performed. These fusion radiances can then be used to infer profile, cloud
and surface parameters; when MODIS SRFs are used, the heritage algorithms (such as those in
the International MODIS and Atmospheric Infrared Sounder Processing Package, or IMAPP,
described in Ref. 8) can be applied to the fusion radiances. Similarly, when performing product
fusion, the sounder retrieval products (i.e., instead of convolved radiance data) from the FOVs
selected in step one are averaged (for a given imager pixel) to create the new sounding products
at imager pixel resolution; only CrIS soundings for FOVs determined to be clear of clouds by the
sounder profile retrieval algorithm are averaged and displayed for imager pixels determined to be
cloud-free by the imager cloud mask. These retrieval products, since they originate from hyper-
spectral retrievals of high vertical resolution and have been transferred to high spatial resolution
through the fusion method, provide improved spatial mesoscale detail in temperature, moisture,
and cloud features to the benefit of both hyperspectral sounder and imager applications, includ-
ing severe weather nowcasting/prediction.

In this paper, CrIS retrieval profiles are derived using the UW hyperspectral retrieval system,
which is based on the dual-regression (DR) method, although any other retrieval algorithm can
be used. DR (Refs. 9—11) is a fast physically based method that retrieves profiles as well as
surface- and cloud-properties from high spectral resolution radiances measured in both clear-
and cloudy-sky conditions at single FOV resolution. The retrievals of surface skin temperature,
atmospheric temperature, moisture, and ozone profiles (down to the surface in clear skies, above
opaque clouds, and down below thin or broken clouds) are achieved with known vertical res-
olution and accuracy. Applying direct fusion to these CrIS retrieval products provides products
now at high spatial (imager) resolution while maintaining high vertical resolution features.

3 Product Fusion Results and Discussion

3.1 VIIRS and CrlS Product Fusion

Although our focus here is on the direct product fusion (i.e., the k-d tree search results are
directly applied to sounder retrievals), retrievals from the fusion radiance estimates are also pre-
sented to compare soundings at imager resolution produced in the two different ways: (1) VIIRS/
CrIS fusion is initiated to generate broadband CO, and H,O sensitive IR radiances at imager
resolution (that are MODIS-like) and then a simple regression is used to produce retrievals with
those radiances and (2) VIIRS/CrIS product fusion is performed, where DR CrIS high spectral
resolution profile retrievals are directly transferred via the fusion process to high spatial imager
resolution. The regression retrieval method used in (1) is based on the operational MODIS algo-
rithm developed for IMAPP.® Figures 1 and 2 show the temperature and H,O retrieval results at
selected pressure levels for two CrlS granules on April 10, 2018, at 0936 and 0942 UTC cover-
ing the western USA.

CrIS soundings at sounder resolution outline the tropospheric temperature and moisture gra-
dients at coarse (~14 km) resolution for clear and partly cloudy skies. Soundings from broad
MODIS-like IR spectral bands at fine resolution (~750 m) in pixels deemed to be clear in the
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(@) (b) ()

CrlS DR Retrieval Temperature (K) at 300 hPa

VIIRS/CrIS Fusion Temperature (K) at 850 hPa
5

Fig. 1 Temperature (K) is shown at 300, 500 and 850 hPa in the top, middle and bottom panels,
respectively. (a) CrIS DR retrievals at sounder resolution, (b) regression retrievals derived from
VIIRS/CRIS fusion radiances at imager resolution, and (c) VIIRS/CrIS fusion products at imager
resolution. On April 10, 2018, at 0936 and 0942 UTC (CrlS granule start times).

(@) (b) ()
CrlS DR Retrieval Humidity (g/kg) at 500 hPa Fusion VIIRS Regr RTV Humidity (g/kg) at 500 hPa
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Fig. 2 H,O mixing ratio (g/kg) is shown at 500 and 850 hPa in the top and bottom panels,
respectively. (a) CrIS DR retrievals at sounder resolution, (b) regression retrievals derived from
VIIRS/CrIS fusion radiances at imager resolution, and (c) VIIRS/CrlS fusion products at imager
resolution. On April 10, 2018, at 0936 and 0942 UTC (CrlS granule start times).
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Fig. 3 Temperature (K) provided by the CrIS DR retrieval (top) and the VIIRS/CrIS product fusion
(bottom) is shown at the 300, 500, and the 850 hPa pressure level in panels (a), (b), and (c),
respectively. On May 19, 2017, at 1748 and 1752 UTC (CrlS granule start times).

VIIRS cloud mask (MODIS/VIIRS cloud mask or MVCM discussed in Ref. 12) display more
refined features and improve the coverage, but miss some of the mid (500 hPa) and low (850 hPa)
level attributes suggested in the CrIS soundings. It should be mentioned that cloudy imager
pixels found by the VIIRS MVCM are not displayed in the fusion results shown in Figs. 1 and
2. As can be seen in Figs. 1 and 2, the DR clear/cloudy sky detection with CrIS compares well
with the MVCM cloud mask.

CrIS soundings mapped directly to fine resolution by the fusion process delineate mid- and
low-level moisture features more in agreement with the CrIS soundings than the broadband
retrievals. Fusion of the CrIS soundings directly to imager resolution captures more of the infor-
mation content of the high spectral resolution measurements than fusion to broadband radiances
followed by sounding retrievals. Although the fusion results are shown here only at 850, 500,
and 300 hPa pressure levels, any of the 101 pressure levels provided in the CrIS profile retrievals
could be shown.

CrIS DR retrievals and the product fusion results for another scene, namely the Chesapeake
Bay area on May 19, 2018, around 18 UTC, are shown in Figs. 3 and 4. This case study will also
be discussed in Secs. 3.2 and 3.3 with respect to LEO/GEO fusion. Overall, the fusion temper-
ature products (Fig. 3) show increased coverage and fine-scale variations while maintaining
the same features depicted by the hyperspectral retrievals.

Similar conclusions can be drawn for low-level H,O [Fig. 4(b)], but the mid-level humidity
fusion product [Fig. 4(a)] shows some deviations from the hyperspectral retrieval products.
These differences are due to the fact that the VIIRS split-window bands, which are not sensitive
to mid-level moisture, are used in the k-d tree search.

3.2 ABI and CrlS Product Fusion

We now explore expanding the k-d tree search to include more imager spectral bands (when they
are available). Using GEO and LEO data, specifically ABI data from 18 UTC and CrIS data from
1748 and 1754 UTC on May 19, 2017, we compare fusion results from k-d tree searches with
just the ABI split window bands (11.2 and 12.3 um) to those from k-d tree searches using eight
out of the ten ABI IR bands. The center wavelengths of the eight bands are 6.2, 7.0, 7.3, 8.5,
10.3, 11.2, 12.3, and 13.3 um, which correspond to ABI bands 8 through 11, and 13 through 16
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Fig. 4 H,O mixing ratio (g/kg) provided by the CrlS DR retrieval (top) and the VIIRS/CrlS product
fusion (bottom) at the 500 and 850 hPa pressure level in panels (a) and (b), respectively.
On May 19, 2017, at 1748 and 1752 UTC (CrlS granule start times).

(i.e., band 7 at 3.9 um sensitive to reflected solar radiation and band 12 at 9.6 ym sensitive to
stratospheric ozone are excluded).

Figures 5 and 6 show the results for the 300, 500, and 850 hPa temperature and 500 and
850 hPa H,O mixing ratio products. Empty (white) areas in Figs. 5 and 6 delineate cloudy
regions; the ABI baseline cloud mask (based on the MVCM of Ref. 12) is applied to the final
fusion results to remove cloudy ABI pixels.

The extra bands in the k-d tree search, especially the H,O sensitive 6.2- and 7.0-um bands,
enable better depiction of mid-level (Fig. 6, top) dry and moist features. For example, the two
moist pockets seen in the DR retrievals [Fig. 6(a)] are successfully included when using the eight
bands [Fig. 6(c)] in the k-d tree search but not when using only the split-window bands
[Fig. 6(b)]. Note that the ABI/CrtIS relative humidity result at 500 hPa from the split window
k-d tree search [Fig. 6(b)] differs somewhat from the VIIRS/CtIS fusion results [Fig. 4(a), bot-
tom] since the split windows for the two instruments are different (the ABI split window has
more sensitivity to low-level moisture, which dominates the search). These moisture pockets are
somewhat visible in Fig. 4, which shows the VIIRS/CrIS fusion results for the same case, but are
less pronounced than the 8-band ABI/CrIS results. The low-level (850 hPa) H,O (Fig. 6, bottom)
shows minor differences between the split-window versus eight band k-d tree search, implying
that the information near the surface is mostly contained in the split-window bands (but the other
window bands at 8.5 and 10.3 ym do contribute some additional information regarding surface
features).

3.3 ABI and CrIS Product Fusion Time Sequence

The potential benefits of using hyperspectral sounder retrievals in the evaluation of atmospheric
stability and real-time monitoring of extreme weather events are discussed in Ref. 13. Utilizing
hyperspectral retrieval products transferred to high spatial resolution by means of the imager/
sounder product fusion method as well as employing a time series of prior and subsequent
measurements may further contribute to the improvement of various severe weather forecasting
and warning operations. With respect to the ABI/CrIS fusion process, opportunity now arises to
perform additional k-d tree searches using ABI radiances every 15 min while connecting to
the same fixed time CrIS retrieval product. The high spectral (which translates to high vertical)
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Fig. 5 Temperature (K) is shown at 300, 500, and 850 hPa in the top, middle, and bottom panels,
respectively; (a) CrlS DR retrievals at sounder resolution, (b) ABI/CrIS fusion results using a two-
band (split-window) k-d tree search, and (c) ABI/CrIS fusion results using an eight-band k-d
tree search. On May 19, 2017, ABI data are from 1800 UTC and CrIS data are from 1748 and
1754 UTC.

resolution retrieval products can then be generated not only at high spatial but also at high
temporal resolution.

ABI radiances for the moisture sensitive band 8 (6.3 ym) at 16, 17 18, and 20 UTC on May
19, 2017, are shown in Fig. 7(a), illustrating the movement of mid-level moisture and intensi-
fication of clouds from the western to the northeastern part of the region. Figure 7(b) shows the
mid-level (500 hPa) humidity ABI/CrIS product fusion results, which have been derived from
combining the ABI radiances at these four times with the CrIS soundings at 1748 and 1754 UTC.
Figure 7(c) shows the NCEP 13-km rapid refresh (RAP) model analysis for the humidity at
500 hPa for the same four times. The ABI/CrIS product fusion is spanning 4 h, which precede
and follow the sounder overpass; it suggests the moisture increase as well as adjacent drying at
the 500-hPa pressure level from 16 to 17 UTC (moistening in panel b is outlined by a red frame,
drying by the black frame). The mid-level drying is followed by convective activity in eastern
Virginia found independently in the ABI image at 20 UTC [convection is highlighted
by the black frame in Fig. 7(a)] and in the RAP (although displaced somewhat to the north).
Low-level moistening and mid-level drying are used in nowcasting as indicators of preconvective
conditions, hence, the rapid changes in 500 hPa H,O mixing ratio are of interest in this time
sequence. Finally, Fig. 7(d) shows the associated low-level (850 hPa) humidity ABI/CrIS
product fusion results. The low-level moisture fields have more missing pixels due to cloud
interference than the mid-level moisture results. But they show the low-level moistening from
16 to 17 UTC (eastern box outlined in black) connected with mid-level drying [shown in
Fig. 7(b)] that presages convective development; the low-level drying to the west (outlined
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Fig. 6 H,O mixing ratio (g/kg) is shown at 500 and 850 hPa in the top and bottom panels, respec-
tively; (a) CrlS DR retrievals at sounder resolution, (b) ABI/CrIS fusion results using a two-band
(split-window) k-d tree search, and (c) ABI/CrIS fusion results using an eight-band k-d tree search.
On May 19, 2017, ABI data are from 1800 UTC and CrIS data are from 1748 and 1754 UTC.

in red) shows where convection updrafts have already occurred and moisture has been trans-
ported to the mid-levels. The color scale has been adjusted to emphasize the low-level-moisture
gradients over land. The RAP hourly 850 hPa H,O mixing ratio field is shown in Fig. 7(e);
small scale features are not readily discernable but the general movement of low-level moisture
eastward is apparent.

It should be mentioned that the model analysis incorporates the radiosondes as well as the
available satellite data. The errors associated with the retrieval are documented in the literature
(see, for example, Ref. 11) and those associated with imager sounder radiance fusion are cited in
Ref. 1. The comparison of the moisture gradients with model analysis highlights that both (i.e.,
model analysis and product fusion) describe the same synoptic situation but the imager sounder
fusion provides more small-scale features that are meteorologically consistent with developing
weather events.

The results of pursuing fusion of the CrIS tropospheric stability retrieval with the ABI radi-
ances are shown in Fig. 8. The CrIS lifted index (LI) derived for 1748 and 1754 UTC [panel (a)]
is projected back to 16 UTC as a fusion product using the ABI radiances [panel (b)]. The opera-
tional ABI LI (derived with the time interpolated GFS model first guess) is shown in panel (c) of
Fig. 8. The 16 UTC LI fusion product enhances the depiction of the unstable region (black box),
where convection occurs 4 h later. The indication from the ABI only product is much less
pronounced. This example suggests that the imager/sounder fusion can be accomplished across
different times, and therefore can provide the high temporal resolution requisite for predicting
the onset and the evolution of severe convection.

4 Summary and Conclusions

While VIIRS does not have spectral bands sensitive to CO,, H,0, and Os, the fusion technique
enables the construction of MODIS-like absorption band radiances using high spatial resolution
VIIRS and high spectral resolution CrIS radiance data. The first step of the fusion method incor-
porates a k-d (multidimensional) tree search to find neighboring points from a training dataset to
a query dataset. In this application, training and query are represented by low (FOV) and high
(pixel) spatial resolution imager radiances, respectively. In the second step, the sounder data
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Fig. 7 ABI band 8 (6.3 um) radiance (MW m=2 sr~' cm) is shown in (a), ABI/CrlS 8-band product
fusion H,O (g/kg) at 500 hPa and 850 hPa is shown in (b) and (d), respectively, whereas the 13-km
RAP analysis H,O product at 500 and 850 hPa is shown in (c) and (e), respectively. The high (low)
moisture feature at 17 UTC inside the red (black) box in (b) and (d) corresponds to the existing
cloud development in the red box (new convection in the black box) outlined at 20 UTC in (a).

(a)
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Fig. 8 (a) CrIS DR LI (°C) retrievals derived at CrIS measurement times 1748 and 1754 UTC on
May 19, 2017. (b) ABI/CrlS fusion LI (°C) from 2 h earlier (using the ABI images at 16 UTC) (with
the red and black boxes delineating more stable and less stable atmospheres associated with
those in Fig. 7). (c) ABI only LI (°C) at 16 UTC.
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for the FOVs selected in the first step are then averaged and associated with each imager pixel. In
the case of the radiance fusion demonstrated in Ref. 1, radiance bands can be constructed by
using the k-d tree search output to average over the neighboring sounder FOVs of the spectrally
convoluted hyperspectral sounder radiances.

This paper presents product fusion, where the k-d tree search output is directly applied to
hyperspectral sounder retrieval products. Hence, for each imager pixel, the sounder retrievals of
the sounder FOVs (found through the imager-only k-d tree search) are averaged. Therefore, the
product fusion directly offers more spatial detail in temperature, moisture, and cloud features.
Temperature and moisture profile retrievals derived from broadband VIIRS/CrIS radiance fusion
are compared with those derived from VIIRS/CrIS product fusion. We found that product fusion
retains more of the information content of the CrIS high spectral resolution radiances thus
presenting more mid-tropospheric details in moisture and temperature.

Preliminary GEO/LEO product fusion results are also presented. The ABI instrument
onboard GOES enables a k-d tree search with more spectral bands (beyond the split window
of VIIRS). Using the additional ABI spectral bands enables better delineation of mid-level dry
and moist features; this is attributed to the inclusion of H,O sensitive 6.2-, 7.0-, and 7.3-um
spectral bands. The very clean (least affected by atmospheric moisture) window band at
10.3 um and the surface type sensitive window band at 8.5 ym influence the low-level moisture
determinations more subtly. Since the ABI/CrIS fusion incorporates high spectral resolution
CrIS measurements sensitive to CO, and H,O in the troposphere, it provides independent infor-
mation about the vertical structure of tropospheric temperature and moisture well beyond that
offered by the ABI alone. The high frequency of ABI measurements is also utilized when the k-d
tree search is applied to each set of ABI radiances in time sequence and connected to a fixed time
CrIS retrieval product; thus, high spectral (which translates to high vertical) resolution retrieval
products are fused into high spatial as well as high temporal resolution. Changes in low- and
mid-level moisture are more readily monitored in the ABI/CrIS fusion, helping to delineate areas
of more likely tropospheric instability. Corroboration is offered with independent model analysis
data in a convective development case study. Overall, the case studies presented here suggest the
possibility of successfully transferring sounder high vertical resolution to imager high spatial and
temporal resolution. It should be noted that improving spatial resolution via fusion does not
alleviate sounder retrieval errors and that low-level RH retrieval errors need to be taken into
account during severe weather mesoscale analysis.

Since high spatial resolution radiances can be constructed for any existing or newly desired
IR spectral band from imager/sounder pairs, new opportunities are available for retrieving accu-
rate atmospheric and surface products and for studying their impact on operational and research
applications. We show promising results for temperature and moisture retrieval products, but,
additionally, any hyperspectral retrieval parameter (e.g., severe weather indices, cloud param-
eters) can be transferred to high spatial resolution through the product fusion method. For exam-
ple, ongoing product fusion-related studies include the investigation of H,O to track polar winds
and trace gases like sulfur dioxide (SO,) to detect volcanic plumes. Furthermore, any imager/
sounder pair on the same platform or on different satellites can be used. AVHRR/IASI (onboard
the Metop satellites) fusion and the demonstrated VIIRS/CrIS fusion can be used to enable
continuity of the Terra and Aqua MODIS cloud and moisture records.'*

The imager/sounder product fusion results demonstrated here suggest that the reach of
either instrument can be extended through combination via the fusion approach. Specifically,
the vertical resolution of hyperspectral sounding products and the horizontal and temporal res-
olution of imager radiances can be blended for use in, for example, severe weather monitoring
and prediction systems.
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