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Abstract. The Baltic Sea represents an optically complex case 2 water type, where high
concentrations of water column constituents limit acquisition of benthic information. Different
preprocessing steps were applied to the hyperspectral compact airborne spectrographic imager
(CASI) image to extract as much useful benthic information as possible. Atmospheric correction,
minimum noise fraction transform, and sun-glint correction were performed to acquire water
surface reflectance data. Additionally, a water column removal procedure was applied to acquire
bottom reflectance data. Although retrieved CASI water surface reflectance spectra generally
matched the magnitudes and shapes of in situ measured spectra, then the applied water column
correction algorithm did not yield accurate bottom reflectance spectra. Therefore, both benthic
habitat and bathymetry maps were retrieved from the CASI sea surface image data set. An
image-based supervised classification method produced a good quality benthic habitat map from
the shallow Pakri study area (depth < 3.0 m) with an overall accuracy of 80%. A site-specific
algorithm was developed for the bathymetry retrieval utilizing a green–yellow CASI band ratio.
Validation of the bathymetry map for depths shallower than 4.0 m revealed an R2 value of 0.88
and a root-mean-square error of 0.32 m. The assessment of the benthic substrate detectability
limits in the Baltic Sea revealed that, at the wavelength of deepest light penetration (near
570 nm), the depth restriction for CASI benthic substrate detection was 7.6 m for sand, 5.0 m
for green macroalgae, 3.0 m for higher order vegetation, and 3.1 m for brown macroalgae.
The depth limit to which bathymetric mapping is practical in our study site was estimated to
be around 3.5 to 4.0 m. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JRS.14.016504]
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1 Introduction

Remote sensing is a widely used method for studying shallow marine and fresh water benthic
environments. The method can provide information about the benthic habitats and bathymetry
provided that the water is optically shallow. Optically shallow waters occur wherever the reflec-
tance of the bottom can be detected from above the water’s surface and are determined by the
water depth, optical properties of the water column, and underlying benthos.1

Thematic benthic habitat maps are fundamental to characterizing marine systems.2 For map-
ping purposes, habitats are defined as spatially recognizable areas where the physical, chemical,
and biological environment is distinctly different from surrounding areas.3 The majority of
remote sensing studies conducted in optically shallow waters have aimed at mapping the
distribution of either single benthic habitat, such as monodominant seagrass beds,4,5 or several
different benthic habitats, such as heterogeneous communities of seagrasses, coral reefs, and
macroalgae.6–18 In addition to the spatial distribution, it is important to investigate the temporal
dynamics of benthic habitats as changes in the benthic vegetation distribution pattern may indi-
cate changes in the environmental conditions. Several studies have estimated the potential
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of remote sensing techniques for detecting changes in the distribution of marine benthic com-
munities taking place over different time periods.19–22

The abundance of benthic vegetation, such as canopy cover, biomass or leaf area index
(LAI) has been assessed least frequently as the estimation models require extensive field cal-
ibration.23–27 In recent years, there is also a growing need to better understand the importance of
coastal benthic habitats in the global ocean carbon budget. Vegetated coastal habitats, including
seagrass and macroalgae beds, mangrove forests, and salt marshes, form highly productive eco-
systems, but their contribution to the global carbon budget remains overlooked.28 Therefore,
some researchers have attempted to investigate the ability of remote sensing technology to quan-
tify not just distribution and abundance but also productivity of coastal benthic vegetation.27,29–31

Bathymetry is another important parameter that plays an increasing role in many marine
applications (marine spatial planning, navigation, seabed morphology studies, dredging, port
facility management, etc.), and remote sensing technology has been used more frequently for
the water depth determination.32–38

Remote sensing has an increasing potential in studies aimed at retrieving information from
the bottom of the water body. However, it is more challenging to acquire spectral information
from aquatic benthic environments compared with terrestrial environments. A remote sensing
sensor pointed down at the shallow water body can receive light affected by four separate proc-
esses. The first process corresponds to light that reaches the sensor after scattering by the atmos-
phere. In the case of aquatic remote sensing, the total signal received by the remote sensing
sensor is highly dominated by radiance contributed by atmospheric scattering processes.39

The majority of waters reflect between 2% and 6% of downwelling irradiance;40 the rest of the
signal received by a sensor has been contributed by the atmosphere. Therefore, small inaccur-
acies in the estimation of the atmospheric component may result in substantial errors in the
estimation of the water component.

The second process corresponds to light reaching the sensor after reflection from the air–
water interface without entering the water body. This part of the light is referred to as the sun
glint. Sun glint, caused by specular reflection of solar radiation on nonflat water surfaces, can be
a serious confounding factor for remote sensing of benthic habitats, especially in images with
a spatial resolution of <10 m.41 The presence and amount of sun glint depends on the state of
the sea surface, wind speed, sun position, and viewing angle.41–43

The third process corresponds to light that penetrates the water surface and interacts with
water molecules and other optically active constituents present in the water column, such as
phytoplankton, colored dissolved organic matter (CDOM), and particulate matter.44 This part
of the light does not reach the water bottom and carries information only about the water column
properties. The last process corresponds to light that reflects back from the bottom of the water
body. Only this last part of light carries information about the benthic substrates and water depth.
Hence, atmospheric, water surface, and water column contributions need to be considered and
removed to acquire information from the water bottom.

If light enters the water body, it starts to diminish with increasing water depth and benthic
habitats become less spectrally separable, as the optical properties of the water column constitu-
ents tend to dominate the signal.15 The higher the concentration of optically active constituents in
the water body, the shorter the distance of light penetration. Optically complex coastal waters of
the Baltic Sea are characterized by high concentration of CDOM,45 suspended particles,46 and
phytoplankton.47 High concentrations of those water column constituents restrict the light reach-
ing the water bottom even at relatively shallow depths. Therefore, acquiring benthic information
from the Baltic Sea is limited. The main goal of this study was to investigate how much benthic
information can be retrieved from a hyperspectral sensor in the complex Baltic Sea waters using
simple empirical and semianalytical models. The more specific objectives of the study were
defined accordingly as follows.

1. To perform different image processing levels to correct for atmospheric, sun glint, and
water column contributions and assess the performance of each processing level.

2. To assess the potential limits to acquire benthic information from such a complex
water body.

3. To generate benthic habitat and bathymetry maps from a hyperspectral compact airborne
spectrographic imager (CASI) single-image data set.
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2 Materials and Methods

2.1 Study Site

The study site was located in the northern coast of Estonia, the Gulf of Finland, the Baltic Sea
(Fig. 1). The study area encompassed ∼200 km2 covering the coast of the mainland and two
Pakri islands—Suur Pakri and Väike Pakri. The islands are separated from the mainland to the
south by the shallow Kurkse Strait. The Pakri islands and surrounding marine area belong to
the Natura 2000 network, which is the European network of protected areas.

The water depth in the study area remains generally below 5 m, but water depth may reach
near 100 m in some parts of the open sea. Higher plants, such as Potamogeton pectinatus,
Zannichellia palustris, and Zostera marina, as well as charophytes dominate the soft sandy
substrate found in the sheltered areas between islands and between the mainland and islands.
Hard substrates (rock, boulders, stones, etc.) are found in more exposed areas dominated
by either brown algae Fucus vesiculosus or filamentous green algae Cladophora glomerata
communities.

2.2 In Situ Field Sampling

Ground reference data were collected from May 30 to June 3, 2016, at the same time as the
remote sensing data collection. Underwater video records for characterizing benthic habitats
were collected from almost 200 field stations. The locations of the field stations were determined
previously using aerial photographs from the public web map application of the Estonian Land
Board. The video analysis method described in Ref. 48 was used to estimate the substrate type,
the total coverage of benthic vegetation, and the coverage of visually distinguishable vegetation
species. Coordinates of each field station were recorded by the global positioning system.
Bathymetry was measured with the boat echo sounder.

Above water reflectance measurements were acquired using two Ramses (TriOS) hyperspec-
tral sensors. Measurements were taken in 10 field stations above homogeneous substrate or
vegetation patches estimated visually from the boat. Multiple reflectance measurements (5 to 10)
were performed in each field station, from which the average spectrum was calculated. Above
water reflectance measurements provided ground reference for the assessment of image prepro-
cessing steps. The Ramses two-sensor system included irradiance and radiance sensors.
The irradiance sensor was used to measure downwelling spectral irradiance Ed (Wm−2 nm−1),
and the radiance sensor was used to measure upwelling spectral radiance Lu (Wm−2 nm−1 sr−1).
Above water remote sensing reflectance was calculated as the ratio of Lu∕Ed. Ramses remote
sensing reflectance was multiplied by the Q-factor, which converted it to the irradiance
reflectance, making it thereafter comparable to the outcome of the atmospheric correction.

Fig. 1 Location of the (a) study area in the northern coast of Estonia, the Gulf of Finland, the Baltic
Sea and (b) study area imaged by the CASI hyperspectral sensor on May 31, 2016.
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TheQ-value may range from 3 to 6 steradians,49 but as defining its value was outside of the scope
of the current study, the Q-factor was considered equal to π.

Depth profiles for downwelling irradiance (Ed) were acquired with Ramses radiometers in
four field stations around Pakri islands on the same day as the image collection. Ramses
was lowered through the water column and measurements taken every 0.5 m from the surface
to the depth of 2.5 m. The underwater Ed depth profiles were used to calculate the diffuse
downwelling attenuation coefficient (Kd), which was required to perform the water
column correction (WCC). Water samples were collected concurrently with depth profiles,
which were later analyzed for the concentrations of aCDOM (m−1), total suspended matter
(TSM, gm−3), and chlorophyll a (Chl-a, mgm−3). Laboratory water sample analyses are
described in Ref. 50.

2.3 Airborne Remote Sensing

Airborne hyperspectral imagery was acquired on May 31, 2016, over the Pakri marine area with
a CASI-1500 sensor produced by Itres, Canada (Fig. 1). The data collection was conducted by
the Latvian Institute for Environmental Solutions (IES). CASI sensor covers a spectral range
between 367 and 1045 nm. Bandwidths of the CASI-1500 sensor are programable, and different
bandwidths were selected to optimize the signal-to-noise ratio (SNR) across the entire spectrum.
The sensor has lower sensitivity in the blue and near-infrared (NIR) regions of the spectrum, and
broader (∼10 nm) bandwidths were selected for that region. Narrower bandwidths (∼5 nm) were
selected for the 550- to 750-nm spectral range. A total of 93 spectral bands were used for the data
collection.

Altogether 12 flight lines were collected from the Pakri study area. The data were collected at
the altitude of 2100 m, resulting in 1.0 m spatial resolution. Unfortunately, image quality
suffered from brightness unevenness, resulting in the visible contrast in the central region of
each flight line.

2.4 Image Processing

A critical step in remote sensing data analysis is the preprocessing of images. Radiometric cor-
rection and geo-correction of the CASI data were conducted by the IES. After that, ENVI®

software (Research Systems Inc.) was used to apply subsequent preprocessing procedures:
(1) atmospheric correction, (2) minimum noise fraction (MNF) transform, (3) glint correction,
and (4) WCC.

2.4.1 Atmospheric correction

The atmospheric contribution was removed from the CASI data using the fast line-of-sight
atmospheric analysis of spectral hypercubes (FLAASH) module in ENVI. During the atmos-
pheric correction process, the sea surface reflectance data were retrieved from the at-sensor
radiance data. FLAASH is a first-principle atmospheric correction software package that is based
on the MODTRAN4 radiation transfer code that was developed by the Air Force Phillips
Laboratory and Spectral Sciences, Inc.51 The atmospheric model for FLAASH processing was
defined as mid-latitude summer, and the aerosol model was defined as maritime. Visibility values
for FLAASH were adjusted in the way that the retrieved reflectance values in the NIR spectral
region over the optically deep water approached zero.

2.4.2 Minimum noise fraction transform

The MNF method was applied to the atmospherically corrected images to reduce the inherent
noise of hyperspectral data. Hyperspectral remote sensing sensors are characterized by low SNR
because of the fewer number of photons captured by each detector due to the narrower width of
the spectral channels.52 In recent years, the issue of noise reduction has been considered by many
researchers and various spectral smoothing methods have been proposed,53–55 among them is the
MNF method.56 The MNF transform is a linear transformation that consists of two separate steps
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described by Luo et al.55: (1) use the noise covariance matrix to decorrelate and rescale the noise
in the data (noise whitening). In this way, the noise has unit variance and no band-to-band cor-
relations. (2) Perform a standard PCA transform to the noise-whitened data. Following MNF
transform, flight lines were mosaiced together.

2.4.3 Glint correction and land mask

The deglinting procedure was applied to the atmospherically and MNF corrected image. The
deglinting model proposed by Hedley et al.41 was used for the sun-glint removal. The method
relies on two assumptions: (1) the NIR reflectance over water is caused solely by sun glint and
(2) the magnitude of NIR reflectance is linearly related to the magnitude of glint reflectance in
each of the visible spectral bands.18 This method establishes linear relationships between NIR
and visible bands using linear regression based on a homogeneous sample of the sun-glinted
pixels over optically deep water:41

EQ-TARGET;temp:intralink-;e001;116;567Rdeglinted ¼ Rinitial − slopeðRNIR −MINNIRÞ; (1)

where Rdeglinted is the glint corrected reflectance, Rinitial is the initial reflectance, RNIR is the
reflectance in the NIR waveband, which in our case was 897 nm, MINNIR is the minimum
reflectance value for the NIR waveband determined from the homogeneous sample set, and slope
is the regression slope established between the NIR waveband and each visible waveband.

After sun-glint removal, land pixels were masked out from the image using the NIR spectral
band, as this spectral region shows the most contrast between land and water pixels.

2.4.4 Water column correction

The last step in the image preprocessing was WCC. This correction step allows for retrieving
bottom reflectance from water surface reflectance. Various WCC methods have been proposed
in the literature. Zoffoli et al.44 provided a comprehensive overview of different methods and
proposed to group them according to their methodological approach as follows: band combi-
nation algorithms, model-based algebraic algorithms, and optimization/matching algorithms.

The best WCC method to be chosen depends on the study site complexity, sensor character-
istics, mapping purposes, and access to in situ data.34,44 Band combination algorithms do not
retrieve actual substrate reflectance spectra; instead, they produce an index. These algorithms can
be used when the study aims to solely produce a bottom classification map.44 We were interested
in retrieving substrate reflectance spectra, and the simple model-based semianalytical method
proposed by Maritorena et al.1 was used for the water column removal. This method requires
limited numbers of in situ measurements as model inputs.

Maritorena WCC model. Maritorena developed a model for retrieving water surface
reflectance in the shallow waters:1

EQ-TARGET;temp:intralink-;e002;116;239Rwð0−Þ ¼ R∞ þ ðRb − R∞Þ expð−2KdzÞ; (2)

where Rw (0−) is the reflectance just below the water surface, R∞ is the reflectance of optically
deep water just below the water surface, Rb is the bottom reflectance, Kd is the diffuse
downwelling attenuation coefficient of the water column, and z is the water depth. The model
assumes horizontal and vertical homogeneity of water optical properties throughout the study
area.1 The model was inverted to derive bottom reflectance from water surface reflectance
measurements:

EQ-TARGET;temp:intralink-;e003;116;128Rb ¼
Rw − R∞

expð−2KdzÞ
þ R∞: (3)
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Since the Maritorena model was developed for reflectance just below the water surface
½Rwð0−Þ�, CASI above water surface reflectance ½Rwð0þÞ�was converted to below water surface
reflectance using the approximation proposed by Mobley:57

EQ-TARGET;temp:intralink-;e004;116;699

Rwð0þÞ
Rwð0−Þ

¼ 0.544: (4)

Incorporating the latter term into Eq. (3), yields

EQ-TARGET;temp:intralink-;e005;116;642Rb ¼
RCASI
w
0.54

− RCASI
∞
0.54

expð−2KdzÞ
þ RCASI

∞

0.54
: (5)

Several optically deep water spectra were selected from the CASI image, and an average
spectrum was calculated. It was used as an input to the WCC algorithm to represent the optically
deep water spectra. The WCC algorithm requires two main variables: water depth (z) data for
every image pixel and water column attenuation characteristics (Kd). For the water depth deter-
mination, a site-specific algorithm was developed as described in Sec. 2.6. Kd was calculated
from in situ Ramses Ed measurements at two depths z1 and z2 according to Ref. 39:

EQ-TARGET;temp:intralink-;e006;116;521Kd ¼ −
1

Δz
ln

�
Edðz2Þ
Edðz1Þ

�
; (6)

in which Δz is the difference in depth, Edðz1Þ is the downwelling spectral irradiance at depth z1,
and Edðz2Þ is the downwelling spectral irradiance at depth z2, where z2 is the measurement depth
and z1 is a reference depth closer to the water surface.

A maximum depth in which a submerged bottom can be detected by optical remote sensing
exists.44 With the knowledge of Kd and the availability of substrate reflectance spectra, it is
possible to estimate depth limits to which the remote sensing sensor can detect different sub-
strates in the given water body. Following Refs. 1, 15, and 18, the detectability limits of selected
substrates for our study site were computed:

EQ-TARGET;temp:intralink-;e007;116;380z ¼ 1

2Kd
ln

�
RB − R∞

RSD
∞

�
; (7)

where RB is the substrates’ reflectance spectra, R∞ is the average optically deep water reflectance
spectra just below the water surface, RSD is the standard deviation of reflectance spectra collected
within a homogeneous optically deep water area, and Kd is calculated by Eq. (5). The substrate’s
reflectance spectra collected over the years from different parts of the Baltic Sea were taken from
our spectral library presented in Ref. 58. The same substrate’s spectra were also used for the
evaluation of the performance of WCC.

2.5 Benthic Habitat Classification

Collected underwater video records were analyzed for sediment properties, as well as for benthic
vegetation species and coverage. As a result, a benthic habitat classification scheme in which
prevailing habitat types were grouped into classes representing the pattern of the ecosystem was
developed. Seven benthic classes were defined and labeled as (a) bare substrate, (b) filamentous
green algae, (c) sparse higher order vegetation, (d) dense higher order vegetation, (e) charo-
phytes, (f) brown macroalgae, and (g) deep water (Table 1 and Fig. 2). Red macroalgae were
identified in some field stations, but as they were found in low quantities they were excluded
from the classification scheme. The classification scheme for the current study was defined based
on the dominant class. If, for example, the coverage of brown macroalgae in a particular sam-
pling point was estimated to be 60% and the coverage of red macroalgae 20%, it was considered
a point belonging to the brown macroalgae class. We cannot say that red macroalgae were com-
pletely absent in the Pakri study area, but they were not dominant in our sampling sites.

A supervised classification procedure, which automatically divides all image pixels into pre-
viously defined habitat classes, was applied to the imagery. Information acquired by underwater
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Fig. 2 Classes defined for benthic habitat classification: (a) bare substrate, (b) filamentous green
algae, (c) sparse higher order vegetation (vegetation <30%), (d) dense higher order vegetation
(vegetation >30%), (e) charophytes, and (f) brown macroalgae.

Table 1 The species and sediment composition contained within each of the seven benthic
habitat classes.

Habitat classes Composition

Bare substrate Sand or gravel, total vegetation cover <10%

Filamentous green algae Pebble and rocks with green filamentous algae
(prevailing species Cladophora sp., Enteromorpha sp.)

Sparse higher order vegetation Sand or mud, total vegetation coverage <30%,
(prevailing species Potamogeton sp., Zostera sp.)

Dense higher order vegetation Sand or mud, total vegetation coverage >30%,
(prevailing species Potamogeton sp., Zostera sp.)

Charophytes Sand or mud with charophytes

Brown macroalgae Rocks with brown macroalgae
(prevailing species Fucus sp.)

Deep water Water depth > 3 m
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video records was used for selecting training regions of interest (ROIs) for supervised classi-
fication. The quality of the classification results was assessed by the quantitative process of
accuracy assessment utilizing ground reference data from video records. The ground reference
data used for the validation of classified maps were nonoverlapping from the data used for
training the classification algorithms.

2.6 Bathymetry

In situ water depth measurements were used for the site-specific bathymetry algorithm develop-
ment proposed by Stumpf et al.33 The basic premise of the model is that, because water absorp-
tivity is wavelength dependent, the upwelling radiance measured in a spectral band experiencing
greater absorption will be less than that measured in a band with weaker absorption.59 Thus with
increasing water depth, reflectance values decrease proportionally faster in a band with greater
absorption and slower in a band with weaker absorption. As depth increases, the reflectance ratio
of low absorption band to high absorption band should show an increase and need to be scaled to
the actual depth according to Ref. 33:

EQ-TARGET;temp:intralink-;e008;116;543Z ¼ m1

ln½nRwðλiÞ�
ln½nRwðλjÞ�

−m0; (8)

where Z is a depth, m1 and m0 are obtained from regression of the linear equation, Rw is the
reflectance value for bands i and j, and n is a fixed constant to assure positive logarithm and
linear response with depth. The n value of 1000 was used in this study.

In our previous study,37 different band combinations of Hyspex hyperspectral sensors were
tested to specify spectral regions most suitable for the bathymetry mapping in the Baltic Sea
conditions. The study showed that the ratio of green band to yellow band achieved the best
correlations with measured water depths. Therefore, in this study, we concentrated on the
green/yellow spectral regions and defined specific CASI bands, which allowed for the best cor-
relation with the water depth. The best correlation was achieved using a wavelength ratio of
520∕608 nm. In addition, Vahtmäe and Kutser37 showed that the best processing level for
bathymetry retrieval was imagery with atmospheric correction. For that reason, the bathymetry
model was applied to the atmospherically and MNF corrected CASI image.

The retrieved bathymetry was smoothed with a 3 × 3 low-pass filter to reduce noise, which
would otherwise potentially reduce the accuracy of WCC.

3 Results

3.1 Sea Surface Reflectance

Sea surface reflectance was retrieved from the CASI hyperspectral sensor after completing three
image correction steps: atmospheric correction, MNF transform, and glint correction. The per-
formance of those preprocessing steps was assessed by comparing the spectrum of the corrected
image pixel with field spectral measurements of the corresponding pixel taken using the Ramses
spectrometer. Some selected spectra of the CASI preprocessed spectra and Ramses in situ
measurements are shown in Fig. 3.

In general, reflectance spectra derived from the CASI sensor captured the overall spectral
shapes of spectra measured with the Ramses spectrometer. The surface reflectance spectra
retrieved after applying atmospheric correction (Fig. 3, casi_1) contained significant levels
of noise. Brighter spectra (e.g., sand) contained lesser amounts of noise compared with the
darker spectra (e.g., optically deep water) as brighter objects exhibit higher signal levels.
The MNF transformation produced much smoother spectra (Fig. 3, casi_2). This shows that
MNF transform may help to remove the residual noise from hyperspectral data.

Glint correction reduced reflectance for all visible bands (Fig. 3, casi_3). In general, glint
corrected spectra became more similar to in situ measured Ramses spectra in absolute values
than atmospherically corrected spectra. Nevertheless, for example, in situ measured green
macroalga spectra [Fig. 3(c)] showed higher reflectance values than glint corrected spectra.
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The difference may be conditioned from the high spatial heterogeneity characteristic of Estonian
coastal waters, namely, as the CASI pixel area is 1 m2, different vegetation species as well as
substrate may contribute to the total signal in heterogeneous areas. The Ramses measurement
area is only a few cm2 (depending on the measurement distance). Due to the different meas-
urement areas, reflectances captured by different sensors do not always match, even though
measured in the same location.

Some negative values below 720 to 750 nm were retrieved after the glint correction pro-
cedure. The reason for this is that the method used for the sun-glint removal assumes a negligible
water-leaving signal in the NIR spectral region. In practice, however, there is always some
“residual” radiance in the NIR part of the spectrum and the NIR signal can be significant if
the water is optically shallow.7,41,60 Therefore, in the current case, it can be assumed that some
benthic NIR-reflectance contributed to the water-leaving NIR signal and caused overcorrection
of reflectance values.

In addition, neither atmospheric nor glint correction managed to correct blue wavelengths of
the CASI optically deep water spectra. Shorter wavelengths (below 520 nm) of optically deep
water remained under-corrected as shown in Fig. 3(d).

3.2 Diffuse Attenuation Coefficient

Kd was calculated from in situ Ramses vertical profile measurements [Eq. (6)]. Vertical profiles
were measured at four field stations, and for each station Kd values along the water column were
averaged. Finally, an average Kd value between all profiles was obtained (Fig. 4). Kd values
increased exponentially beyond 700 nm due to the increasing water absorption. CDOM absorbs
strongly in the blue spectral region and Chl-a in the blue and red spectral regions, which resulted
in increased Kd values in those spectral ranges.

It is seen that Kd spectra had low variance throughout all sampled sites, suggesting that the
water optical properties were relatively constant over the study site (Table 2). The concentrations
of water column constituents clearly characterized a case 2 water type. CDOM concentrations
were similar to the open parts of the Baltic Sea. TSM concentrations were rather high, probably

Fig. 3 Comparisons of Ramses ground-truth spectra with corresponding different level corrected
CASI spectra: (casi_1) atmospherically corrected spectra; (casi_2) atmospherically and MNF
corrected spectra; and (casi_3) atmospherically, MNF and glint corrected spectra. (a) Sand 0.4 m,
(b) brown macroalgae 1.0 m, (c) green macroalgae 0.5 m, and (d) optically deep water.

Vahtmäe, Paavel, and Kutser: How much benthic information can be retrieved. . .

Journal of Applied Remote Sensing 016504-9 Jan–Mar 2020 • Vol. 14(1)



due to resuspension of sediments by the wind. Chl-a concentrations were also typical of the
Baltic Sea waters, remaining below the bloom limit (5 mg∕m3).

3.3 Benthic Substrate Detectability Limits

Detectability limits [Eq. (7)] were calculated for five main benthic substrate classes present in
the Baltic Sea: red macroalgae, brown macroalgae, green macroalgae, higher order vegetation,
and bare substrate. Each class was represented by species widely spread over the Baltic Sea
and/or considered a key species in the Baltic Sea: Furcellaria lumbricalis (red macroalgae),
Fucus vesiculosus (brown macroalgae), Cladophora glomerata (green macroalgae), and
Potamogeton pectinatus (higher order vegetation). Bare substrate was represented by a sand
spectrum. End-member spectra of the substrates were taken from our spectral library. If the
end-member library contained several measurements per species, then the mean spectrum was
calculated.

Figure 5 shows detectability limits for selected benthic species at given water attenuation
properties (expressed as Kd, Fig. 4). It is seen that invalid values were retrieved for almost all
substrates in cases of blue wavelengths (below 520 nm) while using Eq. (7) for detectability
limits calculations. This was caused by the fact that the optically deep water spectrum, used
in the calculation, was extracted from the CASI sea surface reflectance image. However,
blue wavelengths of this extracted spectrum [Fig. 3(d)] exhibited higher spectral values than
end-member spectra as they were under-corrected during atmospheric correction.

The depth limits for benthic substrate detection varied depending on the magnitude of sub-
strate reflectance. The substrate with the highest reflectance (e.g., sand) was discernible from
deep water at the furthest depths. At the wavelength of deepest light penetration (near 570 nm),
the depth restriction for CASI benthic substrate detection extended to 7.6 m for sand, 5.0 m for
green macroalgae Cladophora, 3.0 m for higher order vegetation Potamogeton, and 3.1 m for
brown macroalgae Fucus. In the red spectral region, the maximum depth of detection for most
substrates remained around 2 to 3 m and in the NIR spectral region around 1 m.

Table 2 Water column optical constituents for Pakri marine area field sites.

Average Range

aCDOM (440) (m−1) 0.59 0.52 to 0.64

TSM (gm−3) 7.23 5.70 to 9.00

Chl-a (mgm−3) 1.28 0.58 to 1.78

Fig. 4 Downwelling diffuse attenuation coefficients, Kd (m−1), derived from Ed in-water profiles at
four field stations around the Pakri marine area.
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Reflectance values of red macroalga Furcellaria remained lower than an average optically
deep water spectrum almost throughout the entire spectrum, providing invalid results in the case
of using Eq. (7).

3.4 Bathymetry Mapping

Altogether, 175 in situmeasured depth points from a depth range of 0 to 4 m were collected from
the study area. Half of the measured depth points were used for the calibration and half for the
validation of the bathymetry model. Figure 6 displays a scatterplot comparison of modeled water
depths retrieved by the bathymetry model versus in situ measured depths. The validation of the
derived bathymetry map revealed a correlation coefficient (R2) value of 0.88 with a root-mean-
square error (RMSE) of 0.32 m.

The water depth map obtained by the bathymetry model across the study site is shown in
Fig. 7. Shallower areas (depth under 3 m) were found mostly in between two Pakri islands and
south of islands. Some interesting features included, for example, sand dunes fringing the coast
of the mainland and sand waves between Western Island and the mainland in 0.5 to 2 m of water.
Water depth increased fast in the seaside coasts of the Pakri islands.

Sudden depth variations visible in the bathymetry map (Fig. 7) were caused by across-track
brightness gradients between multiple CASI flight lines. However, these artifacts were not
important from the benthic habitat mapping point of view as they occurred in waters too deep
for habitat mapping. Such brightness artifacts can be compensated for or at least reduced by
applying brightness gradient correction methods such as the cross-track correction procedure
in ENVI. The procedure should be applied to the individual radiometrically corrected flight lines
prior to geocorrection. In the current case, CASI data were received from the IES that were

Fig. 6 Comparison of modeled water depths obtained by Stumpf et al. bathymetry model and
in situ measured depths.

Fig. 5 (a) End-member spectra of selected substrates used in the detectability calculations and
(b) the depth at which the CASI sensor can no longer differentiate a substrate from optically deep
water. Refer to Fig. 4 for an average Kd .
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already geometrically corrected. Therefore, the cross-track correction procedure was not applied
to the data. Some negative depth values [marked with white in Fig. 7(a)] were also retrieved
by the bathymetry model. These areas were mostly located in extremely shallow (<0.1 m),
near-coastal water.

3.5 Retrieved Bottom Reflectance

The performance of the WCC was evaluated by comparing the corrected spectra with measured
substrates spectra from our spectral library (Fig. 8). The lack of substrate reflectances measured
in situ in the study area impeded a quantitative estimation of WCC accuracy. Therefore, we are
not able to say whether the overall magnitude of retrieved reflectance values was in agreement
with the actual substrate reflectance spectra. Generally, the application of WCC increased reflec-
tance of substrate spectra compared with the surface spectra. Our results showed that there was
a closer agreement between end-member and WCC spectra in the case of shallower depths.
Magnitudes of WCC reflectance spectra started to increase with increasing depth [Fig. 8(a)].
In addition, negative values in blue and red wavelengths were retrieved in the case of benthic
vegetation at depths over 2 m.

To enable better the comparison of spectral shapes, reflectance spectra were standardized
based on the mean and standard deviation of the spectra [Fig. 8(b)]. Spectral shapes of bottom
spectra retrieved by removing water column effects over green macroalgae (Cladophora sp.) and
charophytes (Chara sp.) were consistent with end-member spectra—Chara displaying flatter
green peaks compared with Cladophora. Sand end-member spectra increased in reflectance from
450 to 700 nm without showing any remarkable absorption features, while retrieved CASI sand
spectra exhibited a chlorophyll absorption feature near 675 nm. Spectral shapes of retrieved
higher order vegetation and corresponding end-member Potamogeton differed from each other
to some extent. Reflectance maxima of in situmeasured Potamogeton was shifted toward longer
wavelengths (630 nm) compared with WCC spectra, which showed reflectance maxima near
570 nm. Shapes of retrieved brown algae spectra did not correspond to end-member Fucus spec-
tra. Fucus exhibits peaks near 600 and 650 nm and a shoulder near 580 nm, whereas retrieved
brown algae spectra, similar to green algae, displayed reflectance maxima near 570 nm and
a distinctive drop in reflectance from 570 to 680 nm.

Our results showed that the Maritorena WCC method was unsuccessful for sites deeper than
2 m. In addition, some vegetation spectra (e.g., brown algae, higher order vegetation) were not
retrieved correctly with the current WCC method even in very shallow water (<1 m). This sug-
gested that the WCCmethod was not very useful in optically complex waters, and it was better to
use above water reflectance imagery for benthic habitat mapping.

Fig. 7 Water depth map of the Pakri marine area obtained by Stumpf et al.: (a) bathymetry model
from the atmospherically and MNF corrected CASI image and (b) CASI true color image from
the Pakri study area.
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3.6 Benthic Habitat Mapping

Previous studies16,61 have shown that the spectral signal of the same bottom type varies depend-
ing on the water depth. Therefore, training ROIs for each benthic habitat class were selected from
different water depths.

We used a two-level classification approach. In the first classification step, bare substrate
(sand, gravel, limestone, etc.) was differentiated from benthic vegetation and deep water using
a minimum distance (MD) classification algorithm. This was performed by generating 13 initial
supervised classes (different bottom types at different depths), which were later merged into
the two habitat classes of interest (bare substrate and vegetated bottoms). It was relatively
straightforward to delineate bare substrate as sand exhibited comparatively brighter spectra than
vegetation (Fig. 5). The resulting bare substrate class was masked out from the CASI image.

Fig. 8 Reflectance spectra of different substrates at varying water depths extracted from the water
column corrected CASI image and corresponding endmember spectra from our spectral library.
Absolute reflectance values are displayed in (a) and standardized reflectance values in (b).
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As a second step, a new classification procedure was applied to divide vegetated habitats into
more detailed classes. Once again supervised classification algorithms, such as MD, maximum
likelihood, spectral angle mapper (SAM), etc., were tested. The SAM classification algorithm
provided the best result in vegetation mapping as indicated by the initial accuracy assessment.
Therefore, it was used in the final classification.

ROIs for each vegetation class were selected from multiple depths considering the depth
distribution limits of each substrate class. For example, during the field studies, charophytes
were found only in shallower depths and ROIs for the “charophytes” class were selected from
depths of 0.2, 0.5, and 1.0 m. At the same time, higher order vegetation was found from broader
depth limits, and ROIs for this class were selected from depths of 0.5, 1.0, 1.5, and 2.5 m. The
amount of ROIs was gradually increased for those classes, which showed significant confusion
with other classes after initial classification. Altogether, 32 training ROIs were used (each ROI
corresponds to one pixel, 1 m2), which generated 32 habitat classes. Finally, each habitat class at
various water depths was merged into the single habitat class, resulting in the water depth-in-
dependent benthic habitat map. The benthic habitat map obtained after the two-level classifi-
cation is presented in Fig. 9.

The classification results showed that the bare substrate was widespread in the area between
the Pakri islands and mainland, alternating with dense and sparse higher plants communities.
Dense higher vegetation was also mapped between two Pakri islands, mostly in the depths over
1.5 m. Charophytes were found in shallower waters between islands and on soft sandy shores
near the coast. Field studies indicated that Charophytes were often covered with rather dense
filamentous green algae, particularly on the coast of the mainland. Therefore, it is not surprising
that these areas were classified as filamentous green algae by the classification algorithm.
Brown algae were estimated to occur mainly on the outer sides of the Pakri islands.

The performance of the classification was assessed using the confusion matrix method,
where classified benthic habitats were compared with in situ observed benthic habitat classes.
166 field control points (<3 m water depth) were used for the accuracy assessment, resulting in
the overall accuracy of 80% (Table 3).

The confusion matrix method produces also producer and user accuracies, which report indi-
vidual class accuracies (Table 3). The lowest user accuracy was encountered for the class “sparse
higher vegetation” (50%), meaning that only half of image pixels classified as “sparse higher
vegetation” were actually this habitat class and another half belong to some other habitat class.
It also means that this class was the most overestimated in the Pakri study area. The lowest
producer accuracy was identified for the class “brown macroalgae” (60%), which means that

Fig. 9 Benthic habitat map of the Pakri marine area obtained from the CASI airborne imagery
using supervised classification and seven benthic classes described in Table 1 and Fig. 2.
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60% of pixels identified as “brown macroalga” during the field work were classified to the
correct habitat class. The lowest producer accuracy indicates that the class “brown macroalgae”
was the most underestimated in our study area.

4 Discussion

Hyperspectral remote sensing technology has emerged as a promising tool for studying marine as
well as fresh water benthic environments, but at the same time it is subject to several limitations.
Benthic information can be retrieved only up to some maximum depth limit that depends on both
environmental and instrumental factors.62 One of the key factors influencing the maximum depth
from which the benthic information can be detected is the optical properties of the water column.
Optical properties in turn are a function of the concentration of water column constituents.

The results obtained by different researchers in clear oceanic waters have demonstrated that
both benthic substrate and water depth can be retrieved with high accuracy from remotely sensed
hyperspectral imagery. The extensions of these techniques to complex waters have still had less
attention. Moreover, the depth limits to which benthic substrate and bathymetry mapping is prac-
tical in such waters is still poorly defined. This study aimed at retrieving information about
benthic substrates and bathymetry in the complex Baltic Sea waters and defining limits for
potential benthic detection.

Various methods for atmospheric correction have been used by different authors to compen-
sate for the effect of atmosphere on remote sensing images. Atmospheric correction may be
applied using a “deep water” subtraction method, by collecting spectral information from the
image (scene-based empirical approach) or by modeling radiation transmission through atmos-
phere. We used the FLAASH atmospheric correction method, which produced reliable water
reflectance spectra. Corrected reflectance spectra generally matched the shapes of in situ mea-
sured spectra.

Some authors have shown that the implementation of WCC can increase benthic substrate
classification accuracy.63,64 Moreover, accurate quantification of bottom reflectance is essential
for establishing relationships between remote sensing signals and benthic features of interest. For
example, the elimination of the overlying water column influence is required to quantitatively
determine benthic vegetation absolute density, biomass, LAI, and primary production. However,
the success of accurate substrate spectral retrieval in turbid waters is more dependent on the
accuracy and precision of the reflectance, attenuation, and depth measurements than it is in clear
waters.65

Table 3 Classification accuracy of the hyperspectral CASI image.

Ground reference

Bare
substrate

Filam.
green
algae

Dense
higher
veget. Charophytes

Brown
macroalgae

Sparse
higher
veget. Total

User
accuracy

(%)

Map
classes

Bare substrate 20 0 1 0 0 1 22 91

Filam. green algae 0 22 1 2 2 0 27 81

Dense higher veget. 0 2 49 2 7 0 60 82

Charophytes 2 1 2 15 1 0 21 71

Brown macroalgae 0 2 3 0 21 0 26 80

Sparse higher veget. 1 2 1 0 1 5 10 50

Total 23 29 57 19 32 6 166

Producer accuracy (%) 87 76 86 79 60 83

Note: overall accuracy = 80%.
Bold values indicate the number of correctly classified pixels.
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Validation of the WCC is desirable using in situ bottom reflectance; however, it can be dif-
ficult to measure in the field.44 Therefore, this kind of comparative information is very limited in
the literature.15,23,27,66 In this study, the performance of the Maritorena model for WCC was
estimated by comparing the corrected bottom spectra with measured substrate spectra from our
spectral library. Our results showed that the reflectance magnitude of WCC spectra started to
increase with increasing depth. Vegetation spectra were highly overcorrected in green spectral
regions at depths over 2.0 m, whereas blue and NIR spectral regions showed negative values at
those depths. Nonetheless, it seems that the WCC model succeeded in retrieving the spectral
shape for some of the substrates but failed to retrieve their correct magnitudes. The latter was
also concluded by Zoffoli et al.44

Shallow sea areas, where water depth does not exceed 2 to 3 m, are widespread in Estonian
coastal waters. The Maritorena model managed to retrieve spectral shapes of some substrates
from water depths down to 2 to 3 m. Retrieving benthic information from such a depth would be
a great benefit in coastal sea studies. However, the model failed to retrieve the spectral shapes of
brown macroalgae and higher order vegetation even in very shallow water. Therefore, it was
concluded that the currently applied WCC method was not very useful in optically complex
waters.

The depth limit for benthic substrate detection varies depending on the water column optical
properties and the magnitude of substrate reflectance. Kd is one of the most important optical
properties for characterizing the water column. In clear waters, Kd shows low attenuation coef-
ficient values in blue and green wavelengths and increases exponentially in red and NIR spectral
regions because of the increasing absorption of pure water at these wavelengths.67,68 Generally,
underwater habitats cannot be detected by wavelengths past 680 nm due to the great attenuation
of pure water.39 In our turbid coastal waters, the attenuation is high both in NIR and blue spectral
regions because of the absorption of water and elevated levels of dissolved and particulate mat-
ters in the water column, respectively. The lowest Kd values occurred in the green spectral region
between 500 and 600 nm, allowing for the greatest detectability limits for retrieving information
about benthic habitats.

The magnitude of substrate reflectance greatly influences detectability limits—the brighter
the substrates the further the depth threshold. In our case, the depth threshold for sand was
∼7.5 m at the wavelengths of furthest light penetration, whereas for higher plants and brown
macroalgae it was ∼3.0 m. However, the value ofKd changes together with the concentrations of
CDOM, suspended sediment, and phytoplankton. If the concentrations of water column con-
stituents differ significantly from the concentrations measured in this study, the detectability
depth limits in the same study area may be somewhat different.

Coastal uses around the Baltic Sea have evolved significantly over recent decades. Fisheries,
aquaculture, shipping, offshore wind farms, gas pipes, coastal defense systems, extraction of
building materials, tourist industry, and marine conservation all compete for the marine space.
To enable a sustainable coastal zone management, we need to increase knowledge on the Baltic
Sea marine habitats, which demands large-scale habitat classification and mapping. In this study,
a benthic habitat distribution map was retrieved from the CASI sea surface reflectance image.
Although our initial aim was to first apply WCC to CASI sea surface spectra to retrieve bottom
reflectance and then classify CASI bottom reflectance image, it turned out to be impractical due
to the unsatisfied WCC results. As such, we did not see the benefits of applying the classification
procedure to the CASI bottom reflectance image.

The accuracy assessment showed relatively high classification accuracy (80%) when limited
to the water depth of <3 m. However, the map producer’s knowledge of the study area helped to
decide whether it is necessary to add or remove training ROI’s to produce a more accurate
benthic habitat map. Therefore, the quality of classification maps is determined by the selection
of training regions.

The knowledge we gained from this study assures that our aim in further classification assign-
ments should be: (1) to remain at the depth limit of 3 m while mapping different submerged
vegetation classes in the Baltic Sea and (2) to expand the depth limit to 6 to 7 m while aiming at
differentiating bright unvegetated substrates from deep water.

Blue spectral bands are used for bathymetry mapping in optically clear waters as this spectral
region allows for the furthest distance of light penetration.33,65,69 The Baltic Sea is an optically
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complex water body with high concentrations of CDOM characterized by strong absorption in
the blue spectral region. Therefore, the light penetration is limited in the blue spectral range and
optimum wavelengths for bathymetry mapping should be shifted toward longer wavelengths.
It has been concluded that a blue–green band ratio gives poor correlations with water depths in
the Baltic Sea, moderate correlations have been obtained using green–red spectral regions, and
the strongest correlations have been achieved using green–yellow spectral regions.37 Therefore,
a green–yellow band ratio was also used in this study for bathymetry retrieval.

Bathymetry retrieval from remote sensing images relies on the physical basis that changes in
spectral radiance reflected from the water bottom are directly related to the water depth changes.
Beyond a certain depth, however, any additional increases in depth lead to changes in benthic
reflectance that is too small to be resolved by the imaging system.62 Maximum depth for bathym-
etry detection was not calculated in this study, but it can be calculated using equations provided
in Refs. 59 and 62. Instead, the depth limit to which bathymetric mapping is practical in our
study site was estimated from validation plots. Validation plots between in situ measured depths
and modeled water depths indicated when depth retrieval performance began to deteriorate. This
study indicated that the used bathymetry model started to slightly underestimate depths in water
deeper than 3.5 m (Fig. 8). This indication was supported by the earlier results, which showed
that the underestimation of water depths is evident in the Baltic Sea near-coastal areas and bays
in waters over 3.0 to 3.5 m.37 This depth limit can be extended to depths over 4.0 m in open sea
areas.37 This means that, beyond this depth limit, the bathymetry is retrieved with substantially
lower accuracy.

5 Conclusion

Different preprocessing methods are used in remote sensing image interpretation to allow for
the highest level of information extraction. Sea surface reflectance was retrieved from the
CASI hyperspectral imagery after completing three image correction steps: atmospheric
correction, MNF transform, and glint correction. Retrieved CASI sea surface reflectance
spectra generally matched the magnitudes and shapes of in situ measured spectra. At the same
time, the applied WCC algorithm did not yield accurate bottom reflectance spectra in our
study area.

One of the goals of this study was to assess the benthic substrate detectability limits in the
complex Baltic Sea waters. The depth limit for benthic substrate detection depends on the
water column optical properties and the magnitude of substrate reflectance. Results of this
study showed that the depth threshold for the brightest substrate (sand) was ∼7.5 m at the wave-
lengths of furthest light penetration, 5.0 m for brighter vegetation (green macroalgae), and 3.0 m
for darker vegetation (higher plants and brown macroalgae). The depth limit to which bathy-
metric mapping is practical in the Baltic Sea coastal waters was estimated to be around 3.5
to 4.0 m.

Another goal of this study was to generate benthic habitat and bathymetry maps from
hyperspectral CASI image, as both are commonly required by scientists and managers. It has
been shown that the implementation of the WCC can increase benthic habitat classification
accuracy. However, our results showed that this is not the case in optically complex waters.
The overall accuracy of the retrieved benthic habitat map from the Pakri study area was
80%, and this was obtained using atmospherically and glint corrected CASI imagery without
the WCC. Validation of retrieved bathymetry map revealed an R2 value of 0.88 with an RMSE
of 0.32 m.
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