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Abstract. This paper offers improvements to adaptive matched filter (AMF) performance by
addressing correlation and non-homogeneity problems inherent to hyperspectral imagery
(HSI). The estimation of the mean vector and covariance matrix of the background should be calcu-
lated using “target-free” data. This statement reflects the difficulty that including target data in esti-
mates of the mean vector and covariance matrix of the background could entail. This datacould actas
statistical outliers and severely contaminate the estimators. This fact serves as the impetus for a
2-stage process: First, attempt to remove the target data from the background by way of the employ-
ment of anomaly detectors. Next, with remaining data being relatively “target-free” the way is
cleared for signature matching. Relative to the first stage, we were able to test seven different
anomaly detectors, some of which are designed specifically to deal with the spatial correlation
of HSI data and/or the presence of anomalous pixels in local or global mean and covariance estima-
tors. Relative to the second stage, we investigated the use of cluster analytic methods to boost AMF
performance. The research shows that accounting for spatial correlation effects in the detector yields
nearly “target-free” data for use in an AMF that is greatly benefitted through the use of cluster analy-
sis methods. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI [DOI: 10.1117/1.JRS.7.073547]
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1 Introduction

Hyperspectral imagery (HSI) is a method used to collect contiguous data across a large swath of
the electromagnetic spectrum. This is accomplished by using a specialized camera mounted on
an aircraft or satellite to record the magnitude of the bands within the collected wavelengths of
each pixel within the area of interest. The number of pixels in a hyperspectral image depends on
the resolution of the camera and the size of the area being imaged. The number of bands recorded
is 200 or more,' and typically spans the range from ultraviolet to the infrared regions of the
electromagnetic spectrum. The vast amount of data contained in HSI affords an excellent oppor-
tunity to detect anomalies using multivariate statistical techniques, as each material reflects indi-
vidual wavelengths of the spectrum differently.’

Target detection algorithms can be divided into two groups: anomaly detection algorithms
and classification algorithms.! Anomaly detection algorithms do not require the spectral signa-
tures of the anomalies that they are attempting to locate. A pixel is declared an anomaly if its
spectral signature is statistically different than the model of the local or global background that it
is being tested against. This implies these algorithms cannot distinguish between anomalies.
They only make a decision on whether a pixel is anomalous; hence, the application can be con-
sidered a two-class classification problem.' Classification algorithms attempt to identify targets
based on their specific spectral signature; however, to accomplish this, they require additional
information in the form of a spectral library.®

Eismann et al.* claim that the mean vector and covariance matrix required for anomaly clas-
sification can be estimated globally from the entire image on the assumption that there are a small
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number of anomalies in the image and this has an insignificant effect on the covariance matrix.
This statement is contested in Smetek,” where the potential ill effects of a small number
of anomalies on the estimation of the covariance matrix are detailed. Similarly, Manolakis
et al.’® state that:

Possible presence of targets in the background estimation data lead to the corruption of background
covariance matrix by target spectra. This may lead to significant performance degradation; therefore,
it is extremely important that, the estimation of 4 and } should be done using a set of “target-free”
pixels that accurately characterize the background. Some approaches to attain this objective include:
1. run a detection algorithm, remove a set of pixels that score high, recompute the covariance with the
remaining pixels, and “re-run” the detection algorithm and 2. before computing the covariance,
remove the pixels with high projections onto the target subspace.’

This article demonstrates that classification algorithms, such as the adaptive matched filter
(AMF), may be improved by addressing spatial correlation and homogeneity problems inherent
to HSI that are often ignored in practice. We begin by showing the benefit of using an anomaly
detector to remove potential anomalies from the mean vector and covariance matrix statistics, as
suggested by Manolakis et al.’ In addition, we show further benefits by addressing the nonho-
mogeneity of HSI through the use of cluster analysis prior to classification.

The remainder of this article is organized as follows. Section 2 reviews the basics of clas-
sification, describes the AMF as well as AMF variants used in this research, and discusses atmos-
pheric compensation. Section 3 briefly outlines the seven anomaly detectors implemented.
Section 4 discusses clustering—more specifically, the X-means algorithm. Section 5 details the
methodology implemented. Section 6 presents the results of the experiments. Finally, Sec. 7
presents our conclusions.

2 Classification

This section describes the AMF classification algorithms used in this research. Three new var-
iants to the AMF are introduced that have the ability to classify with improved accuracy by
addressing correlation and homogeneity problems inherent to HSI. Elementary atmospheric
compensation is also discussed, detailing a method to transform a spectral library into the image
space to allow for proper classification.

2.1 Classification Algorithms

The goal of an HSI statistical classification algorithm is to determine whether a test pixel is likely
made of the same material as a target pixel. Define the conditional probability density of the test
pixel, x, as realized under the alternative hypothesis, H, (same as the target pixel), as f,(x|H,);
and the conditional probability density of test pixel, x, as realized under the null hypothesis, H,,
(not the same as the target pixel), as fy(x|Hy). The corresponding likelihood ratio test is

fll X H(I

F(x) = M (D
Jo(x[Ho)

If F(x) is greater than the user-defined threshold, ¢, then the null hypothesis is rejected, meaning

that the test pixel is considered a target pixel; otherwise, the null hypothesis cannot be rejected,

implying that the test pixel is not considered a target pixel.® That is, if F(x) > ¢, the test pixel is

considered a target pixel, or if F(x) <, the test pixel is not considered a target pixel.

The classification algorithm utilized in this article is the full-pixel AMF as defined by
Manolakis and Shaw.” The algorithm assumes the target spectra and background spectra
have a common covariance matrix, X:

sTE 1x
AMF = ————. 2
sTE s &
Additionally, it is assumed that the global mean is removed from the estimate of target spectral
signature s and test pixel spectral signature x. The spectral signature of the target of interest is
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determined from a spectral library or the mean of a sample of known target pixels collected under
the same conditions.’

2.2 Variants of the AMF

The standard AMF and three variants of the AMF are implemented in this research. The first
method is the standard AMF as described above, where the mean vector and covariance matrix
are taken from the entire image. The first variant, called robust AMF, is suggested by the quote
from Manolakis et al.® in the Introduction. In this method, an anomaly detector analyzes the
image and then the mean vector and covariance matrix are estimated from the image without
the detected anomalies. The second variant is referred to as clustered AMF. In this method,
anomalies are removed as in robust AMF, and then the image is clustered without the detected
anomalies. Each of the clusters yields a mean vector and covariance matrix estimate. Since a
target pixel may be surrounded by pixels of various types (e.g., grass, trees, etc.), the cluster most
represented in the collection will be referred to as the modal class The corresponding background
statistics for the pixels to be classified are determined through the modal class of its neighbors. A
similar idea has been proposed in anomaly detection.® Due to the time-consuming nature of
determining which cluster a pixel is located in, a third variant, called largest cluster AMF, is
developed. This method removes the anomalies and clusters the resulting data as is done in
clustered AMF. However, the mean vector and covariance matrix for the pixels to be classified
are estimated from the single largest cluster of data in the image. Table 1 is provided to show the
source of mean vectors and covariance matrices for the implemented AMFs.

2.3 Atmospheric Compensation

Spectral signature matching within HSI typically incorporates a spectral library consisting of
ground-measured reflectance data from objects of interest. The difficulty with spectral signature
matching is that hyperspectral images are collected using a sensor that collects pupil-plane radi-
ance, which includes reflected and radiated energy as well as atmospheric distortions. Before
spectral signatures from an image can be compared to target signatures, atmospheric compen-
sation must be performed to bring the spectral library from the reflectance space to the pupil-
plane radiance space. Since radiance data is a function of atmospheric conditions, which vary
greatly by collection time, the spectral library must be processed with each image separately.’

Linear and model-based approaches are available to transform data from the reflectance
space to the radiance space. Model-based approaches, such as MODTRAN, ' require prior
knowledge about the scene collection. Precise computation of radiance from reflectance values
is elusive. A linear method called the empirical line method (ELM) was chosen for its simplicity
and its ability to work well in controlled scenes such as the ones used here.” Although more
computationally intensive atmospheric compensation methods are available, ELM, the normal-
ized difference vegetation index (NDVI), and the bare soil index (BI) offer a way to compute a
linear, and intuitively understandable, transformation between reflectance to radiance without
complicated formulas, models, or nonlinear methods. Additionally, ELM is a reputable and
well-known method; it is noted as offering simplicity and quality in controlled environ-
ments.**!1~1* This research is not focused on developing or testing new atmospheric compen-
sation methods; rather, it is focused on developing a new classification method.

Table 1 Source of mean vectors and covariance matrices for the implemented AMFs.

Source of mean vector/covariance matrix

Standard AMF Entire image

Robust AMF “Target-free” data

Clustered AMF Corresponding cluster of “target-free” data
Largest cluster AMF Largest cluster of “target-free” data
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Linear methods assume that atmospheric content is a linear addition where the pupil-plane
radiance is a function of reflectance with a scaling multiplier and offset:

Li = ap; + b, (3)

where p; is a reflectance signature to be transformed into the L; radiance space with gain, a, and
offset, b, as calculated by
L,-L
a=-2"1 4)
P2—P1

L - L
b — 172 2P1 ’ (5)

P2—P1

where p; and p, are known reflectance signatures from the spectral library, and L; and L, are the
corresponding radiance measurements from the scene. Linear methods are comprised of two
general types: methods such as ELM, which require known objects of interest to be within
the spectral library and located within the image; and vegetation normalization methods,
which use expected radiance and reflectance of vegetation in place of specific known objects.
Both permit atmospheric compensation to be conducted for the remaining objects in the spectral
library.’

For situations lacking prior knowledge of scene content, methods such as vegetation nor-
malization are appropriate, where the linear method in Eq. (3) is applied with radiance measure-
ments for materials expected in the scene. The NDVI and the BI are two methods that allow
atmospheric compensation to be performed depending on the scene landcover.’

2.3.1 Normalized difference vegetation index

NDVI® is a method that is used to determine whether a pixel within a hyperspectral image is
green vegetation. It does this by comparing the radiance of the near infrared (NIR) spectrum to
the red spectrum

NIR — red
NDVI = ———, 6
NIR + red ©)

where red corresponds to the 600 to 700-nm bands and NIR corresponds to the 700 to 1000-nm
near-infrared bands.’ In this research, we used bands corresponding to 660 nm for red and
860 nm for NIR.

NDVT is calculated for each pixel within an image, and pixels with the highest scores can be
used as vegetation within the radiance space. Hence, the vegetation in the spectral library can be
used as p, in Egs. (4) and (5), and the average spectral signature of the pixels with the highest
NDVI score can be used as L,. L; can be determined from the shadows within an image which
can be estimated by the spectral signature, which is calculated by taking the minimum value from
each band in the image across all pixels. Finally, p; is set as a vector of zeros, and interpreted as
the ideal minimum radiance in the image.’

2.3.2 Bare soil index

BI'® is a method similar to NDVI; however, it is designed for bare soil within a hyperspectral
image. It can be employed in the same fashion as NDVI, assuming that there is a soil meas-
urement within the spectral library:

(SWIR + red) — (NIR + blue)

Bl =
(SWIR + red) + (NIR + blue) ’

)

where blue corresponds to the 450 to 500-nm bands, red corresponds to the 600 to 700-nm
bands, NIR corresponds to the 700 to 1000-nm bands, and short wave infrared (SWIR)
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corresponds to the 1150 to 2500-nm SWIR bands.” In this research, we used the band corre-
sponding to 470 nm for blue, 660 nm for red, 860 nm for NIR, and 2280 nm for SWIR.

3 Anomaly Detection Algorithms

To apply an anomaly detection algorithm to hyperspectral data, first the atmospheric absorption
bands should be removed and the data cube must be reshaped into a data matrix. The removal of
the absorptions bands in the images employed in this research results in the retention of 145 of
the 210 original bands. HSI data is typically stored in a three-dimensional matrix, referred to as
an image cube or a data cube, with the first two dimensions of the matrix being the location of the
pixel in the image and the third dimension being the magnitude at each of the recorded electro-
magnetic bands. Therefore, it can be viewed as a stack of images, with each image representing
the intensity of a given band. An n X p data matrix is generated by reshaping the data cube into a
matrix with the first dimension containing all n pixels in the image and the second dimension
containing all p bands. After the data is in the proper form, principal component analysis (PCA'”
is employed as a data reduction tool. In all the algorithms except autonomous global anomaly
detector (AutoGAD), the user is left to determine the number of principal components (PCs) to
retain in order to reduce the dimensionality of the data.

3.1 RX Detector

The RX algorithm, developed by Reed and Yu,'® detects anomalies through the use of a moving
window. The pixel in the center of the window is scored against the other pixels in the window.
The window is then shifted by one pixel and the process is repeated until each pixel, x, has
received an RX(x) score based on

Rx() = (=) | (1) T+ (g ) = | e @

where N is the number of pixels in the window and y and  are the estimated mean and covari-
ance matrix of the data within the window. Pixels are considered anomalous if their RX score is
greater than a chi-squared distribution with corresponding significance level, @, and N — 1
degrees of freedom.

3.2 lterative RX Detector

The iterative RX (IRX) detector was introduced by Taitano et al.!” as an extension to the RX
detector in an attempt to mitigate the effects that anomalies have on mean vector and covariance
matrix calculations. The algorithm runs RX in an iterative fashion, each time removing pixels
flagged in the previous iteration as anomalous from the mean vector and covariance statistics
used to calculate the RX scores. This process continues until the set of anomalies in the previous
iteration matches the set from the current iteration or the maximum number of iterations has been
completed."”

3.3 Linear RX and lterative Linear RX Detectors

The linear RX (LRX) and iterative linear RX (ILRX) detectors® function in the same manner as
the RX and IRX except that a vertical line of data is used as opposed to a window. If the number
of pixels selected for the line size is larger than the image, then pixels are taken from the bottom
of the previous column and the top of the subsequent column. These methods are better than the
previously described methods because they increase the average distance between the test pixel
and the pixels used to estimate the background statistics, thereby decreasing the effects of cor-
relation due to spatial proximity.*’
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3.4 Autonomous Global Anomaly Detector

The AutoGAD?! is an independent component analysis (ICA)**** based detector that is proc-
essed in four phases. Phase I reduces the dimensionality of the data through PCA", using the
geometry of the eigenvalue curve to determine the number of PCs to retain. Phase II conducts
ICA on the retained PCs from Phase I via the FastICA algorithm.>* Phase III determines the
independent components (ICs) that potentially contain anomalies using two filters: the potential
anomaly signal-to-noise ratio and the maximum pixel score. Phase IV smooths the background
noise in the ICs selected in Phase III using an adaptive Wiener filter” in an iterative fashion, and
then locates the potential anomalies using the zero bin method described by Chiang et al.?®

3.5 Support Vector Data Description

Support vector data description (SVDD) was originally applied to HSI data by Banerjee et al.?”*®

SVDD is a semi-supervised algorithm that requires a training set of background data. Since HSI
images are usually assumed to contain few anomalies, the training set is generated by randomly
selecting pixels from the image. The minimum volume hypersphere about the training set,
S = {x:]|x — a||* < R?}, is then calculated with center a and radius R. The hypersphere is deter-
mined through constrained Lagrangian optimization that simplifies to

SVDD(y) = R? = K(y.y) + 2 _a:K(y.x;), ©)

where K(x,y) is the kernel mapping defined by
K(x.y) = exp(=|lx - y[*/0?), (10)

and y is the pixel of interest, and ; are the weights or support vectors, and ¢2 is a radial basis
function parameter used to scale the size of the hypersphere. Finally, pixels that have a SVDD
score larger than a user-defined threshold are considered anomalies.?”-*®

3.6 Blocked Adaptive Computationally Efficient Outlier Nominators

Blocked adaptive computationally efficient outlier nominators (BACON) is a statistical outlier
detector created by Billor et al.” It attempts to locate outliers in a data set through the use of
iterative estimates of the model with a robust starting point. The algorithm is computationally
efficient, regularly requiring fewer than five iterations to converge, so it is applicable to HSI data.
The basic idea is to start with a small subset of outlier-free data and iteratively add blocks of data
to the data set until all data points not considered outliers are in the data set. The final data set is
then assumed to be outlier free and thus can be used to generate robust mean vector and covari-
ance matrix estimates.”’

The BACON algorithm begins by selecting an initial basic subset of data with m = cp data
points with the smallest Mahalanobis distance, where in the case of HSI p is equal to the number
of bands within image and ¢ = 4 or 5, as suggested by Billor et al.,”” so long as m > n where 7 is
the number of pixels in the image. Next, the Mahalanobis distances are calculated for each of the
pixels, remembering that 4 and X are now the mean vector and covariance matrix of the basic
subset. A new basic subset of all of the pixels with distances less than cnpr;(;a /2 is selected,
where ;(fm /n is the 1 — (a/n) significance level of a chi-squared distribution with p degrees
of freedom and cp, = ¢y, + €y 8 the correction factor, where

p+1 2

e =1+ (11)
h—r

Cpr = Max {0, Eh—kr))}’ (12)
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(n+p+1)
—

h= (13)

Here, r is the size of the current basic subset, n is the number of observations, or pixels, and p
is the dimensionality of the data, or bands. If the size of the new basic subset is the same size of
the basic subset from the previous iteration, the algorithm is terminated. Otherwise, a new basic
subset is calculated.”’

4 Clustering

Cluster analysis is a multivariate analysis technique for grouping, or clustering, a dataset into
smaller subsets known as clusters. The goal of cluster analysis is to maximize the between-cluster
variation while minimizing intra-cluster variation.’® K-means is a clustering technique where the
data is split into k user-defined number of clusters. The K-means algorithm is initialized by ran-
domly selecting k starting points, or cluster centers. Next, arandom data point is selected and added
to the nearest cluster. The corresponding cluster center is then updated with the new data, allowing
for currently clustered data to move into other clusters. This process is repeated until all the data
points are in one of the k clusters and no data points are moved in an iteration of the algorithm.*°

The difficulty when using a clustering algorithm such as K-means is selecting k, the number
of clusters. X-means is a clustering algorithm based upon K-means and has the advantage of
being able to select the number of clusters from a user-defined range as opposed to a single value.
This is accomplished by running K-means multiple times, splitting each of the original clusters
in two, and scoring each possible subset of full and partial clusters using the Bayesian infor-
mation criterion (BIC) to determine the optimal clustering.®!

Rather than supplying the X-means algorithm the specific number of clusters as in
K-means, the user defines a range of possible clusters, k-lower and k-upper. In this research,
the X-means algorithm was implemented with k-lower and k-upper set to 3 and 10, respectively.
The algorithm begins by running K-means on the data set with k equal to k-lower. Next, each of
the original k clusters are split in two using K-means, with k equal to 2. Then all 2* possible
combinations of whole clusters and split clusters are analyzed for the corresponding BIC scores.
Then k is incremented and the process is repeated until k-upper has been analyzed. The algorithm
then returns the k cluster centers with the highest corresponding BIC score, and K-means is run
one last time using the returned cluster centers as the initial starting points.>’

5 Methodology

The images used in this research come from the hyperspectral digital imagery collection equip-
ment*? sensor for the Forest Radiance I and Desert Radiance II collection events in 1995. The
images were collected with 210 bands between 397 and 2500 nm and the ground reflectance data
was collected with 430 bands between 350 and 2500 nm. The collection names allude to images
consisting of forest and desert scenes. Nine images were employed in this research: six forest
images and three desert images (as shown in Fig. 1 and with image details displayed in Table 2).
Atmospheric compensation was performed with NDVI for forest images, and BI was applied for
the desert images due to the lack of vegetation. The targets (which constitute the anomalies of
interest herein) in the images consists of vehicles, various colored fabrics and tarps, and numer-
ous types of metals and other building materials.

The first step was to analyze an image using one of the seven anomaly detectors described in
Sec. 3: RX, IRX, LRX, ILRX, AutoGAD, SVDD, or BACON. Each algorithm has user-defined
settings that influence the algorithms’ performance. In these experiments, the RX detectors and
SVDD used the best settings as reflected in Williams et al.,” the settings for AutoGAD were
taken from Johnson et al.,>' and the settings for BACON were taken from Billor et al.”’ The
anomalies detected by the anomaly detector were used twice: first, the anomalies were removed
from the image to calculate a robust mean vector and covariance matrix, and second, the anoma-
lous pixels served as the test pixels to be classified using one of the four AMF variants described
in Sec. 2.2: standard AMF, robust AMF, clustered AMF, and largest cluster AMF.
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2F 4F 5F

Fig. 1 Hyperspectral images.

The following steps were performed to classify anomalies. First, the spectral library, con-
sisting of 30 objects for forest images and 34 objects for desert images, was transformed
from reflectance space to radiance space using NDVI or BI atmospheric compensation depend-
ing on the image scene, as depicted in the bottom of Fig. 2. Next, one of the seven anomaly
detectors then analyzed the image for anomalous pixels, as shown in the top of Fig. 2. Pixels
below the anomaly detector threshold (7)) are classified as background. Pixels above T are
classified as anomalies and are used as the pixels to be classified by the AMFs. The mean vector
(1) and covariance matrix (") are estimated using the appropriate set of data for the AMF vari-
ant. The standard AMF uses y and > from the entire image, the robust AMF uses u and > from

Table 2 Hyperspectral image data.

Image Size Total pixels Anomalous pixels Anomalies Unique targets
1F 191 x 160 30,560 994 10 5
2F 312x 152 47,424 281 30 9
3F 226 x 136 30,736 96 20 11
4F 205 x 80 16,400 75 29 12
5F 470 x 156 73,320 440 15 20
6F 355 x 150 53,250 976 45 10
1D 215 x 104 22,360 490 46 22
2D 156 x 156 24,336 417 4 3
3D 460 x 78 35,880 405 12 12
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Fig. 2 Classification experimental process graph.

the image without the detected anomalies, and the clustered AMF and largest cluster AMF
use p and ). from the appropriate cluster of data, as determined by the X-means
algorithm. Finally, the data is processed through the classifier, and pixels below the classifier
threshold (7',) are classified as background and pixels above T, are classified as appropriate
target types.

In order to generate receiver operating characteristic (ROC)—like curves®® for each AMF/
anomaly detector pair across all nine test images, the following methodology was employed.
Each anomaly detector was run across a range of anomaly detector thresholds (77),
i=1,2,...,19 where T} =0.01, T""' =T + A}, and A = 0.005. The pixels flagged as
anomalous are then processed through the four AMFs. Each target in the spectral library is com-
pared to a pixel of interest, and the target type with the largest resulting AMEF score is declared
given its score is above the AMF threshold (T ), j=1,2,...,100 where Té =0.01,
75" =T+ A,, and A, = 0.01. The thresholding implemented in this research is created
by finding the range of all the AMF scores corresponding to the target type with the largest
resulting AMF score and normalizing them between 0 and 1 to allow for consistency
among the different AMFs within an image. When a threshold is selected, any pixel with an
AMF score less than the threshold is classified as background. Analyzing each of the different
detector thresholds across all four of the AMFs, while allowing Té to vary across its range of
possible values, enumerates all combinations of T and T%.

As the images are processed, a 2 X 3 confusion matrix, as displayed in Table 3, was generated
for each T, T, image combination, denoted CT, 7 (k), where i and j represent specific threshold
values and k is the image of interest. The confusion matrix is comprised of two sections to allow
for the scoring of every pixel in the image. The anomaly detector section reflects the declaration
of a test pixel as background or the passing of the pixel to be classified. Relative to the detector
declaration of background, there are false negatives (FNs) and true negatives (TNs). The
anomaly classifier section then reflects the ultimate classification of the pixels classified as
anomalous by the anomaly detector.

After each of the nine images are processed, new 2 X 3 confusion matrices are generated that

consist of the sum across all nine images for each C* - combination defined by
172

Table 3 2 x 3 Confusion matrix.

Anomaly detector Anomaly classifier
Background Target Background
Target False negative (detector) True positive (classifier) False negative (classifier)
Background True negative (detector) False positive (classifier) True negative (classifier)
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TPF

I
CTi T/ = Z CTi T; (k)a (14)
k=1

where / is the number of images analyzed, here I = 9. Below, the true positive fraction (TPF)
(classifier) versus false positive fraction (FPF) (classifier) data point for each CT’i 7j Was plotted
for a given anomaly detector—anomaly classifier combination, and the convex hull of the result-
ing data is interpreted as a rough ROC curve, as is shown notionally in Fig. 3, where the circles
are data points and the line represents the ROC curve.

6 Results

The four AMFs and the seven anomaly detectors were scored to produce ROC curves as
described in Sec. 5, with the results shown in Figs. 4 and 5. Each figure contains separate graphs
of classification performance generated from each anomaly detector. Figure 4 shows the ROC
curves for the full process (detection plus classification). This means taking into account the full
2 x 3 confusion matrix, implying that

TP
TPF = ¢ (15)
TP + FN¢ + FNp
FP
FPF ¢ (16)

~ FPo + TNg + TNy,

where the subscript C and D denote classifier and detector, respectively. Note the low TPF
and extremely small FPF come from the fact that nine images with a total of 334,226 pixels
were analyzed in the process and these statistics are biased downward by a large number of
FNp and TNp. The key insight to be gained from these ROC curves is that in all cases, the
variants outperform the standard AMF. Furthermore, the clustering methods enhance the robust
AMF.

To get a better visualization of the data, a set of conditional ROC curves were created.
Figure 5 displays the ROC curves which account for the performance of the AMF given detec-
tions, implying that

TP

TPF=—— ¢
TP + FNc

17)
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Again, we see the variants outperform the standard AMF, and in most cases, the clustering

methods enhance the robust AMF.
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7 Conclusions

This article demonstrates improvements to AMF performance by addressing correlation and
nonhomogeneity problems inherent to HSI data, which are often ignored when classifying
anomalies. The standard AMF and three variants were employed along with seven different
anomaly detectors utilized prior to classification. Manolakis et al.® state the estimation of
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the mean vector and covariance matrix should be calculated using “target-free” data, generating a
robust AMF. Here, it was shown that accounting for spatial correlation effects in the detector
yields nearly “target-free” data for use in an AMF that is greatly improved through the use of
cluster analysis methods.
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