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Abstract. To achieve a full-aperture, diffraction-limited image, a telescope’s segmented primary mirror must be
properly phased. Furthermore, it is crucial to detect the piston errors between individual segments with high
accuracy. Based on the diffraction imaging theory, the symmetrically shaped aperture with an arbitrarily posi-
tioned entrance pupil would focus at the optical axis with a symmetrical diffraction pattern. By selecting a single
mirror as a reference mirror and regarding the diffraction image’s center as the calibration point, a function can be
derived that expresses the relationship between the piston error and the distance from the center of the inference
image to the calibration point is linearity within one-half wavelength. These theoretical results are shown to be
consistent with the results of a numerical simulation. Using this method, not only the piston error, but also the
tip–tilt error can be detected. This method is simple and effective; it yields high-accuracy measurements and
requires less computation time. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution
or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.54.2.025116]
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1 Introduction
The segmented primary mirror is one of the best choices
for constructing a large telescope. The world’s largest
telescopes—e.g., Keck, HET, LAMOST, TMT—all adopt
segmented primary mirrors. According to this design, the pri-
mary mirror is composed of a number of hexagonally shaped
aspheric mirrors. Compared with the monolithic primary
mirror telescope, the segmented primary mirror must be
properly phased in order to achieve a diffraction-limited
image. Furthermore, it is crucial to detect piston errors
among individual segments with high accuracy. Techniques
for detecting the piston error have been developed and suc-
cessfully used on Keck, HET, JWST, etc.1,2These include the
narrow-band phasing algorithm,3 the broadband phasing
algorithm,4 the phase discontinuity sensing (PDS) algorithm,
and the dispersed fringe sensing (DFS) algorithm, among
others.5,6 The optical systems of the first two algorithms
are comparatively simple though they require more calcula-
tion time. On the other hand, the detection accuracies of
the last two algorithms are relatively high, but the optical
configuration is more complex. Other detecting methods
have also been studied.

In this paper, we propose a detecting method—based on
the theory of diffraction—that modifies the method for meas-
uring the phase error proposed by Chanan et al.3,7–9

Our method proceeds by selecting one of the segmented mir-
rors as a reference plane and its diffraction image center as a
calibration point; the relation between the piston error
(between two adjacent segmented mirrors) and the distance
from the center of the interference image to the calibration
point can then be derived. When we obtain the interference
image center with piston error, the piston error between two
adjacent segmented mirrors can then be calculated.

Numerical simulations are carried out, and the results are
shown to be consistent with the theoretical calculation
results. This detection method is simple, efficient, and highly
accurate.

This paper is arranged as follows. First, we deduce an
expression for the diffraction image of a rectangular aperture
with an arbitrary position for the entrance pupil. Next, we
analyze the interference image of two adjacent rectangular
apertures with piston error, and deduce the relation between
the piston error (between two adjacent segmented mirrors)
and the position of the center of the interference image.
At last, numerical simulations are carried out in order to
verify the theoretical equations.

2 Theory

2.1 Diffraction Image of a Rectangular Aperture with
an Arbitrarily Positioned Entrance Pupil

We select a symmetrically shaped aperture (may be rectan-
gle, circle, and hexagon) at the entrance pupil. We then sup-
pose that the aperture is rectangular (Fig. 1), that the sides are
2a and 2b, that the center is located at ðx0; y0Þ, and that O is
the optical axis of the optical detecting system.

Assuming that the illumination is uniform and of unit-
intensity, the aperture function for the arbitrarily positioned
entrance pupil may be expressed as

Fðx; yÞ ¼ θðx; yÞ exp½iϕðx; yÞ�; (1)

where ðx; yÞ is the position of the aperture in the entrance
plane, θðx; yÞ is the transmission function, and ϕðx; yÞ is
the phase function. The aperture function is given by

θðx; yÞ ¼
�
1 x0 − a ≤ x ≤ x0 þ a;−b ≤ y ≤ y0 þ b
0 otherwise

: (2)
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According to the theory of Fourier optics, the point-
spread function (PSF) of the aperture can be expressed as

PSFðζ;ηÞ¼
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where ðζ; ηÞ is the position vector in the image plane, λ is the
wavelength, z is the focal distance, and Ak is a coefficient.

In Eq. (3), for the diffraction image of a rectangular aper-
ture with arbitrary position, the intensity distribution is
axially symmetric with respect to the testing optical system,
and the central maximum of the diffraction image lies on the
optical axis of the testing system. That is to say, if the seg-
mented primary mirror is cofocused (without tip-tilt error),
the pupil’s diffraction image of an arbitrary segmented mir-
ror lies on the optical axis of the testing system. In this way,
we select the cofocused segmented mirror as a reference
plane, and the central maximum of its diffraction image on
the testing optical system as a calibration point. The tip–tilt
error and the piston error of other segmented mirrors can sub-
sequently be detected based on the calibration point.

When the tip–tilt error exists in the segmented mirror,
the tilt angles of the x- and y-axes are ðtx; tyÞ, and the
phase function of the pupil is given by

ϕðx; yÞ ¼ txxþ tyy: (4)

According to theory of Fourier optics, the tip–tilt error of
the phase function will produce a frequency shift in the PSF.
Substituting Eq. (4) into Eq. (3), we can express the PSF as

PSFðζ;ηÞ ¼ Ak sin c2
�
2πaðζþΔζÞ

λz

�
sin c2

�
2πbðηþΔηÞ

λz

�
:

(5)

In this equation, the frequency shift of the PSF, ðΔζ ¼
txz;Δη ¼ tyzÞ, is defined only by the tip–tilt angle ðtx; tyÞ
and the focal distance z. If the distance between the optical
axis and the central maximum of the diffraction image is
detected, we can obtain the tip–tilt error of entrance pupil.

From Eqs. (3) and (5), we see that if tip–tilt error exists in
the phase function, then the center of the diffraction image of
the aperture deviates from the ideal optical axis (i.e., the cal-
ibration points). If the tip–tilt error of the pupil is equal to
zero—i.e., if the segmented mirror is focused—then the
center of the diffraction image of a single segmented mirror
lies on the ideal optical axis. Therefore, by detecting the dis-
tance between the center of the diffraction image of a single
segmented mirror and the testing optical axis, the tip–tilt
error of that single segmented mirror can be obtained.

2.2 Point-Spread Function for Two Adjacent
Rectangular Apertures with Piston Error

Two rectangular apertures with piston error are shown in
Fig. 2. They are identical in size, with a width of a and a
height of 2a. The central points of the apertures lie at
ð�d∕2; 0Þ, and the distance between the centers of the
two apertures is d (where d ≥ a). The step (piston error)
of the two apertures is δ. We select an aperture as a reference
mirror ðδ ¼ 0Þ, and the center maximum of the diffraction
image of the reference aperture as a calibration point. The
piston error of the other aperture is then δ.

At this stage, we can write the transmission function
θðx; yÞ of the two apertures as

θðx;yÞ¼
�
1 ð∓d−aÞ∕2≤x≤ ð∓dþaÞ∕2;−a≤y≤a
0 otherwise

: (6)

Additionally, we can express the phase function ϕðx; yÞ as

ϕðx; yÞ ¼
�
δx ≥ 0

0x < 0
: (7)

By substituting Eqs. (6) and (7) into Eq. (3), we can
express the PSF as
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1

4

���� exp
�
i
2π

λz

�
−d
2

ζ þ 0η

��Z
0

−a

Z
a

−a
exp

�
i
2π

λz
½ðx − xjÞζ þ ðy − yjÞη�

�
dxdy

þ exp

�
i
2π

λz

�
d
2
ζ þ 0η

�Z
a

0

Z
a

−a
expfi 2π

λz
½ðx − xjÞζ þ ðy − yjÞη� þ iδgdxdy

�����
2

¼ Ak
1

4

����
�
exp

�
i
2π

λz

�
−d
2

ζ

��
þ exp

�
i
2π

λz
d
2
ζ þ iδ

��
sin c

�
πaζ
λz

�
sin c

�
2πaη
λz

�����
2

¼ Ak

�
2þ 2 cos

�
2πdζ
λz

þ δ

��
sin c2

�
πaζ
λz

�
sin c2

�
2πaη
λz

�

¼ Ak cos
2

�
πdζ
λz

þ δ

2

�
sin c2

�
πaζ
λz

�
sin c2

�
2πaη
λz

�
: (8)

Fig. 1 Schematic of rectangular aperture with arbitrary position of
pupil and the testing systems.
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This equation is similar in form to that of Young’s double-
slit interference. The function is represented as the product of
two factors: the interference of two apertures with piston
error (δ), and the PSF of an individual rectangular aperture.
When the relation between the calibration points and the
center maximum of the inference image (with piston
error) is obtained, the piston error can be calculated by meas-
uring the coordinates of the center maximum of the interfer-
ence image. Because the partial derivative is equal to zero at
the function’s extreme value point, if the partial derivative of
Eq. (8) is calculated, the center points of the diffraction
image can be easily obtained. Equation (8) is separable
variable. The function is symmetrical in the y-direction;
the center points of the diffraction image only change as
the piston error (δ) changes in the x-direction; therefore,
only the partial derivative with respect to x is required.
However, it is difficult to differentiate Eq. (8) directly, so
the Taylor expansion is required. Accordingly, we can
express Eq. (8) as
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�
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where kd ¼ πdζ∕λz and ka ¼ πaζ∕λz. The function can then
be expanded as a Taylor series of the variable ζ:
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By simplifying the function and neglecting the high-order
terms, we obtain:

Fζ ¼ 4 −
4

3
k2a − ð2kd þ δÞ2

�
2 −

2

3
k2a

�
. (11)

The derivative is equal to zero at the function’s maximum
point:

dFζ

dζ
¼ 0. (12)

By simplifying the function, we derive the analytical
expression of relations between the calibration points and
the central maximum of the interference image with piston
error:

ζ ¼ 3λzd
3d2 þ a2

δ. (13)

If there is no gap between the two rectangular apertures in
Fig. 2 (i.e., a ¼ d), then Eq. (13) can be expressed as

ζ ¼ 3λzδ
4a

. (14)

From Eqs. (13) and (14), we can see that the relationship
between the piston error δ and the coordinates of the inter-
ference image peak ζ is linear. Moreover, the linear relation-
ship is determined by the wavelength λ, the focal length z, the
width of the aperture a, and the distance d between the cen-
ters of the two rectangular apertures; the relationship does
not depend on the distance between the aperture and the
edge of the segmented mirror. The piston error of the seg-
mented mirror can be accurately measured if the position
of the interference image peak can be effectively detected.
Therefore, it is unnecessary to accurately measure the dis-
tance between the aperture and the edge of the segmented
mirror, and the edge effects of the segmented mirrors can
be avoided by increasing d.

2.3 Calculating the Center of the Diffraction Image

Because the aperture is axially symmetric about the x- and y-
axes, the distribution of the diffraction image of the aperture
is also axially symmetric about the x- and y-axes. Thus,
the central maximum of the interference image is located
at the centroid position of the image, and can be obtained
by the centroid algorithm:

xc ¼
P
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i¼1
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IijxiP
m
i¼1

P
n
j¼1

Iij

yc ¼
P

m
i¼1

P
n
j¼1

IijyiP
m
i¼1

P
n
j¼1

Iij

. (15)

3 Example of Numerical Simulation
In order to evaluate the proposal, numerical simulations of
the above theoretical equations were carried out. The param-
eters used were as follows: λ ¼ 0.55 μm, a ¼ 25 mm,
d ¼ 30 mm, and z ¼ 3000 mm. These parameters were sub-
stituted into Eqs. (8) and (13), and the results are shown in
Fig. 3. The straight line with rectangular frames in Fig. 3
displays the simulation results from Eq. (8), whereas the
straight line with points displays the theoretical calculation
results from Eq. (13). From the figures, we can see that the
numerical simulation results are consistent with the theoreti-
cal results. With piston errors lower than λ∕2 (because of the

Fig. 2 Schematic of two adjacent rectangle apertures with piston error
and the testing systems.
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reflecting action of the mirror, the wavefront error is less than
λ), the relationship between the piston error and the distance
of the optical axis for the interference image peak is linear.

Figure 4 shows the relationship between the interference
image peak position (ζ) and the piston error (δ) with different
gaps in the aperture (d). We can see that with an increase in
the gap between two apertures, their position sensitivity
decreases, whereas the detecting difficulty increases. This
can be explained by the fact that the parameter d affects
the interference term in such a way that the width of the
interference image will decrease as a result of an increase
in d. Therefore, the detection of the piston error of segmented
mirrors requires comprehensive consideration and a detailed

analysis of the focal length of the testing system, the aperture
size of the pupil, and the pixel size of the detecting camera.

4 Conclusions
From these investigations, we conclude that the rectangular
aperture with an arbitrarily positioned entrance pupil will
image at the optical axis of the testing system with a sym-
metric diffraction shape. Moreover, the image is symmetric
about the optical axis of the testing system, and thus the
center of the image can be calibrated as a reference center.
The relationship between the interference peak position and
piston errors of two adjacent rectangular apertures (within
half a wavelength of each other) is linear. By measuring
the interference image peak position, the piston and tilt errors
of the segmented mirrors can be quickly obtained with high
accuracy. The theoretical equations that support these claims
are corroborated to a high degree of accuracy by numerical
simulations.
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Fig. 3 Results of numerical simulation.

Fig.4 Simulation results for the different aperture gaps.
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