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1 Introduction cessible to touch. Optical elastography offers the potential for

Optical elastography, as defined here, is the field of study thatNcreased spatial resolutidine., smaller lesions may be de-
aims to use coherent light techniques to evaluate the mechani€cteéd and better strain resolutidiow-contrast elastic modu-

cal behavior of materials. Of immediate interest is the use of 'US distributions may be visualizgthan other elastographic
laser speckle methods for investigating the mechanical behav-Methods, such as vibration amplitude sonoelastogr‘épiny,
ior of biological tissues. The use of laser speckle techniques Pration phase gradient sonoelastografbbkastography,spec-
for the mechanical characterization of materials is well known {ral tissue strain measureméMpd various methods employ-
in the nondestructive evaluation commurit§.One particular N9 Magnetic resonance imaging datsirain resolution on
application is to infer strain by monitoring the motion of the the order of single microstrain has been evaluated in biologi-
speckle pattern that results from coherently illuminating a €@l tissue optically” However, this increased spatial and
stressed object. Typically a reference image of the speckIeStra'” resolution is ggmed at the cost _of_decreased probing
pattern is acquired before deformation of the object. Motion dePth as coherent optical methods are limited to the outer few
(with respect to this reference imagef subsequent speckle millimeters of _tls_sue._ Furthermore, most optical elastography
patterns, which occurs when the object is stressed, is used tgnethods are limited in that only relatively small areas or vol-
infer the resulting strain. A problem experienced in using this Umes of tissues may be probed at any one time. Nevertheless,
technique for measurements of hydrated tissues is the raloidoptlcal methods can still be useful in the early detection of
decorrelation of the speckle pattef3hus, application of _neoplast|c changes because many of these early changes occur
speckle techniques to assessment of strain in biological tissued" the mucosa and submucosa of the affected organs. Subsur-
often relies upon rapid sampling of the speckle patterns and face skl_n tumors pr_esent themselves as objeqts with d|st|_nct
the use of processing algorithms that are aimed at inferring mechanical properties relative to the surrounding normal tis-
strain rates rather than absolute strains. sue. The displacement of fibrillar papillary dermis by the
The goal of optical elastography is to noninvasively, or softer, cellular mass of a growing melanoma is one such ex-
minimally invasively, quantify meaningful mechanical con- ample of this. Optical elastographic techniques may provide a
stants of tissues in a manner that provides clinically relevant means by which to probe these masses to determine their state
information. It is well known that many disease processes, Of progression and thereby help to determine a proper means
such as tumors of the breast and prostate, manifest themselve8f disease management. Other skin afflictions, such as psoria-
as stiff, hard nodules relative to the surrounding tissue. This Sis and icthyosis, also present as localized tissue areas with
feature frequently allows for their detection through manual distinct mechanical properties that can be delineated optically.
palpation. However, soft tissue palpation is not only qualita-  The conventional strategy behind most one- and two-
tive, but also highly subjective. Furthermore, it provides in- dimensional speckle techniques that are aimed at measuring
formation on a relatively large spatial scale. Thus the ability surface displacements is to compute the correlation between a
to detect small tumors by palpation is limited. Manual palpa- reference and displace@ample speckle patterns. This ap-
tion is also limited to those areas of the body which are ac- proach is straightforward and has been used successfully in
processing data from speckle strain gaue¥ This ap-
proach, however, is subject to errors and certain limitations
for biomedical diagnostics. For example, if the test is subject
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Fig. 1 Optical arrangement for collecting speckle data.

to vibrations, there will always be some question as to the

validity of the reference exposure. Furthermore, if the speckle 0X(#6,,60s)=ay

shifts are substantial, the speckle pattern will decorrelate from

the reference and a new reference must be chosen. This can

lead to compounding of errors. +siné,
However, since the goal of these conventional approaches

is simply to quantify a lateral shift in a “noisy” signal, a C0S6q

number of other data collection and data analysis options —Q, erl”, (1)

present themselves. One data collection scheme that has ©

proven to be very useful for evaluating strains in biological wherea, is an in-plane motiona, is an out-of-plane motion,

tissues begins with the fundamental concept of the laser €y is the linear strain in the plane of the detector and laser

speckle strain gauge as described by Yamagtichi. The beams(ultimately, the desired terfm(}, is a rotation about

configuration is appropriate for either objective or subjective the axis perpendicular to the measurement pldneis the

laser speckle. radius of the illuminating wave fronfi.e., the source dis-
The scheme is based upon observing translating lasertance, andL, is the observation distance. By using the illus-

speckle with a linear array charge coupled devicED) cam- trated configuration whered,=0°, by using collimated

era through an observation angl,, as the specimen is se- beams(Ls—~), and by subtracting the speckle motions as

quentially illuminated through two equal, but opposite, illu- observed from the two equal, but opposite, illumination

mination angles;t 6 by a collimated laser beaffrigure 1. angles, a relation describing the differential speckle motion,

Alternatively, a two detector, single beam configuration is also §A, can be derived from Eq1)

possible®*1® Due to the fast decorrelation of the observed

speckle patterns as a result of random movements within the SA= 6x(0,+ O5) — OX(0,— ) = — 2L €44 SiNfhs.  (2)

tissues(water, blood, etg, the switching of the illumination ) . .

angle and subsequent triggering of the CCD array must be It can be seen, then, that the in-plane strain term can readily

rapid enough to acquire at least several records with minimal P& isolated. Had the complementary configuratiovo cam-

decorrelation between subsequent exposures. Typically, the€ras, One laser beanbeen employed, Eq(2) would have

L, cos 6

L, cosdsin b
Lscosé,

+cosé,
° Lscos6,

_aZ

_LO

SN T tang
—— +tan
xx cosd, ©

switching must be on the order of 50 2! This frequency ~ taken the form
is beyond the range of most mechanical shutters so electro-
optical devices, such as ferroelectric cryst@&C), in com- OA= 6X(+ 0,,0) — 6X(— 6,,0)

bination with polarizing beam splitters have been used in the 2L t :
. ; . =— anf,—2a,siné 3
past®8n this case, the FLC acts as a binary, switchable half 0€xx © z © ©
wave plate and the beam is thus transmitted through or re-and the desired strain term could only be isolated if the term
flected by the polarizing beam splitter, depending upon the containinga, was made negligible to the strain term. This can

polarization of the light exiting the FLC. be accomplished through a proper choice_gfand 6, .

Using a physical optics approach, Yamagdthias shown The goal of this strain measurement concept is to deter-
that for an object undergoing strain the speckle motion ob- mine the shift in a speckle pattern resulting from an applied
served througtd, for illumination angleés is given by load. Towards this end, the one-dimensional records are
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parametric approaches. The fundamental difference between
the two types of approaches is that nonparametric estimators
make noa priori assumptions regarding the nature of the
speckle shift. An example of a nonparametric scheme is the
correlation approach. In this approach, the cross correlation
of sequential records is calculated and the shift of the corre-
lation peak determines the amount of speckle pattern shift.
Examples of parametric approaches include: a minimum
mean square error estimator, a maximum likelihood estimator,
and a maximum entropy estimator. Each of these processing
schemes is discussed in the following sections.

Fig. 2 Stacked speckle history of a sample undergoing a linear strain.
Time is given by the y axis and space is given by the x axis.

stacked into what is termed a “stacked-speckle histo¥/*® 2.1 No.rfparametrlc Speckle Sh'ﬁ_ Estimators
Stacked speckle histories are time series of one-dimensionalT n€ traditional approach to processing speckle data makes use

views of the speckle patterns combined in a spatio-temporal of the cross_correl_ation_ between successive reco_rds. Regard-
array such that the spatial dimensimamera pixelis along less of the dlmensmnahty of the d_ata the c_oncep_t is the same;
the abscissa and the temporal axis is the ordinate. In the con W€ therefore illustrate with data in one dimension. Two se-
figuration shown in Figure 1, two stacked speckle histories are duéntial speckle records are modeled as
generated, one for eady. Figure 2 is a gray scale display of
one such stacked speckle history taken from an object under- 9(x),g(x— 6x), ®)
going a slow linear strain. The figure shows a sequence of 200where one record is shifted with respect to the other by the
one-dimensional speckle patterns stacked one atop anotheramountéx. The cross correlation between these two records
The desired information, that is, the shift of the speckle pat- is given by
tern, is reflected in the tilt of the structure.

Processing of these stacked speckle data has been accom- o
plished using the transform meth&>The method has been R(7)= f dxg(x—7)*g(x— o). (6)
adequately described in the literature and therefore will be o
only summarized here. In the transform method of processing It is straightforward to show that this cross correlation reaches
stacked speckle histories, the speckle histories are visuallyits maximum whenr= 6x.'8 This is the basic concept; we
inspected and matching sets of 10—30 records from each his-seek the lag7) for which the correlation is maximum. It is
tory that display minimal decorrelation, or for some other usually implemented with the FE¥through use of théauto
experiment-driven reason, are selected for analysis. Thesecorrelation theorem
records are transformed into the frequency domain using a
fast Fourier transforniFFT) algorithm in the spatial direction R(7)=F YF[g(x—7)* JF[g(x— éx)]}, (7)
and an autqregressive spectra_l est_imemmdified _covariance, where the forwardinverse Fourier transform is denoted by
3-5 poleg in the temporal direction. Alternatively a two- F(F 1)
dimensional FFT may be employed. The result of this opera- '
tion is a pair of “images” in the frequency domain consisting
of a bright band of energy oriented perpendicular to the tilt in
the stacked speckle histories. The slopagsandm,, respec-
tively, have the dimensions of length/time and quantify the
time rate of speckle pattern shifik. Thus, by taking the time
derivative of Eq.(2), and rearranging to isolate the desired
straip term, we get a simple e_>.<pression fc_>r direct_ly estimating 9 9 parametric S
the time rate of in-plane straig,, (= confidence interva)s

One of the fundamental assumptions in tkésd other
approaches is that the two speckle records are simple trans-
lates of one another. With analogy to one of the basic tools of
the theory of propagation through atmospheric turbulence,
Taylor’s frozen turbulence hypothegfsthis may be called the
“frozen speckle” model.

peckle Shift Estimators
Parametric estimators do incorporatepriori knowledge of
7 7 the experiment. The objective, of course, in using a such
. my,—my (02)+(0o1) A ; . : g
Exy= i + _ t(N—2,2), (4 model-based estimators is to gain a degree of sensitivity. By
2L, sinfs 2L, sinfs making use of information that is known about the conditions
where the subscripts are associated with the positive andOf the measurement, nonphysical outcomes can be eliminated.
negative illumination angles; is the standard deviation about ~While this often results in greater resolution, this increased
each slope, respectively, ahds the critical value of the Stu- resolution sometimes comes with a price. Typically nonpara-

dent'st distribution with N—2° of freedom at a probability =~ Metric approaches are more robust. Because the parametric

level of o. Absolute strains can be determined by an integra- @Pproaches implicitly eliminate estimates that are “nonphysi-
tion over the time course of the experiment. cal,” when data are encountered that are less than ideal, these

estimators sometimes break down.
In the material that follows, the relative merits of a couple
2 Methods of specific parametric approaches to estimation of speckle pat-
There are numerous alternative approaches that can be emtern shift or movement are explored. The first is a minimum
ployed for determining speckle movement. Generally, these mean square errqMMSE) technique that, for small amounts
approaches can be categorized as either nonparametric oof speckle motion, requires no search for an optimum solu-
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909 [9j+1(Xi),9j-1(X)]. (10
rIMll"lLuull[ll'],d],\_,PJ\r,wr X The 6x that minimizes the error is then determined
%o = N
9x - BY) €= 2, [gja(xi+ ) =g 2= (1D

MFJHWH‘J‘[["W x where the sum is over all pixels in the array. The that

brings these two records into registration is thus sought. Equa-
tion (11) may be solved numerically by making use of a gra-
Fig. 3 Illustration of shifting frozen speckle pattern. dient search algorithrﬁl. If, however, we make use of the
approximation in Eq(9) (small speckle motionsthen differ-
entiation with respect t&®x and rearranging yields the for-
tion. Additionally, when the noise component in the data is mula
Gaussian, it is shown that this approach leads to the maximum

likelihood estimate of the spe_'ckle pattern shift. Another ap- —E,N:ﬂgj+1(Xi)—gj—l(Xi)][gj'H(Xi)+9,-’_1(Xi)]
proach makes use of maximum entropy concepts. This 6X;= SN [90.:00 191002
method, like the maximum likelihood technique, is shown to j=109j+2(Xi) TG Xi (12)

have the ability to estimate subpixel motion with temporal
resolution that is much finer than the nonparametric ap- The term in the first square bracket in the numerator is simply

proaches. the first central difference approximatf@rio the derivative
2.2.1  Minimum Mean Square Error Estimator 99;(Xi)  gj+1(Xi) —gj-a(Xi) 13
For this discussion of parametric approaches a frozen speckle at; - 2 '

model is adopted. It is assumed that, over a time on the orderTh ial derivati b . d similarl
of a couple of sequential exposures of the camera, the struc- e spatial derivatives may be approximated similarly

ture of the speckle pattern is fixed. The only change with time

is its lateral motion(Figure 3. Thus the speckle motion can 99j+1 _ 9j+1(Xi+1) —Gj+a(Xi-1)
be modeled as X 2 '
(14
9j+1(x1) =0;(xi = %), ® 99j-1  9j-1(Xi+1) —gj-1(Xi-1)
where the subscriptdenotes the pixdlspatial dimensionand X - 2 '

the subscriptj represents the recor@emporal dimension _ _ ] )
Assuming that the shif6x is small compared to a pixel, Eq.  Note that the shift parameted, is the time rate at which the

(8) can be approximated as speckle pattern shifts; units are pixels/record.
Although the means by which the estimate féx was
9j+1(x)~=g;(x) + 5Xg,-’(Xi)- (9) arrived at was quite specific, this estimation approach is more

general than it would seem. For instance, the term approxi-
This is simply the first two terms of the Taylor series expan- mating the first central difference for the estimate of the tem-
sion forg. To introduce a degree of symmetry into the prob- poral derivative arose because the speckle records on either
lem, the two speckle records on either side of the record of sjde of the record of interest where chosen for inspection. We
interest are inspecterigure 4 could just as easily have included additional records and

weighted their contributions appropriately to estimate higher

order approximations to the derivative. For example, instead

space, x=ip of using the weights
>
-1,0+1], (15
record j-1 | d |
\ we could us&
record | r EQ I ﬁ[l,— 8,0,8;- l]- (16)
\ In this case, the formulation for the mean square error would
record j+1 | 1 ] be
N
Gf:izl [9j+2(Xi+2%) =894 1(X; + %)
Y ime=ia +80;_1(x— ) —gj_o(x—28)1%  (17)
Fig. 4 Central differencing technique. the temporal derivative term of E¢L3) would be

Journal of Biomedical Optics * October 2001 * Vol. 6 No. 4 421



Duncan and Kirkpatrick

[—9j-2(%)+8dj_1(Xi) =871 1(Xi) + gj+2(Xi) ] p(d;|gj)=p(n;))
ag;(x;) —1
=12 at; (18) =Cex ﬁ;[gjﬂ(xﬁ'&()
and the term involving the spatial derivatives would be —gj_1(xi— 6x)]2} , (24)

whereC is a constant. Equatiof24) is commonly referred to
as the likelihood functio? To choose thedx that maximizes

[—29]_5(xi) +80gj_1(X)) + 80, 1(X{) =209 1 2(X;)].
19 s likelihood we set

Note that this is simply the weighted average J
m'np(dﬂgj)—o- (25
4 gj’_1+ gj’+1 1 gj’_2+ gj’+2 Carrying out this calculation leads to the formula in EtR).
12 ) it A — (20 It is straightforward to show that this is an unbiased estimate

of the speckle pattern shift and that the variance of the esti-
mate attains the CrameRao lower bound®
of the terms on either side of the record of interest. Further,

these higher order operators for the derivative can be used to
estimate the spatial derivatives 2.2.2 Maximum Entropy Estimator

Another parametric approach to calculating speckle motion

relies on the concept of entropy. As before, it is assumed that,
over a time on the order of a couple of sequential exposures of
the camera, the speckle pattern is fixed. Thus the speckle mo-
tion is modeled as

agj(xj) 1 8 8
X, Nl—z[—gj(xi—z) g;(Xi—1) —89;(Xi+1)

+0;(Xj42) ] (21)
gj+1(X)) =gj(X;j— %), (26)

where the index denotes the record number, and the index
denotes the pixel number. This model suggests that the only
difference between recordsand j+1 is that the latter is
shifted by the amoundx. The procedure for estimating the
shift parameter is to shift a pair of recordsappositedirec-
tions and form the quotient of these shifted records

These higher order approximations to the derivative have
somewhat better noise characterisficghis improvement,
however, comes at the expense of reduced temporal resolu
tion. Nevertheless, by making use of these higher order ap-
proximations, the processing can be tailored to the demands
of the experiment.

Up to this point, no specific assumptions about the statis-

tics of the speckle pattern or associated noise have been made. g 1(x— %)
The onlya priori knowledge that was introduced is that the Ri(x;)= 2 T (27)
speckle shift is small with respect to the pixel size. If the 9j+1(Xi+ %)
assumption is now made that the measured speckle signalThe entrop$’ in this ratio is then calculated
comprises a deterministic speckle sighalplus noise, the
measured signal can be modeled as N
Hj()= =2, p;(x)loglp;(x;)], (28)
dj(xi)=gj(X;) +ni(x;), (22 where
wheren is a zero-mean noise signal. If we calculate the cen- (X)) = R;j(X;) 29
tral difference about th¢th record, we get Pi(Xi)= EiNlej(Xi) '
From the normalization of Eq29), we thus have

dj 1 1(Xi+ 0x) —dj_1(X;— %) N

=054 2(X+ 8X) — g 1(x— )+ 1y 1%+ ) 2, pyxi)=1. (30

—Nj-1(Xi = 8X). (23 By maximizing the entropy in Eq(28), the shift parameter

that most nearly shifts the numerator and denominator of Eq.
It is assumed that the sequential speckle patterns are constan27) into registration is chosen. This is the shift that produces
mean. Further it is assumed that the noise is statistically in- a maximally flat quotient. In the event that the distributipn,
dependent Gaussian with zero mean and constant variance. Ass perfectly flat, the associated entropy is simfdg(N). A
a result the noise probability density function can be written simple gradient search algorithm is all that is required to ac-
as complish our objective.
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Fig. 5 Speckle history displaying large speckle shifts.
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From the proceeding discussion, it would appear that the 4
original speckle pattern must be interpolated to determine the ) ) ) ) ) ) ) ) )
shifted pattern. While this is true, it can be accomplished very S0 20 40 0 8 100 120 140 160 180 200
simply by use of the Fourier shift theoreth Specifically, Record

making use of the fact that Fig. 6 Performance of correlation estimator for large speckle shifts.
gj(xi— ) =F e 127G, (f,)}, (31 The first example is for relatively large speckle motions. In
this case, a simple nonparametric approach such as correlation
where . :
works quite well. An example of speckle history for large
, _ Uy, motion is shown in Figure 5. The speckle motions predicted
_ _ _ G;(f) F_{gj(x')}' _ (32) using a correlation approach are shown in Figure 6. For this
With this formulation, the ratio of Eq27) is generated by calculation, a central differencing technique was used; records
ot to either side of the record of interest were cross correlated.
R (%)= F{e 7™ E{g;_1(xi)}} 33 Of course, the speckle shift amount per record is half the total,
i(Xi)= F’l{e*lz”b“ko{ng(xi)}}' (33 so that the minimum speckle shift is one half pixel. Speckle

. ) shifts estimated using the maximum likelihood estimass-
The approach outlined above determines #xethat makes g, ming a small speckle shifare illustrated in Figure 7. This
this ratio the *flattest.” In the actual implementation, the in- result shows some differences with those derived using corre-
nermost transforms are computed only once, so that at éachagion processing. On the other hand, the maximum likelihood

iteration of the gradient search, we need only compute estimate for arbitrary speckle shiftsing a gradient search
g j2maxfy ¢ algorithm to determine the shiftFigure 8, is in excellent
Ri(X;) = F e Gj-a(f)} (34) agreement with the correlation results. The correlation be-
JUA

Ffl{eJrJZwé‘xkaj_*_l(fk)}'

Since the model of Eq(26) is only approximate, there are
occasional noisy spikes in the ratio calculated as in(E@.
To avoid the possibility of the gradient search algorithm ge
ting trapped in a local maximum, a median filter is applied to
the ratio prior to normalization and computation of the en-
tropy. This ensures that the entropy surface is convex. The
gradient algorithm can also be aided if one has sanpeiori
knowledge of the amount of speckle shift. In this case the 25 . . . . . . —_— .
search can be restricted to a limited region. Of course, the
objective can also be reached by searching for the minimum
of the negative entropy. 150 Y

Finally, we note that the MMSE solutioeq. 11) can also i , ‘ ‘ e
be made more efficient using shift theorem and a gradient
search algorithm. In this case we need not restrict our interest
to small speckle motions.

tween these two results is in excess of 0.99. Obviously the
small-shift requirement is violated by these data. These results
simply show that estimating speckle shifts for large motions is
t. @ relatively straightforward problem.
Now an example displaying small speckle moti¢Rigure
9) is examined. Correlation and max likelihood processing
produce the results shown, respectively, in Figures 10 and 11.
Clearly, the speckle motion in these data is below the resolu-

2p

Shift{pixels/record)
o
o L

s
o

'
-

3 Results

In evaluating the relative merits of these various estimators
there are several criteria. One, of course, is the sensitivity, i.e., 2} .
the ability to estimate very small speckle motions. On the 25 o
other hand, the technique should be capable of dealing with "0 20 40 60 80 100 120 140 160 180 200
very large speckle motions as well. Another evaluation crite- Record

rion is robustness. This is the ability of the algorithm to cope Fig. 7 Performance of closed-form max likelihood estimator for large
with other than ideal data. speckle shifts.
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Fig. 8 Gradient search for max likelihood solution for large speckle Fig. 10 Correlation estimator results for small speckle motions.

shifts. Compare with results shown in Fig. 13.

4 Discussion
Some illustrative parametric processing algorithms have been

tion of the correlation processing algorith(it cannot per-  discussed. Using the basic approach, one could imagine a va-
ceive motions of less than a half pixewhile the max likeli- ~ riety of others. For example, the conventional processing ap-
hood estimator performs quite well. Processing results using proaCh searches for the Iag for which the cross correlation is
the max entropy estimator are shown in Figure 12. These Maximum. Rather than using the FFT, one might search di-
noisier and of slightly smaller magnitude. cifically, we could seek the speckle pattern shifk, that

In the discussion so far it has been assumed implicitly that maximizes the cross correlation coefficient
objective (nonimaged speckle is being considered. In this
case a particular portion of the speckle record cannot be iden- 2
tified with a particular spot on the object. Most of these tech- Pj “;l 9j-1(Xi— X)gj+1(X + 6X). 39
nigues, however, are appropriate for subjective speckle as
well. The example previously discussed was subjective Subject to the appropriate restrictions on the magnitudgxof
speckle. However, the experiment was carefully contrived so an approximate closed form expression for the shift may be
that the Specime(ﬁ cortical bone Samp)e/vas uniform|y il- obtained readily. Otherwise, a Straightforward gradient search
luminated, and uniformly strained. Success of this effort is algorithm could be used to determine a solution.
confirmed by the plots of speckle motion shown in Figure 13.  For any of the differential speckle measurement tech-
These two traces represent estimates of speckle motion maddigques, whether it be single detector and two laser beams or
with the max likelihood estimator using the first 128 columns single laser beam and two detectors, one arrives at a pair of
of the speckle history and the last 128 columns. Although Stacked speckle histories. These histories display the time rate
there are some minor differences, which we attribute to the of movement of the individual speckles whether they are sub-
fact that these are two distinct speckle realizations, the
speckle motions are very similér=0.97). With this concept

N

in mind, it is easy to see that these algorithms can be used for 0.8 y J
a full two-dimensional sequence of images by separately pro-
cessing a two-dimensional speckle history for each of the im- oy
age dimensions as in Figure 14. oal
—.g 0.2}
£
2 0
i
£ 92
7]
04F
0.6
0.8 L 4 v v ”

0 20 40 60 80 100 120 140 160 180 200
Record

Fig. 9 Example of speckle history for small shifts. Fig. 11 Max likelihood estimate of small speckle motions.

424 Journal of Biomedical Optics * October 2001 * Vol. 6 No. 4



Processing Algorithms for Tracking Speckle Shifts . . .

ot
3

Il
&

o
S
Y

o
N

o

Shift{pixelsirecord)
&
N

s
n

&
@

time

820 a0 o0 80 100 120 1;0 oo 180 200 Fig. 14 Generalization of processing approaches to higher-
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Fig. 12 Max entropy estimate for small speckle motions.

where 6, is the observation angle. Note that these are the

jective or objective. The relationship between these speckle same results as Eq2)—(4).

motions and the strain undergone by the test specimen is dic-
tated by the actual measurement configuration. As an ex-
ample, consider the configuration shown in Figure 1Xf

and 6x, represent the speckle motions derived from the two This work was funded through Research Grant Nos. BES-
speckle historiegone for laser beam 1 and the other for laser 9807497 and BES-0086719 from the National Science Foun-
beam 2, then the object strain in the plane of the detector and dation.

beams is given by
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