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Processing algorithms for tracking speckle shifts
in optical elastography of biological tissues
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Abstract. Parametric and nonparametric data processing schemes for
analyzing translating laser speckle data used to investigate the me-
chanical behavior of biological tissues are examined. Cross-
correlation, minimum mean square estimator, maximum likelihood,
and maximum entropy approaches are discussed and compared on
speckle data derived from cortical bone samples undergoing dynamic
loading. While it was not the purpose of this paper to demonstrate that
one processing technique is superior to another, maximum likelihood
and maximum entropy approaches are shown to be particularly useful
when the observed speckle motion is small. © 2001 Society of Photo-Optical
Instrumentation Engineers. [DOI: 10.1117/1.1412224]
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1 Introduction
Optical elastography, as defined here, is the field of study tha
aims to use coherent light techniques to evaluate the mechan
cal behavior of materials. Of immediate interest is the use o
laser speckle methods for investigating the mechanical beha
ior of biological tissues. The use of laser speckle technique
for the mechanical characterization of materials is well known
in the nondestructive evaluation community.1–4 One particular
application is to infer strain by monitoring the motion of the
speckle pattern that results from coherently illuminating a
stressed object. Typically a reference image of the speckl
pattern is acquired before deformation of the object. Motion
~with respect to this reference image! of subsequent speckle
patterns, which occurs when the object is stressed, is used
infer the resulting strain. A problem experienced in using this
technique for measurements of hydrated tissues is the rap
decorrelation of the speckle patterns.5 Thus, application of
speckle techniques to assessment of strain in biological tissu
often relies upon rapid sampling of the speckle patterns an
the use of processing algorithms that are aimed at inferrin
strain rates rather than absolute strains.

The goal of optical elastography is to noninvasively, or
minimally invasively, quantify meaningful mechanical con-
stants of tissues in a manner that provides clinically relevan
information. It is well known that many disease processes
such as tumors of the breast and prostate, manifest themselv
as stiff, hard nodules relative to the surrounding tissue. Thi
feature frequently allows for their detection through manua
palpation. However, soft tissue palpation is not only qualita-
tive, but also highly subjective. Furthermore, it provides in-
formation on a relatively large spatial scale. Thus the ability
to detect small tumors by palpation is limited. Manual palpa-
tion is also limited to those areas of the body which are ac

Portions of this manuscript will also appear in S. J. Kirkpatrick and D. D. Dun-
can, ‘‘Optical assessment of tissue mechanics’’ in Handbook of Optical Bio-
medical Diagnostics Imaging, V. V. Tuchin, Ed., SPIE, Bellingham, WA (in press).
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cessible to touch. Optical elastography offers the potential
increased spatial resolution~i.e., smaller lesions may be de
tected! and better strain resolution~low-contrast elastic modu-
lus distributions may be visualized! than other elastographic
methods, such as vibration amplitude sonoelastography,6 vi-
bration phase gradient sonoelastography,6 elastography,7 spec-
tral tissue strain measurement,8 and various methods employ
ing magnetic resonance imaging data.9 Strain resolution on
the order of single microstrain has been evaluated in biolo
cal tissue optically.10 However, this increased spatial an
strain resolution is gained at the cost of decreased prob
depth as coherent optical methods are limited to the outer
millimeters of tissue. Furthermore, most optical elastograp
methods are limited in that only relatively small areas or v
umes of tissues may be probed at any one time. Neverthe
optical methods can still be useful in the early detection
neoplastic changes because many of these early changes
in the mucosa and submucosa of the affected organs. Sub
face skin tumors present themselves as objects with dist
mechanical properties relative to the surrounding normal
sue. The displacement of fibrillar papillary dermis by t
softer, cellular mass of a growing melanoma is one such
ample of this. Optical elastographic techniques may provid
means by which to probe these masses to determine their
of progression and thereby help to determine a proper me
of disease management. Other skin afflictions, such as ps
sis and icthyosis, also present as localized tissue areas
distinct mechanical properties that can be delineated optic

The conventional strategy behind most one- and tw
dimensional speckle techniques that are aimed at measu
surface displacements is to compute the correlation betwe
reference and displaced~sample! speckle patterns. This ap
proach is straightforward and has been used successful
processing data from speckle strain gauges.11–13 This ap-
proach, however, is subject to errors and certain limitatio
for biomedical diagnostics. For example, if the test is subj

1083-3668/2001/$15.00 © 2001 SPIE
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Fig. 1 Optical arrangement for collecting speckle data.
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to vibrations, there will always be some question as to the
validity of the reference exposure. Furthermore, if the speckle
shifts are substantial, the speckle pattern will decorrelate from
the reference and a new reference must be chosen. This c
lead to compounding of errors.

However, since the goal of these conventional approache
is simply to quantify a lateral shift in a ‘‘noisy’’ signal, a
number of other data collection and data analysis option
present themselves. One data collection scheme that h
proven to be very useful for evaluating strains in biological
tissues begins with the fundamental concept of the lase
speckle strain gauge as described by Yamaguchi.11–13 The
configuration is appropriate for either objective or subjective
laser speckle.

The scheme is based upon observing translating lase
speckle with a linear array charge coupled device~CCD! cam-
era through an observation angle,uo , as the specimen is se-
quentially illuminated through two equal, but opposite, illu-
mination angles,6us by a collimated laser beam~Figure 1!.
Alternatively, a two detector, single beam configuration is also
possible.13–15 Due to the fast decorrelation of the observed
speckle patterns as a result of random movements within th
tissues~water, blood, etc.!, the switching of the illumination
angle and subsequent triggering of the CCD array must b
rapid enough to acquire at least several records with minima
decorrelation between subsequent exposures. Typically, th
switching must be on the order of 50 Hz.10,16 This frequency
is beyond the range of most mechanical shutters so electro
optical devices, such as ferroelectric crystals~FLC!, in com-
bination with polarizing beam splitters have been used in the
past.10,16In this case, the FLC acts as a binary, switchable hal
wave plate and the beam is thus transmitted through or re
flected by the polarizing beam splitter, depending upon the
polarization of the light exiting the FLC.

Using a physical optics approach, Yamaguchi11 has shown
that for an object undergoing strain the speckle motion ob
served throughuo for illumination angleus is given by
n

s

s

r

l
e

-

-

dx~uo ,us!5axFLo cos2 us

Ls cosuo
1cosuoG2azFLo cosus sinus

Ls cosuo

1sinuoG2LoFexxS sinus

cosuo
1tanuoD

2VyS cosus

cosuo
11D G , ~1!

whereax is an in-plane motion,az is an out-of-plane motion,
exx is the linear strain in the plane of the detector and la
beams~ultimately, the desired term!, Vy is a rotation about
the axis perpendicular to the measurement plane,Ls is the
radius of the illuminating wave front~i.e., the source dis-
tance!, andLo is the observation distance. By using the illu
trated configuration whereuo50°, by using collimated
beams(Ls→`), and by subtracting the speckle motions
observed from the two equal, but opposite, illuminati
angles, a relation describing the differential speckle moti
dA, can be derived from Eq.~1!

dA[dx~0,1us!2dx~0,2us!522Loexx sinus . ~2!

It can be seen, then, that the in-plane strain term can rea
be isolated. Had the complementary configuration~two cam-
eras, one laser beam! been employed, Eq.~2! would have
taken the form

dA[dx~1uo,0!2dx~2uo,0!

522Loexx tanuo22az sinuo ~3!

and the desired strain term could only be isolated if the te
containingaz was made negligible to the strain term. This c
be accomplished through a proper choice ofL0 anduo .

The goal of this strain measurement concept is to de
mine the shift in a speckle pattern resulting from an appl
load. Towards this end, the one-dimensional records
Journal of Biomedical Optics d October 2001 d Vol. 6 No. 4 419
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Fig. 2 Stacked speckle history of a sample undergoing a linear strain.
Time is given by the y axis and space is given by the x axis.
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stacked into what is termed a ‘‘stacked-speckle history.’’14,15

Stacked speckle histories are time series of one-dimension
views of the speckle patterns combined in a spatio-tempora
array such that the spatial dimension~camera pixel! is along
the abscissa and the temporal axis is the ordinate. In the co
figuration shown in Figure 1, two stacked speckle histories ar
generated, one for eachus . Figure 2 is a gray scale display of
one such stacked speckle history taken from an object unde
going a slow linear strain. The figure shows a sequence of 20
one-dimensional speckle patterns stacked one atop anoth
The desired information, that is, the shift of the speckle pat
tern, is reflected in the tilt of the structure.

Processing of these stacked speckle data has been acco
plished using the transform method.10,15The method has been
adequately described in the literature and therefore will be
only summarized here. In the transform method of processin
stacked speckle histories, the speckle histories are visual
inspected and matching sets of 10–30 records from each hi
tory that display minimal decorrelation, or for some other
experiment-driven reason, are selected for analysis. Thes
records are transformed into the frequency domain using
fast Fourier transform~FFT! algorithm in the spatial direction
and an autoregressive spectral estimator~modified covariance,
3–5 poles! in the temporal direction. Alternatively a two-
dimensional FFT may be employed. The result of this opera
tion is a pair of ‘‘images’’ in the frequency domain consisting
of a bright band of energy oriented perpendicular to the tilt in
the stacked speckle histories. The slopes,m1 andm2 , respec-
tively, have the dimensions of length/time and quantify the
time rate of speckle pattern shift,d ẋ. Thus, by taking the time
derivative of Eq.~2!, and rearranging to isolate the desired
strain term, we get a simple expression for directly estimating
the time rate of in-plane strain,ėxx ~6 confidence intervals!

ėxx5
m22m1

2Lo sinus
6A~s2!21~s1!2

2Lo sinus
t~N22,a!, ~4!

where the subscripts are associated with the positive an
negative illumination angles,s is the standard deviation about
each slope, respectively, andt is the critical value of the Stu-
dent’s t distribution with N22° of freedom at a probability
level of a. Absolute strains can be determined by an integra
tion over the time course of the experiment.

2 Methods
There are numerous alternative approaches that can be e
ployed for determining speckle movement. Generally, thes
approaches can be categorized as either nonparametric
420 Journal of Biomedical Optics d October 2001 d Vol. 6 No. 4
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parametric approaches. The fundamental difference betw
the two types of approaches is that nonparametric estima
make noa priori assumptions regarding the nature of t
speckle shift. An example of a nonparametric scheme is
correlation approach.17 In this approach, the cross correlatio
of sequential records is calculated and the shift of the co
lation peak determines the amount of speckle pattern s
Examples of parametric approaches include: a minim
mean square error estimator, a maximum likelihood estima
and a maximum entropy estimator. Each of these proces
schemes is discussed in the following sections.

2.1 Nonparametric Speckle Shift Estimators
The traditional approach to processing speckle data makes
of the cross correlation between successive records. Reg
less of the dimensionality of the data the concept is the sa
we therefore illustrate with data in one dimension. Two s
quential speckle records are modeled as

g~x!,g~x2dx!, ~5!

where one record is shifted with respect to the other by
amountdx. The cross correlation between these two reco
is given by

R~t!5E
2`

`

dxg~x2t!* g~x2dx!. ~6!

It is straightforward to show that this cross correlation reac
its maximum whent5dx.18 This is the basic concept; we
seek the lag~t! for which the correlation is maximum. It is
usually implemented with the FFT19 through use of the~auto!
correlation theorem

R~t!5F21$F@g~x2t!* #F@g~x2dx!#%, ~7!

where the forward~inverse! Fourier transform is denoted b
F(F21).

One of the fundamental assumptions in this~and other!
approaches is that the two speckle records are simple tr
lates of one another. With analogy to one of the basic tools
the theory of propagation through atmospheric turbulen
Taylor’s frozen turbulence hypothesis,20 this may be called the
‘‘frozen speckle’’ model.

2.2 Parametric Speckle Shift Estimators
Parametric estimators do incorporatea priori knowledge of
the experiment. The objective, of course, in using a su
model-based estimators is to gain a degree of sensitivity.
making use of information that is known about the conditio
of the measurement, nonphysical outcomes can be elimina
While this often results in greater resolution, this increas
resolution sometimes comes with a price. Typically nonpa
metric approaches are more robust. Because the param
approaches implicitly eliminate estimates that are ‘‘nonphy
cal,’’ when data are encountered that are less than ideal, t
estimators sometimes break down.

In the material that follows, the relative merits of a coup
of specific parametric approaches to estimation of speckle
tern shift or movement are explored. The first is a minimu
mean square error~MMSE! technique that, for small amount
of speckle motion, requires no search for an optimum so
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Fig. 3 Illustration of shifting frozen speckle pattern.
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tion. Additionally, when the noise component in the data is
Gaussian, it is shown that this approach leads to the maximum
likelihood estimate of the speckle pattern shift. Another ap-
proach makes use of maximum entropy concepts. Thi
method, like the maximum likelihood technique, is shown to
have the ability to estimate subpixel motion with temporal
resolution that is much finer than the nonparametric ap
proaches.

2.2.1 Minimum Mean Square Error Estimator
For this discussion of parametric approaches a frozen speck
model is adopted. It is assumed that, over a time on the orde
of a couple of sequential exposures of the camera, the stru
ture of the speckle pattern is fixed. The only change with time
is its lateral motion~Figure 3!. Thus the speckle motion can
be modeled as

gj 11~x1!5gj~xi2dx!, ~8!

where the subscripti denotes the pixel~spatial dimension! and
the subscriptj represents the record~temporal dimension!.
Assuming that the shiftdx is small compared to a pixel, Eq.
~8! can be approximated as

gj 11~xi !'gj~xi !1dxgj8~xi !. ~9!

This is simply the first two terms of the Taylor series expan-
sion for g. To introduce a degree of symmetry into the prob-
lem, the two speckle records on either side of the record o
interest are inspected~Figure 4!
er
ad

uld
e
r
-

@gj 11~xi !,gj 21~xi !#. ~10!

The dx that minimizes the error is then determined

e j
25(

i 51

N

@gj 11~xi1dx!2gj 21~xi2dx!#2, ~11!

where the sum is over all pixels in the array. Thedx that
brings these two records into registration is thus sought. Eq
tion ~11! may be solved numerically by making use of a gr
dient search algorithm.21 If, however, we make use of the
approximation in Eq.~9! ~small speckle motions!, then differ-
entiation with respect todx and rearranging yields the for
mula

dxj5
2( j 51

N @gj 11~xi !2gj 21~xi !#@gj 118 ~xi !1gj 218 ~xi !#

( j 51
N @gj 118 ~xi !1gj 218 ~xi !#

2 .

~12!

The term in the first square bracket in the numerator is sim
the first central difference approximation22 to the derivative

]gj~xi !

]t j
'

gj 11~xi !2gj 21~xi !

2
. ~13!

The spatial derivatives may be approximated similarly

]gj 11

]xi
'

gj 11~xi 11!2gj 11~xi 21!

2
,

~14!
]gj 21

]xi
'

gj 21~xi 11!2gj 21~xi 21!

2
.

Note that the shift parameter,dx, is the time rate at which the
speckle pattern shifts; units are pixels/record.

Although the means by which the estimate fordx was
arrived at was quite specific, this estimation approach is m
general than it would seem. For instance, the term appr
mating the first central difference for the estimate of the te
poral derivative arose because the speckle records on e
side of the record of interest where chosen for inspection.
could just as easily have included additional records a
weighted their contributions appropriately to estimate high
order approximations to the derivative. For example, inste
of using the weights

1
2@21,011#, ~15!

we could use23

1
12@1,28,0,8,21#. ~16!

In this case, the formulation for the mean square error wo
be

e j
25(

i 51

N

@gj 12~xi12dx!28gj 11~xi1dx!

18gj 21~xi2dx!2gj 22~xi22dx!#2, ~17!

the temporal derivative term of Eq.~13! would be
Fig. 4 Central differencing technique.
Journal of Biomedical Optics d October 2001 d Vol. 6 No. 4 421
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@2gj 22~xi !18gj 21~xi !28gj 11~xi !1gj 12~xi !#

'12
]gj~xi !

]t j
~18!

and the term involving the spatial derivatives would be

@22gj 228 ~xi !18gj 218 ~xi !18gj 118 ~xi !22gj 128 ~xi !#.
~19!

Note that this is simply the weighted average

12H 4

3 Fgj 218 1gj 118

2 G2
1

3 Fgj 228 1gj 128

2 G J ~20!

of the terms on either side of the record of interest. Further
these higher order operators for the derivative can be used
estimate the spatial derivatives

]gj~xi !

]xi
'

1

12
@2gj~xi 22!18gj~xi 21!28gj~xi 11!

1gj~xi 12!#. ~21!

These higher order approximations to the derivative have
somewhat better noise characteristics.22 This improvement,
however, comes at the expense of reduced temporal resol
tion. Nevertheless, by making use of these higher order ap
proximations, the processing can be tailored to the demand
of the experiment.

Up to this point, no specific assumptions about the statis
tics of the speckle pattern or associated noise have been mad
The only a priori knowledge that was introduced is that the
speckle shift is small with respect to the pixel size. If the
assumption is now made that the measured speckle sign
comprises a deterministic speckle signal~!! plus noise, the
measured signal can be modeled as

dj~xi !5gj~xi !1ni~xi !, ~22!

wheren is a zero-mean noise signal. If we calculate the cen
tral difference about thej th record, we get

dj 11~xi1dx!2dj 21~xi2dx!

5gj 11~xi1dx!2gj 21~xi2dx!1nj 11~xi1dx!

2nj 21~xi2dx!. ~23!

It is assumed that the sequential speckle patterns are consta
mean. Further it is assumed that the noise is statistically in
dependent Gaussian with zero mean and constant variance.
a result the noise probability density function can be written
as
422 Journal of Biomedical Optics d October 2001 d Vol. 6 No. 4
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p~dj ugj !5p~nj !

5C expH 21

2s2 (
i 51

N

@gj 11~xi1dx!

2gj 21~xi2dx!#2J , ~24!

whereC is a constant. Equation~24! is commonly referred to
as the likelihood function.24 To choose thedx that maximizes
this likelihood we set

]

]~dx!
ln p~dj ugj !50. ~25!

Carrying out this calculation leads to the formula in Eq.~12!.
It is straightforward to show that this is an unbiased estim
of the speckle pattern shift and that the variance of the e
mate attains the Crame´r–Rao lower bound.25

2.2.2 Maximum Entropy Estimator
Another parametric approach to calculating speckle mot
relies on the concept of entropy. As before, it is assumed t
over a time on the order of a couple of sequential exposure
the camera, the speckle pattern is fixed. Thus the speckle
tion is modeled as

gj 11~xi !5gj~xi2dx!, ~26!

where the indexj denotes the record number, and the indei
denotes the pixel number. This model suggests that the
difference between recordsj and j 11 is that the latter is
shifted by the amountdx. The procedure for estimating th
shift parameter is to shift a pair of records inoppositedirec-
tions and form the quotient of these shifted records

Rj~xi !5
gj 21~xi2dx!

gj 11~xi1dx!
. ~27!

The entropy24 in this ratio is then calculated

H j~dx!52(
i 51

N

pj~xi !log@pj~xi !#, ~28!

where

pj~xi !5
Rj~xi !

( i 51
N Rj~xi !

. ~29!

From the normalization of Eq.~29!, we thus have

(
i 51

N

pj~xi !51. ~30!

By maximizing the entropy in Eq.~28!, the shift parameter
that most nearly shifts the numerator and denominator of
~27! into registration is chosen. This is the shift that produc
a maximally flat quotient. In the event that the distribution,p,
is perfectly flat, the associated entropy is simplylog(N). A
simple gradient search algorithm is all that is required to
complish our objective.
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Fig. 5 Speckle history displaying large speckle shifts.
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From the proceeding discussion, it would appear that the
original speckle pattern must be interpolated to determine th
shifted pattern. While this is true, it can be accomplished very
simply by use of the Fourier shift theorem.26 Specifically,
making use of the fact that

gj~xi2dx!5F21$e2 j 2pdx fkGj~ f k!%, ~31!

where

Gj~ f k!5F$gj~xi !%. ~32!

With this formulation, the ratio of Eq.~27! is generated by

Rj~xi !5
F21$e2 j 2pdx fkF$gj 21~xi !%%

F21$e1 j 2pdx fkF$gj 11~xi !%%
. ~33!

The approach outlined above determines thedx that makes
this ratio the ‘‘flattest.’’ In the actual implementation, the in-
nermost transforms are computed only once, so that at eac
iteration of the gradient search, we need only compute

Rj~xi !5
F21$e2 j 2pdx fkGj 21~ f k!%

F21$e1 j 2pdx fkGj 11~ f k!%
. ~34!

Since the model of Eq.~26! is only approximate, there are
occasional noisy spikes in the ratio calculated as in Eq.~27!.
To avoid the possibility of the gradient search algorithm get-
ting trapped in a local maximum, a median filter is applied to
the ratio prior to normalization and computation of the en-
tropy. This ensures that the entropy surface is convex. Th
gradient algorithm can also be aided if one has somea priori
knowledge of the amount of speckle shift. In this case the
search can be restricted to a limited region. Of course, th
objective can also be reached by searching for the minimum
of the negative entropy.

Finally, we note that the MMSE solution~Eq. 11! can also
be made more efficient using shift theorem and a gradien
search algorithm. In this case we need not restrict our interes
to small speckle motions.

3 Results
In evaluating the relative merits of these various estimator
there are several criteria. One, of course, is the sensitivity, i.e
the ability to estimate very small speckle motions. On the
other hand, the technique should be capable of dealing wit
very large speckle motions as well. Another evaluation crite-
rion is robustness. This is the ability of the algorithm to cope
with other than ideal data.
h

t

,

The first example is for relatively large speckle motions.
this case, a simple nonparametric approach such as correl
works quite well. An example of speckle history for larg
motion is shown in Figure 5. The speckle motions predic
using a correlation approach are shown in Figure 6. For
calculation, a central differencing technique was used; reco
to either side of the record of interest were cross correla
Of course, the speckle shift amount per record is half the to
so that the minimum speckle shift is one half pixel. Spec
shifts estimated using the maximum likelihood estimator~as-
suming a small speckle shift! are illustrated in Figure 7. This
result shows some differences with those derived using co
lation processing. On the other hand, the maximum likeliho
estimate for arbitrary speckle shift~using a gradient search
algorithm to determine the shift!, Figure 8, is in excellent
agreement with the correlation results. The correlation
tween these two results is in excess of 0.99. Obviously
small-shift requirement is violated by these data. These res
simply show that estimating speckle shifts for large motions
a relatively straightforward problem.

Now an example displaying small speckle motions~Figure
9! is examined. Correlation and max likelihood process
produce the results shown, respectively, in Figures 10 and
Clearly, the speckle motion in these data is below the res

Fig. 6 Performance of correlation estimator for large speckle shifts.

Fig. 7 Performance of closed-form max likelihood estimator for large
speckle shifts.
Journal of Biomedical Optics d October 2001 d Vol. 6 No. 4 423
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Fig. 8 Gradient search for max likelihood solution for large speckle
shifts. Compare with results shown in Fig. 13.
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tion of the correlation processing algorithm~it cannot per-
ceive motions of less than a half pixel!, while the max likeli-
hood estimator performs quite well. Processing results usin
the max entropy estimator are shown in Figure 12. Thes
results are similar to the max likelihood estimate, although
noisier and of slightly smaller magnitude.

In the discussion so far it has been assumed implicitly tha
objective ~nonimaged! speckle is being considered. In this
case a particular portion of the speckle record cannot be iden
tified with a particular spot on the object. Most of these tech-
niques, however, are appropriate for subjective speckle a
well. The example previously discussed was subjective
speckle. However, the experiment was carefully contrived so
that the specimen~a cortical bone sample! was uniformly il-
luminated, and uniformly strained. Success of this effort is
confirmed by the plots of speckle motion shown in Figure 13.
These two traces represent estimates of speckle motion ma
with the max likelihood estimator using the first 128 columns
of the speckle history and the last 128 columns. Although
there are some minor differences, which we attribute to the
fact that these are two distinct speckle realizations, the
speckle motions are very similar(r 50.97). With this concept
in mind, it is easy to see that these algorithms can be used fo
a full two-dimensional sequence of images by separately pro
cessing a two-dimensional speckle history for each of the im
age dimensions as in Figure 14.
424 Journal of Biomedical Optics d October 2001 d Vol. 6 No. 4
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4 Discussion
Some illustrative parametric processing algorithms have b
discussed. Using the basic approach, one could imagine a
riety of others. For example, the conventional processing
proach searches for the lag for which the cross correlatio
maximum. Rather than using the FFT, one might search
rectly for the shift that maximizes the cross correlation. S
cifically, we could seek the speckle pattern shift,dx, that
maximizes the cross correlation coefficient

pj
2}(

i 51

N

gj 21~xi2dx!gj 11~xi1dx!. ~35!

Subject to the appropriate restrictions on the magnitude ofdx,
an approximate closed form expression for the shift may
obtained readily. Otherwise, a straightforward gradient sea
algorithm could be used to determine a solution.

For any of the differential speckle measurement te
niques, whether it be single detector and two laser beam
single laser beam and two detectors, one arrives at a pa
stacked speckle histories. These histories display the time
of movement of the individual speckles whether they are s

Fig. 10 Correlation estimator results for small speckle motions.

Fig. 11 Max likelihood estimate of small speckle motions.
Fig. 9 Example of speckle history for small shifts.
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Fig. 12 Max entropy estimate for small speckle motions.
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jective or objective. The relationship between these speckl
motions and the strain undergone by the test specimen is di
tated by the actual measurement configuration. As an ex
ample, consider the configuration shown in Figure 1. Ifdx1
anddx2 represent the speckle motions derived from the two
speckle histories~one for laser beam 1 and the other for laser
beam 2!, then the object strain in the plane of the detector and
beams is given by

exx5
dx12dx2

22Lo sinus
, ~36!

whereLo is the effective object difference andus is the illu-
mination angle. For objective speckle, the effective object dis
tance is the physical distance between the object and the d
tector focal plane. In the case of subjective speckle, it is the
misfocus distance. For the complementary configuration o
one normally incident laser beam and two cameras, the co
responding relationship is

exx5
dx12dx2

22Lo tanuo
, ~37!
al
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where uo is the observation angle. Note that these are
same results as Eqs.~2!–~4!.
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