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Abstract. We report a semiautomatic algorithm that is specialized for rapid analysis of beat-to-beat contraction-
relaxation parameters of the heart in Drosophila. The presented algorithm adapts the general graph theoretical
image segmentation algorithm and a histogram-based thresholding algorithm, which can measure many cardiac
parameters, including heart rate, heart period, diastolic and systolic intervals, and end-diastolic and end-systolic
areas. Additionally, dynamic cardiac functions, such as arrhythmia index and percent fractional shortening, can be
automatically calculated for all the recorded heartbeats over significant periods of time. © The Authors. Published by SPIE

under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the

original publication, including its DOI. [DOI: 10.1117/1.JBO.18.2.026004]

Keywords: cardiac function; Drosophila; optical coherence tomography; random walker algorithm.

Paper 12351 received Jun. 3, 2012; revised manuscript received Nov. 22, 2012; accepted for publication Jan. 2, 2013; published online
Feb. 1, 2013.

1 Introduction
Drosophila melanogaster has been a useful myocardial model
for investigating human heart disease.1–4 Recently, many
approaches have been proposed for assessing cardiac functions
inDrosophila, such as using electropacing stress,5 optical coher-
ence tomography (OCT),6 multielectrode array systems,7 semi-
automatic optical heartbeat analysis (SOHA),8 atomic force
microscopy,9 and multiple sensor electrocardiography.10

Among these, OCT is a powerful tool for producing noncon-
tact and noninvasive tomographic images of biological tissues.
By measuring the echo time delay and the intensity of backscat-
tered light from a specimen, OCT uses inherent differences in
the index of refraction in tissue, rather than enhancement with
dyes, to differentiate various tissue types. The extended imaging
depth in the scattering medium enables OCT to successfully
obtain in vivo images of the adult heart in Drosophila.6,11–15

In previous studies using time-domain (TD) OCT, given the
limitation of imaging speed, a number of heartbeat parameters
have been obtained by manual counting; this involves tracking
heart activity through a limited numbers of beats from M-mode
OCT records.6,11,12 Since the recently developed frequency-
swept lasers have improved sensitivity, making real-time
B-mode and Doppler OCT imaging possible,13–15 high-through-
put studies in Drosophila are now feasible. This requires
an automated analyzing method for obtaining reliable

measurements of dynamic heart function parameters in large
samples or over a long period of time.

Therefore, in this study we proposed a rapid OCT-based
method for obtaining cardiac parameters from adult flies. Our
method is very useful, particularly in experiments with a
large sample size. We adopted the random walker algorithm
for semiautomatic cardiac chamber segmentation in B-mode
OCT images. Random walker is a semiautomatic segmentation
method based on graph theory by Leo Grady;16 it requires that
the user give some labels as input seed points for the cardiac
chamber area and background. Greater detail of random walker
segmentation will be described in the next section. First, we cre-
ated an initial set of seed points for the random walker algorithm
on the first frame. In the next frame, the cross-sections of the
heart tube are automatically segmented in a total of 2000 frames,
and the size of the inner margin is represented by area for each
Drosophila. Then, depending on the histogram distribution of
the changing area during each heartbeat cycle, an optimum
threshold can be chosen automatically by an iterative process.17

Thus, each heart period (HP) is subdivided into two meaningful
sections, which are used to represent diastolic and systolic
intervals (DI and SI), respectively. These two parameters are
important for detailed heartbeat analysis.

The proposed method combines high-speed swept-source
OCT (SS-OCT), for optical recording of beating hearts, with
robust, semiautomatic analysis to rapidly detect and quantify,
on a beat-to-beat basis, not only heart rate (HR) and HP but
also DI and SI, and end-diastolic (EDA) and end-systolic
area (ESA). These parameters can be used to determine dynamic
parameters of heart function, including the arrhythmia index
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(AI) and percent fractional shortening (%FS). We also demon-
strate age-related alterations observed in fly heart-function using
this method. The convenience of the algorithm, and the rel-
evance of our results to the human body, is also discussed.

2 Methods

2.1 SS-OCT Imaging Technique

Drosophila (w1118), used as wild-type strain, were maintained
on regular yeast glucose media at 25°C. For image assessment,
flies were first anesthetized by exposure to Fly Nap® (Carolina
Biological Supply Company, Burlington, North Carolina). Flies
were then immobilized on a plastic petri dish using jelly glue,
with the dorsal side facing the OCT probe. For each time point, a
group of 10 flies of different ages, including one-, three-, five-,
and nine-week-old flies, were examined using the SS-OCT sys-
tem (OCM1300SS; ThorlabsInc., Newton, New Jersey).

Two-dimensional OCT images were obtained in the longi-
tudinal direction to identify the conical chamber (CC) of the
heart [Fig. 1(a)]. Then, the OCT image orientation was rotated
by 90 deg, such that the CC was acquired in the transverse plane

of the Drosophila. Figure 1(b) and 1(c) shows representative
transverse two-dimensional OCT images of the CC during dias-
tole and systole, respectively, in a three-week-old wild-type
Drosophila.

The SS-OCT system had a median wavelength of 1310 nm;
an axial and transverse resolution of around 9 and 15 μm,
respectively, in tissue; total power of 10 mW; and an A-scan
rate of 16 kHz. For each measurement, around 2000 frames
(each covering an area of 0.75 × 3 mm2, corresponding to
128 × 512 pixels in the Y − Z direction) was obtained at 92
frames per second.

2.2 Algorithm

We used a combination of two algorithms, written in Matlab,
to automatically measure several heartbeat parameters in
Drosophila. First, after contrast-enhancement of the original
image, as shown in Fig. 1(d) and 1(e), an initial set of seed points
are created by the user to indicate the inner margin (green point)
of the heart chamber for the random walker algorithm. The red
point is automatically provided by the algorithm, showing seed
points at fixed positions to indicate the outer margin of the heart
chamber and background. When the random walker moves from
any pixel, it calculates a vector of probabilities, based on the
correlation of both grey-level and distance for each pixel, to
reach the specified seeds. As demonstrated in Fig. 1(f) and
1(g), the probability of every unlabeled point reaching the
labeled points will be computed by this algorithm. Then, seg-
mentation results can be obtained by performing thresholding
on the probability map. The algorithm is summarized below,
and more details can be found in Ref. 16.

Based on graph theory, a graph consists of a pair of points,
G ¼ ðV; EÞ, with vertices set v ∈ V and edge set e ∈ E. The
weight of an edge eij has a weight wij between neighboring ver-
tices vi and vj, with intensity gi and gj. The weighting function
is given by

wij ¼ exp½−βðgi − gjÞ2�; (1)

where β is the constant for adjustment of wij. The discrete
Dirichlet integral in a region x is defined as

D½x� ¼ 1

2
xTLx; (2)

where the Laplacian matrix L is defined as

Lij ¼
8<
:

di; if i ¼ j
−wij; if vi and vj are adjacent nodes

0; otherwise

; (3)

in which Lij is indexed by vertices vi and vj and di is the degree
of vertex vi. All pixels of the same region have a similar inten-
sity, so that differentiating D½x� approximates zero. Given the
labeled points xM , the unlabeled points xU can be solved by
the discrete Dirichlet integral function

D½xU� ¼
1

2
½xTMxTU�

�
LT
M B

BT LT
U

��
xM
xU

�
: (4)

The unlabeled area, xU , can be obtained by solving a sparse
linear system in the differentiating D½xU� as follows:

200µµm
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Fig. 1 Representative B-mode OCT images. The arrow shows the coni-
cal heart chamber (CC) (a) in longitudinal orientation and (b) and (c) in
transverse orientation. The dorsal side is at the top of the images.
Squares show the heart wall in the (b) diastolic and (c) systolic
stage. (d) and (e) The process of implementation of the autosegmenta-
tion algorithm. (d) Original image, (e) Enhanced image, (f) Related prob-
ability distribution, (g) Red circle indicates the heart segmentation
result.
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LuxU ¼ −BTXM: (5)

It is only necessary to position seeds on one frame; thereafter,
the edges of the CC are automatically detected on every frame.
Figure 2 demonstrates the area inside the boundary of the heart
tube in 100 frames, where peak and trough positions represent
EDA and ESA of the Drosophila. Here, we define FS ¼
ðEDA − ESAÞ∕EDA, which represents the extent of change
in the cardiac chamber area during systole; it can provide an
estimate of the contractility of the heart tube. HP is quantified
as the time elapsed between the ends of two consecutive systoles
(i.e., at the troughs of the filtered data, as indicated by the red
line in Fig. 2). AI is defined as the standard deviation of HP,
normalized to the median HP. This parameter provides quanti-
tative representation of the arrhythmicity of the hearts of indi-
vidual flies, which is useful for comparing groups of individuals.

Furthermore, in order to automatically estimate the length of
diastole and systole, we adopted an automatic thresholding-
algorithm.17 First, we used the average value of the maximum
and minimum areas on the histogram distribution during each
heartbeat cycle as an initial estimate of the threshold T.
Then, we partitioned the area in each HP into lower and higher
groups, R1 and R2, using the threshold T. A new threshold is
then created by calculating the mean values μ1 and μ2 of the two
partitions, using the equation

T ¼ 1

2
ðμ1 þ μ2Þ: (6)

These three steps are repeated until the mean values, μ1 and
μ2, do not change in successive iterations; the optimum thresh-
old can then be chosen automatically as a result of this iterative
process. In the process, each HP is subdivided into two mean-
ingful regions; Fig. 3 demonstrates two heartbeats, where SI is
quantified as the interval during contraction (systole), which is,
in turn, defined as the time occupied when a cardiac area smaller
than the mean μ1 values of the lower group R1 are encountered.
DI is then quantified as HP minus SI.

3 Results
We first tested how inputting different numbers as seed points
and in different regions could affect the probability distribution
and the final segmentation. The representative result is shown in
Fig. 4. For comparison, Fig. 4(a) shows the segmentation results
manually measured by our expert. Figure 4(b) to 4(d) shows the
segmentation results from inputting one, two, and three seed
points, respectively, to indicate the inner margin. The right
column of Fig. 4 shows the enlarged images. For each
image, we input seed points in 20 different randomly selected
regions. Random walker segmentation resulted in the same
mean area size (5419 μm2), irrespective of whether one,
two, or three seed points were provided. The coefficients of
variation (CV), which are defined as the standard deviation
of area in percentage, normalized to the mean area, for seed
points provided in different regions were 0.13%, 0%, and 0%
for inputting one, two, or three seed points, respectively. This
indicates that the algorithm has very high precision in segment-
ing the Drosophila heart tube in OCT images.

Thereafter, we randomly selected 28 images (each with two
seed points) and compared the size of the segmentation area
with that obtained by manual segmentation. As shown in
Fig. 5(a), the correlation coefficient between automated method
and manual segmentation was 0.993, which demonstrated that
the random walker algorithm is as accurate as the manual
method in segmenting the Drosophila heart tube in OCT
images.

In order to assess whether SI and DI detection, based on the
automated thresholding algorithm, differs from that defined by
manual interpretation by an expert user, manual measurements
for DI and SI were obtained by the user adjusting the thresholds
on the histogram distribution of a segmented area (e.g., in Fig. 2,
where five representative DI and SI were measured for each fly).
Using the contraction pattern provided by M-mode OCT as an
objective assessment of heart wall motion, the user could then
finely adjust the thresholds. We randomly selected four movies
taken of one-, three-, five-, and nine-week-old flies and com-
pared the manual measurements obtained in this manner with
the output of our algorithm. Both DI and SI periods in the

Frame Number

A
re

a
(µ µ

m
2 )

10 20 30 40 50 60 70 80 90 100

1000

2000

3000

4000

EDA

ESAHP

Fig. 2 Change in area inside the segmented boundary of the heart tube
during heart contraction. Blue: original data, red: filtered data for deter-
mining positions of troughs only. HP is the time between two troughs.
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Fig. 3 Change in area inside the segmented boundary of the heart tube
in two heart periods. Horizontal lines represent the automatic thresh-
olding result. T, optimum threshold; μ2, the average of the upper
group; μ1, the average of the lower group.
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heart of Drosophila were measured manually and using the
automated thresholding algorithm. We evaluated the correlation
of the manual and automated methods using canonical correla-
tion, a statistical analysis method used to assess correlation
of two sets of variables with more than one dimension.18

Figure 5(b) shows that the maximal canonical correlation
found was 0.9989, which indicates that the algorithm defined
SI and DI as accurately as did manual measurements.

Figure 6 shows the M-mode contraction pattern, in which we
can observe the phenomenon of prolonged relaxation time and
irregular heart rhythms that occur with increasing age. In par-
ticular, flies in their ninth week of age displayed various
forms of arrhythmia. Figures 7 to 10 summarize eight heartbeat
parameters of male Drosophila w1118 derived and quantified
by our automated algorithm, in their first, third, fifth, and ninth
week, respectively. Data points represent the mean [±standard
error of the mean (SEM)] for 10 files per datum point. Figure 7
shows a significant difference both in HP and HR between
one- and three-week-old [analysis of variance (ANOVA),
P ¼ 0.003)], one- and five-week-old (ANOVA, P ¼ 0.001),
one- and nine-week-old (ANOVA, P ¼ 0.001), three- and
five-week-old (ANOVA, P ¼ 0.001), and three- and nine-
week-old flies (ANOVA, P ¼ 0.001). It was also quite clear
from our data (Fig. 8) that DI in particular increased with

Fig. 4 Segmentation results from (a) manual segmentation by our
expert, (b) to (d) semi-automated method, by inputting one, two, and
three seed points, respectively. Right column shows the enlarged
images.

Fig. 5 (a) Correlation of the segmentation results of area μm2 between
the automated and manual methods. (b) Canonical correlation results of
DI and SI using the automated thresholding and manual methods. R,
correlation coefficient.
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age, as compared to SI, with a significant difference in DI
between three- and five-week-old flies (ANOVA, P ¼ 0.001).
Moreover, the variation in DI was more obvious when compar-
ing flies in their fifth and ninth weeks; this was consistent with
Fig. 9, which shows the average AI, reflecting the age-related
increase in arrhythmicity in flies (ANOVA, P ¼ 0.007).
However, the average size for ESA remains similar across
age, while a small but statistically insignificant increase in
EDA is shown in Fig. 10(a). For this reason, no significant
decline in FS was observed, as shown in Fig. 10(b).

4 Discussion
Drosophila is an important model for investigating human heart
diseases. Automated quantification of potentially relevant
parameters from the model can replace labor-intensive manual
work and generate more objective, accurate, and comprehensive
metrics. Awidely used approach for cardiac image analysis is to
reduce complexity by using M-mode, which is the monodimen-
sional projection of the image along a line. M-mode images are
often used in echocardiography for the analysis of heart motion
dynamics.19 Previous methods6,11,12 using M-mode OCT images
were based on continuous in-depth scans in the midline of a fly’s
cardiac chamber over time; cardiac parameters, including HR,
end-diastole diameters, and end-systole diameters, are manually
measured and derived by averaging a few cardiac cycles during
a normal, regular rhythm.

Automatic segmentation of cardiac M-mode images for
identifying end-systole and end-diastole can be a challenge,

although many methods have been proposed, such as gray-
level histograms,20 fuzzy set,21 Markov random field models,
neural networks, binarization, morphology,22 and many others.
In these methods, borders are not well defined and the gray level
is not uniform. Thus, Bertelli et al.23 proposed a semi-automated
method, which segments cardiac M-mode images by using a
multiclassifier for computing cardiac parameters, such as the
ratio between the diameters in end-diastolic and end-systole,
or the ratio between diastolic and systolic durations. The
required computational time for the process is about 25 s.
Fink et al.24 used a combination of two movement detection
algorithms to track movement of heart edges from a semi-intact
Drosophila heart. The user needs to adjust the thresholds and
filters to finely tune the algorithm output, using M-mode as
an objective assessment of heart wall movements.

In this study, instead of following the segmentation of cardiac
M-mode images, cardiac parameters are measured on the basis
of changes in the whole cross-sectional area of the cardiac cham-
ber, rather than by measuring the brightness (i.e., gray level
change) between the edge of the superior and inferior walls dur-
ing mid-diastole and mid-systole in M-mode OCT images. Our
proposed semi-automated segmentation method, based on the
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Fig. 6 A representative M-mode OCT images in male Drosophila w1118

at one, three, five, and nine weeks of age.

Fig. 7 Cardiac parameters in male Drosophila w1118 at one, three, five,
and nine weeks of age showing (a) HP and (b) HR.
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random walker algorithm, can provide a unique, quality solution
that is robust to weak/noisy object boundaries.16 This is because,
according to the theory of random walker segmentation, the per-
formance of the algorithm depends on the weighting function in
Eq. (1). Noise is usually considered to be a disturbance in a local
region. This means that a region with noise has a greater inten-
sity difference between adjacent pixels than a region without
noise. The weighting function determines the influence of inten-
sity difference between adjacent pixels. It decreases the effect of
noise and increases the boundary effect. Further details and
proofs can be found in Ref. 25.

There are some other well-known segmentation methods,
such as active contours or graph cuts. Segmentation based on
active contouring26 has large time complexity and poses a
local energy minimization problem, so that the method does
not always present a correct solution, especially when segment-
ing images with a tortuous boundary or high noise levels.
Figure 1 shows images with a markedly tortuous boundary
and high noise level. Another well-known algorithm, graph
cuts,27 has been developed for automated and semi-automated
segmentation. For automated segmentation, the performance
of graph cuts is noticeably better than other methods.

However, if an insufficient number of seeds is provided in
the semi-automated segmentation, the “small cut” problem
will decrease the correctness of segmentation. Grady16 showed
that random walker segmentation can cope with images with a
tortuous boundary or high noise levels, has no local energy min-
imization problem, or “small cut” drawback, even if a small
number of seeds are used. Our data confirmed that even in
the presence of a degraded boundary, such as the cardiac
tube of Drosophila, the algorithm could perform segmentation
successfully (with a very high correlation to manual segmenta-
tion, R ¼ 0.993). We also proved that when inputting more than
two seed points, different regions of input would not affect the
final segmentation result (CV ¼ 0).

The automated thresholding algorithm is a simple and effi-
cient statistical method for computing a threshold value auto-
matically between two bimodal distributions, simply
according to their mean value. In this study, we observed that
the area distribution in diastole and systole followed a bimodal
distribution. Thus, DI and SI, based on our algorithm, could be
automatically and independently detected in each HP. This
method was validated against manual interpretation by our
expert, and the algorithm generated the SI and DI as accurately
as did manual measurements (the methods were highly corre-
lated, R ¼ 0.998). It should be noticed that there are periods
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Fig. 9 Cardiac parameters in male Drosophila w1118 at one, three, five,
and nine weeks of age showing AI.
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of time when the speckle pattern is fixed on M-mode OCT
images (Fig. 6); the rate of change of the heart segmented
area at these times is zero, so that our automated thresholding
algorithm detects “long” diastoles or systoles.

The quantitative heartbeat parameters measured using our
proposed method show that as flies age, HP lengthens
[Fig. 7(a)], resulting in an age-related decline in HR [which
is the inverse of HP; Fig. 7(b)]. We also found that the age-
dependent decrease in HR may be due to a disproportionate
increase in DI, compared to SI, with age (Fig. 8). Moreover,
the current algorithm not only measures HR but also quantita-
tively expresses the age-dependent increase of heartbeat arrhyth-
micity (i.e., AI), which may be due to large variations in DI
associated with age, particularly when comparing flies in
their fifth and ninth weeks of age (Fig. 9). These findings are
consistent with results obtained with a movement detection
algorithm by Fink et al.24 Ocorr et al.7 also suggested that
age-related cardiac dysfunction in the fly heart is due to a
decrease in the efficacy of cardiac relaxation. Since age-depen-
dent decreases in intrinsic HR, and increases in the incidence of
AI, have also been documented in humans,28–31 our observation
of the age-related changes in heart function of flies has corre-
lates in humans.

Large variations existed in both EDA and ESA within the
tested groups, which may be due to differences in size between
flies; however, use of %FS can eliminate the effect of body size.
Fink et al.24 have reported age-dependent decreases in FS.
However, in our study, no significant declines in %FS in fly
hearts were observed with age, suggesting that muscle contrac-
tility remained similar across age. Previous studies using differ-
ent cardiovascular stress methods to estimate end-systolic and
end-diastolic dimensions also failed to detect significant alter-
ations associated with aging.32,33

In this study, because the eight heartbeat parameters were
automatically detected by manually positioning two seeds
only on one frame, it only requires around 0.5 s to process a
single fly (including a minimum of 100 cardiac cycles) with
the proposed algorithm; this can be an efficient and useful
approach for high-throughput gene-screening studies in
Drosophila. Moreover, solving the solution of the random
walker segmentation according to Eq. (5) is a linear system.
Douglas et al.34 have demonstrated the design of analog circuit
implementation from a linear system. This direct correspon-
dence with analog electrical circuits opens the possibility for
hardware implementation of the random walker segmentation
algorithm. As the random walker algorithm can also operate
in three dimensions, further research, combining faster
SS-OCT scanning and more control of fly movement, may
allow heart volume segmentation.

5 Conclusion
Here, we presented an algorithm for cardiac image segmentation
with high precision and high accuracy, based on a small set of
pre-labeled pixels. Furthermore, the technique we described
here allows an optimum threshold to be chosen automatically
as a result of an iterative process. By applying the semi-auto-
mated segmentation and auto-threshold algorithm, we estab-
lished an easier and more accurate quantification method for
measuring heart parameters in Drosophila. Both algorithms
involve the use of a few empirical parameters and are expected
to perform robustly in the presence of noise. Using our
approach, we were able to show age-dependent changes in

fly heart-function, including HP increases; disproportionate
increases in DI and SI, increases in AI, and a similar %FS across
age. The combination of high-speed and successive B-mode im-
aging features of SS-OCT gives this technique potential for
automatically assessing large numbers of individuals over
significant periods of time. OCT-based automatic and rapid
quantification of cardiac parameters can facilitate future high-
throughput studies in Drosophila.
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