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Abstract. Structured illumination microscopy (SIM) is an attractive choice for fast superresolution imaging. The
generation of structured illumination patterns made by interference of laser beams is broadly employed to obtain
high modulation depth of patterns, while the polarizations of the laser beams must be elaborately controlled to
guarantee the high contrast of interference intensity, which brings a more complex configuration for the polari-
zation control. The emerging pattern projection strategy is much more compact, but the modulation depth of
patterns is deteriorated by the optical transfer function of the optical system, especially in high spatial frequency
near the diffraction limit. Therefore, the traditional superresolution reconstruction algorithm for interference-
based SIM will suffer from many artifacts in the case of projection-based SIM that possesses a low modulation
depth. Here, we propose an alternative reconstruction algorithm based on image recombination transform, which
provides an alternative solution to address this problem even in a weak modulation depth. We demonstrated the
effectiveness of this algorithm in the multicolor superresolution imaging of bovine pulmonary arterial endothelial
cells in our developed projection-based SIM system, which applies a computer controlled digital micromirror
device for fast fringe generation and multicolor light-emitting diodes for illumination. The merit of the system
incorporated with the proposed algorithm allows for a low excitation intensity fluorescence imaging even
less than 1 W∕cm2, which is beneficial for the long-term, in vivo superresolved imaging of live cells and tissues.
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1 Introduction
In the past decades, fluorescence microscopy has evolved
toward superresolution imaging.1–7 Structured illumination
microscopy (SIM),8–11 as one of the most promising superreso-
lution techniques, possesses the merits of a high framing rate
and low excitation intensity, compared to the stimulated
emission depletion microscopy (∼800 MW∕cm2),12 the revers-
ible saturable optical fluorescence transition microscopy
(∼1.7 MW∕cm2),13 and the saturated SIM (∼8 MW∕cm2).14

SIM in its linear form can increase the imaging resolution by
a factor of two beyond the traditional wide-field microscopy
when illuminating through the imaging objective lens. In this
approach, a periodic sinusoidal fringe illumination with a spatial
frequency close to the diffraction limit is adopted to shift the
unresolved high-frequency features of the sample to the optical
transfer function (OTF) domain of the objective lens. In addi-
tion, speckle-based SIM,15,16 instant SIM,11,17 and other forms
of SIM18 are presently gaining increasing interest. These tech-
niques further enrich the theory and address parts of the
limitations of traditional SIM. Nevertheless, the maximum
resolution extension of SIM is only twofold over the conven-
tional microscopy. Further improvement of resolution can be
realized by utilizing the nonlinear response of fluorescence

molecules, such as saturated excitation (SE)14,19 or a photo-
switchable (PS)20,21 mechanism. In practice, the SE-based
nonlinear SIM requires high excitation intensity to satisfy the
saturation condition that may harm the biological activity of
living samples. For the PS-based nonlinear SIM, a relatively
low intensity is permitted to activate the PS effect, but the
photostability requirement for fluorescent dyes dramatically
increases. Recently, the PS fluorescent protein was used in
the PS-based nonlinear SIM technique developed by Betzig
et al. to achieve 45- to 62-nm resolution.21 As the nonlinear
SIM demands high excitation intensity or special fluorescent
dyes with much more raw images required than the linear
SIM, they also used a 1.7-NA objective to achieve 84-nm res-
olution under the linear total internal reflection fluorescence
(TIRF)-SIM mode. Due to the advantages of low excitation
power and high imaging speed, the linear SIM is still an
ideal choice for dynamic imaging of living cells.

The generation and rapid phase control of high-quality fringe
patterns is the key requirement in hardware for the SIM tech-
nique. This can be done by employing spatial light modulators
(SLM), such as liquid crystal on silicon SLM, to generate adjust-
able orientation fringes by interference of two beams diffracted
from the phase gratings addressed on the SLM.22 However,
for maximal interference contrast, additional polarization con-
trol to maintain s-polarization for different fringe orientations
is technically demanded, which often makes the optical configu-
ration more complex. In addition, the high coherence of a laser
beam inevitably produces speckle noises, which will seriously
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degrade the image quality. Although dynamic averaging of the
speckle noise using a rotating diffuser or random waggling of
the homogenizers such as a multimode fibers phase modulator
will produce a smooth image, it will also limit the image acquis-
ition speed and increase the complexity of the system. To
address these limitations, we previously developed a micromir-
ror device (DMD)-based light-emitting diode (LED)-illumina-
tion SIM system.23,24 In that approach, a binary fringe pattern
loaded on DMD is demagnified and projected onto the speci-
men. The higher orders of spatial frequencies of the binary
fringe are naturally blocked off due to the low-pass filtering
effect of the objective lens, leading to a sinusoidal fringe illu-
mination in the sample plane. The DMD projection and
LED-illumination system have a few advantages, including
no polarization control, high throughput, ease of multiwave-
length switching, and free of speckle-noise. However, it should
be noticed that the modulation depth of the sinusoidal fringe
illumination projected on the specimen is determined by the
OTF of the objective, which makes it decrease with the increase
of the fringe frequency and the imaging depth. The low modu-
lation depth of patterns will affect the quality of the final recon-
structed images. So, the image reconstruction algorithm is an
important issue for high-quality superresolution image retrieval.
In this process, it is crucial to precisely determine the parameters
of the fringe illumination pattern, especially the initial phase
estimation.25 Incorrect initial phase estimation will seriously
affect the superresolution result and leads to additional artifacts.
Shroff et al.26 have presented a method for estimating the pattern
phase by analyzing the phase of peaks (POP) of the delta func-
tion in the spectral space of spatial frequency of the captured
image. It is a commonly used algorithm in superresolution
image reconstruction for the linear SIM.27,28 However, for
high-frequency or low modulation depth illumination patterns,
this algorithm is less reliable. Wicker et al.29,30 have proposed
two alternative methods based on iterative cross-correlation and
noniterative auto-correlation reconstruction (ACR) algorithms,
respectively. These algorithms predominantly circumvent the
limitation of the POP method in the condition of a high-fre-
quency illumination pattern. Nevertheless, for a low modulation
depth illumination pattern, they did not provide a detailed dis-
cussion. In short, although the DMD-projection-based LED-
illumination SIM system successfully addresses parts of limita-
tion arising from the liquid crystal spatial light modulator-based
laser-illumination SIM system, the optimal reconstruction algo-
rithm still remains a question especially at low modulation depth
of illumination patterns to keep the fidelity of the superresolu-
tion image.

In this paper, we propose a reconstruction algorithm based on
an image recombination transform (IRT) scheme to determine
the initial phase accurately and simplify the process of
extracting the high-order spectral components as well. The pre-
cise solution of the initial phase can be obtained without any
approximate conditions even at a very low modulation depth
of fringe illumination. The IRT algorithm does not contain an
iterative operation, which makes the whole reconstruction proc-
ess fast and automatic. The validity of the IRT algorithm is dem-
onstrated by imaging the bovine pulmonary arterial endothelial
(BPAE) cells in our built DMD-projection-based, multicolor-
LED-illumination SIM system. The merit of the system incor-
porated with the proposed algorithm allows for fluorescence
imaging at excitation intensity as low as 1 W∕cm2 using the
LED light source, which represents a great decrease in excitation

intensity compared to existing SIM systems (e.g., 30 to
100 W∕cm2).21 The IRT algorithm can also be applied for
the laser interference-based SIM as a substitution of the POP
algorithm.

2 Theoretical Analysis
Considering a specimen characterized by a spatial distribution of
fluorophores density SðrÞ, it is illuminated by a cosine fringe
intensity pattern IðrÞ with the form

EQ-TARGET;temp:intralink-;e001;326;652IðrÞ ¼ I0½1þm · cosð2πp · rþ φ0Þ�; (1)

where p and φ0 are the spatial frequency and the initial phase of
the cosine fringe pattern, I0 and m are the mean intensity and
modulation depth, respectively. In linear SIM, the in-focus por-
tion SinðrÞ of the specimen is modulated by the structured illu-
mination patterns IðrÞ and the fluorescence emission intensity
EinðrÞ is in linear response to the excitation light. Thus, we have
EQ-TARGET;temp:intralink-;e002;326;555EinðrÞ¼ IðrÞ ·SinðrÞ¼ I0½1þm · cosð2πp · rþφ0Þ� ·SinðrÞ:

(2)

The captured fluorescence image by the detector can be
described as a convolution of the emission fluorescence inten-
sity and the point spread function (PSF) of the microscope.
Thus, the in-focus image DinðrÞ formation is mathematically
expressed as
EQ-TARGET;temp:intralink-;e003;326;456

DinðrÞ ¼ EinðrÞ ⊗ HðrÞ ¼ fI0½1þm · cosð2πp · rþ φ0Þ�
· SinðrÞg ⊗ HðrÞ; (3)

where HðrÞ represents the PSF of the microscope and the sym-
bol ⊗ denotes a convolution operation. Since the high spatial
frequency excitation pattern attenuates very fast with defocus
in the projection-type SIM, only the in-focus portion of the
image is modulated, while the out-of-focus region is out of
modulation.31 Therefore, the out-of-focus projection in the
detected plane can be simplified as a nonmodulation item
BoutðrÞ. Then, the final detected image can be rewritten as
EQ-TARGET;temp:intralink-;e004;326;318

DðrÞ ¼ DinðrÞ þ BoutðrÞ
¼ fI0½1þm · cosð2πp · rþ φ0Þ� · SinðrÞg
⊗ HðrÞ þ BoutðrÞ: (4)

In the frequency domain, the spectrum of the detected image can
be obtained by making a Fourier transform to Eq. (4)
EQ-TARGET;temp:intralink-;e005;326;229

D̃ðkÞ ¼ I0½S̃inðkÞ ⊗ δðkÞ þ m
2
S̃inðkÞ

⊗ δðkþ pÞe−iφ0 þ m
2
S̃inðkÞ ⊗ δðk − pÞeiφ0 �H̃ðkÞ

þ B̃outðkÞ
¼ I0½S̃wðkÞ þ

m
2
· S̃inðkþ pÞe−iφ0 þ m

2

· S̃inðk − pÞeiφ0 � · H̃ðkÞ; (5)

with S̃wðkÞ ¼ S̃inðkÞ·H̃ðkÞþB̃outðkÞ
H̃ðkÞ .

The frequency distribution of S̃inðkþ pÞ and ~Sinðk − pÞ is
the unresolvable high-frequency features of the sample and
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shift to the support of the OTF, H̃ðkÞ. Generally, in the
reconstruction procedure of SIM, three raw images are taken
with the fringe phase shifted by 2π∕3 between adjacent images.
Combined with the deconvolution operation,32,33 the unresolved
high-frequency features can be solved by Eq. (6) and only
the frequency component S̃wðkÞ contains the out-of-focus
information

EQ-TARGET;temp:intralink-;e006;63;6752
64
D̃1ðkÞ
D̃2ðkÞ
D̃3ðkÞ

3
75 ¼ I0HðkÞ

2
64
1 m

2
e−iφ0 m

2
eiφ0

1 m
2
e−iðφ0þ2π∕3Þ m

2
eiðφ0þ2π∕3Þ

1 m
2
e−iðφ0−2π∕3Þ m

2
eiðφ0−2π∕3Þ

3
75

×

2
64
S̃wðkÞ
S̃inðkþ pÞ
S̃inðk − pÞ

3
75: (6)

To effectively extract the unresolved high-frequency informa-
tion, the illumination pattern parameters of p, m, and φ0 should
be precisely determined, especially for the initial phase φ0,
because it is included in the exponential term of the matrix.
A small estimation error of φ0 will result in a serious artifact
in the reconstructed image.

Shroff et al.26 have proposed the POP algorithm for estimat-
ing the initial phase, in which they analyze the value of the
Fourier image at the pattern peak (i.e., k ¼ p) with the form

EQ-TARGET;temp:intralink-;e007;63;461D̃ðpÞ¼ I0½S̃wðpÞþ
m
2
· S̃inð2pÞe−iφ0 þm

2
· S̃inð0Þeiφ0 � · H̃ðpÞ:

(7)

It is noticed that when the out-of-focus background is weak, the
frequency distribution of ~SwðkÞ is able to be approximated to the
in-focus frequency distribution ~SinðkÞ. If the power spectrum of
the sample decreases sufficiently fast with growing frequency
and also the modulation depth and the magnitude of OTF,
H̃ðpÞ, are sufficiently large, then the third term of Eq. (7)
will be much larger than the remaining terms. In this case,
we can ignore the small contribution of the first two terms in
Eq. (7), and get the approximation of

EQ-TARGET;temp:intralink-;e008;63;310D̃ðpÞ ≈ m
2
· I0S̃inð0ÞH̃ðpÞ · eiφ0 : (8)

For any real valued samples and real PSF with symmetrical dis-
tribution, the center frequency component S̃inð0Þ and the OTF
value ~HðpÞ will be real. So, the phase contribution to Eq. (8)
will only come from eiφ0 . Hence, the initial phase can be esti-
mated by solving the phase of this peak

EQ-TARGET;temp:intralink-;e009;63;216φ0 ≈ arg½D̃ðpÞ�: (9)

The POP algorithm works well when all the above assump-
tions are fulfilled. For example, in the TIRF-SIM where the fluo-
rescence excitation is generated in a thin volume with a depth
typically below 200 nm, this excitation scheme has a very weak
background and the POP algorithm can provide good precision
in estimating the initial phase and separating the components
well. However, in some cases, such as an existing strong back-
ground, or having a weak modulation depth or high-frequency
illumination pattern, the POP algorithm cannot give an appro-
priate result.29,30

To address the limitation of the POP algorithm, here, we
employ the phase shift between two adjacent images by π∕2
rather than the commonly used value of 2π∕3. Using Eq. (4),
we can easily obtain the expression of the three captured images

EQ-TARGET;temp:intralink-;e010;326;708

D1ðrÞ ¼ fI0½1þm · cosð2πp · rþ φ0Þ� · SinðrÞg
⊗ HðrÞ þ BoutðrÞ;

D2ðrÞ ¼ fI0½1 −m · sinð2πp · rþ φ0Þ� · SinðrÞg
⊗ HðrÞ þ BoutðrÞ;

D3ðrÞ ¼ fI0½1 −m · cosð2πp · rþ φ0Þ� · SinðrÞg
⊗ HðrÞ þ BoutðrÞ: (10)

Because the intensity of the out-of-focus background BoutðrÞ
remains a constant, we can subtract two adjacent phase-shifted
raw images to eliminate the background contribution

EQ-TARGET;temp:intralink-;e011;326;557

D12ðrÞ¼D1ðrÞ−D2ðrÞ

¼
ffiffiffi
2

p
m ·I0 ·

��
cosð2πp ·rþφ0Þcos

π

4

þsinð2πp ·rþφ0Þsin
π

4

�
·SinðrÞ

�
⊗HðrÞ

¼
ffiffiffi
2

p
m ·I0½cosð2πp ·rþφ0−π∕4Þ ·SinðrÞ�⊗HðrÞ;

(11)

EQ-TARGET;temp:intralink-;e012;326;439

D23ðrÞ¼D2ðrÞ−D3ðrÞ

¼−
ffiffiffi
2

p
m · I0 ·

��
sinð2πp · rþφ0Þcos

π

4
−cosð2πp · r

þφ0Þsin
π

4

�
·SinðrÞ

�
⊗HðrÞ

¼−
ffiffiffi
2

p
m · I0½sinð2πp · rþφ0−π∕4Þ ·SinðrÞ�⊗HðrÞ:

(12)

Then, we recombine a complex image by setting D12ðrÞ as the
real part and D23ðrÞ as the imaginary part, respectively,

EQ-TARGET;temp:intralink-;e013;326;302DcðrÞ ¼ D12ðrÞ − i · D23ðrÞ
¼

ffiffiffi
2

p
½m · I0ei·ð2πprþφ0−π∕4Þ · SinðrÞ� ⊗ HðrÞ: (13)

The Fourier transform of the recombined complex image is
presented in the form

EQ-TARGET;temp:intralink-;e014;326;231D̃cðkÞ ¼
ffiffiffi
2

p
mei·ðφ0−π∕4Þ · I0S̃inðk − pÞ · H̃ðkÞ: (14)

Substituting k ¼ p into Eq. (14), we obtain

EQ-TARGET;temp:intralink-;e015;326;190D̃cðpÞ ¼ AðpÞ · eiðφ0−π∕4Þ; (15)

where AðpÞ ¼ ffiffiffi
2

p
m · I0S̃inð0Þ · H̃ðpÞ. As discussed above,

AðpÞ is real valued in the condition of real sample and symmet-
rical real PSF. Thus, the initial phase can be solved by

EQ-TARGET;temp:intralink-;e016;326;124φ0 ¼ arg½D̃cðpÞ� þ π∕4: (16)

It should be mentioned that if the noise is too high, the estima-
tion will be disabled. After solving D̃cðpÞ, one side of the
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unresolved high-frequency component can then be simply
extracted by Eq. (14)

EQ-TARGET;temp:intralink-;e017;63;730S̃inðk − pÞ ¼ ei·argfD̃cðpÞg · D̃cðkÞffiffiffi
2

p
mI0H̃ðkÞ : (17)

Similarly, we can construct a conjugate image of the complex
image DcðrÞ. Then, the other side of the unresolved high-
frequency component can also be extracted in the following
expression:

EQ-TARGET;temp:intralink-;e018;63;639S̃inðkþ pÞ ¼ ei·arg½D̃ccð−pÞ� · D̃ccðkÞffiffiffi
2

p
mI0H̃ðkÞ ; (18)

where D̃ccðkÞ ¼ FTfD�
cðrÞg, argf ~DcðpÞg ¼−argf ~Dccð−pÞg

−π∕2, FT and the symbol * denote the Fourier transform and
the conjugation operation, respectively. Also, the wide-field
component is easy to acquire by the Fourier transform of the
sum of D1ðrÞ and D3ðrÞ. In summary, the IRT algorithm first
determines the initial phase by Eq. (16) and then subsequently
retrieves the unresolved high-frequency components by
Eqs. (17) and (18). After shifting the components to the correct
positions and making deconvolution with the generalized
Wiener filter, the final extended spectrum can be obtained,
and then by taking an inverse Fourier transform, the superre-
solved image can be reconstructed.

Compared to the POP algorithm described by Eq. (9), the
proposed IRT algorithm can provide a precise solution of the
fringe initial phase without the assumptions of weak background
and high modulation depth. In addition, the IRT algorithm can
directly solve the unresolved in-focus high-frequency compo-
nents of S̃inðkþ pÞ and S̃inðk − pÞ by Eqs. (17) and (18), avoid-
ing having to solve the matrix equation of Eq. (6).

3 Numerical Simulation
To verify the validity and feasibility of the IRT method, we first
make a numerical simulation. In the simulation, the fringe
illumination pattern is projected onto the sample through an
oil-immersed objective (100×, NA ¼ 1.49, n ¼ 1.515). The
fluorescence signal (emission wavelength at 461 nm) is col-
lected by a digital camera (2048 × 2048 pixels, pixel size
6.5 μm × 6.5 μm). The virtual object and its Fourier transform
spectrum are shown in Figs. 1(a) and 1(b), respectively.

According to the Abbe’s diffraction limit equation, the mini-
mum period of the projection fringe is 155 nm at λ ¼ 461 nm
with objective of NA ¼ 1.49. The initial phase estimation error
under the condition of low modulation depth ranging from 0.001
to 0.12 with the fringe period of 193 and 156 nm are calculated
by the POP, ACR, and IRT algorithms, respectively, as shown in
Fig. 2. In theory, the phase error of the IRT algorithm should be
zero in the absence of noise. The phase errors of the POP and
ACR algorithms increase rapidly when the modulation depth is
below 0.04 and 0.02, respectively, even without noise contribu-
tion, while the IRT algorithm always retains a relatively high
precision over the whole range of the modulation depth.
Considering Poisson noise is the predominant type of noise
in low intensity images, we first add the Poisson noise in sim-
ulation [Figs. 2(a) and 2(c)] for comparing the performance of
different algorithms. In this case, the maximal phase errors of
the POP, ACR, and IRT algorithms read 7.9 deg, 7.3 deg,
and 0.2 deg, respectively, at the period of 193 nm, corresponding
to 80% of the maximum frequency supported by the OTF. When
the fringe period decreases to 156 nm, approximating to the dif-
fraction limit of the simulated system, the maximal phase errors
of the POP algorithm increases up to 61 deg at the modulation
depth of 0.001. On the other hand, the major contribution of
electronic noise is mostly the Gaussian distribution. Thus, the
comparison for the phase errors with Gaussian noise is also
simulated in Fig. 2. The variances of the noise distribution
are set to 0.001 [Figs. 2(b) and 2(d)]. Note that the sample spec-
trum signal is so weak at the OTF edge that the Gaussian noise
becomes a major contribution. Therefore, the error curves fluc-
tuate strenuously with the fringe period decreasing in the pres-
ence of Gaussian noise. In that condition, the IRT algorithm still
can provide a relatively acceptable result, especially at the fringe
period of 193 nm.

In short, for raw images with high modulation depth, all the
algorithms are able to give a good performance in reducing
the phase error. But in the condition of low modulation
depth, only the IRT algorithm can estimate the initial phase with
the best precision. However, similar to the other algorithms,
if the noise is too strong, the IRT algorithm may not guarantee
an acceptable precision of the initial phase.

To make a superresolution image reconstruction of SIM,
three orientations of illumination fringes at 0 deg, 60 deg,
and 120 deg are performed at the fringe period of 156 nm.
The reconstructed images of the simulated object are shown

Fig. 1 (a) Virtual object and (b) its Fourier transform spectrum. Scale bar: (a) 5 μm and (b) 2 μm−1.
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in Fig. 3 with different algorithms at different modulation depth
of fringe for comparison. Figure 3(a) is the wide-field image
and its central region marked by a dashed box is magnified.
Figures 3(b)–3(d) are the corresponding magnified super-
resolution images reconstructed by the IRT algorithm,
Figs. 3(e)–3(g) and 3(h)–3(j) are corresponding to the ACR
algorithm and the POP algorithm. The Fourier spectra of
each reconstructed image are displayed at the top-right corners
of the magnified images. It can be seen that all of the algorithms
can successfully extend the support of the OTF in the frequency
domain and enhance the spatial resolution of the image. How-
ever, with the decrease of the modulation depth, it is more and
more difficult for the POP algorithm to separate the components
well, and thus some residual errors come into being because of
the estimation error of the initial phase. As previously specu-
lated, owing to the incorrect spectrum expansion, a series of
wave-like artifacts appear in the reconstructed images. This is
particularly evident in Fig. 3(h). On the other hand, although
the ACR algorithm is an effective method for phase estimation,
the reconstruction process is time-consuming compared to the
POP and IRT algorithms. Meanwhile, when the modulation

depth is less than 0.01, a slight wave-like artifact also appears
in the reconstructed image. In contrast, the IRTalgorithm always
retains a good performance even under low modulation depth, as
seen in Fig. 3(b). When the modulation depth increases to more
than 0.1, all of the algorithms give the same results.

4 Experiments and Results
To further prove the applicability of the IRT algorithm, we used
our developed DMD-projection-based LED-illumination SIM
system23,24 to carry out the following experiment. The scheme
of the SIM system is shown in Fig. 4. A four-wavelength high-
power LEDs assembly (LED4D251, Thorlabs Inc.) with switch-
able wavelengths of 405, 470, 565, and 625 nm is employed as
the illumination source for multiwavelength excitation. The
LED light enters the TIR-Prism and is reflected to the DMD
chip (DLP7000UV, Texas Instruments Inc.), where the fringe
pattern is loaded. The light modulated by the DMD passes
through a demagnifying optical system, consisting of a collimat-
ing lens, and a 100× objective (Apo TIRF, NA1.49, Nikon Inc.,
Japan), to produce a sinusoidal fringe illumination projected

Fig. 2 Simulation of initial phase estimation error under low modulation depth of illumination fringe at the
period of (a) and (b) 193 nm and (c) and (d) 156 nm. For analyzing the influence of noises, the simulated
images are degraded with (a) and (c) Poisson noise and (b) and (d) Gaussian noise with the variance of
0.001, respectively. In the presence of weak noises, the IRT algorithm exhibits excellent performance for
low modulation depth.
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onto the specimen. A quad-band filter set (including a 390/482/
563/640 nm quad-band bandpass excitation filter, a 446/523/
600/677 nm quad-band bandpass emission filter, and a R405/
488/561/635 nm quad-edge dichroic beamsplitter, Semrock
Inc.) are used to separate the excitation lights and the emission
fluorescence signals. A sCMOS camera with a maximum full-
frame rate of 100 fps (Orca Flash4.0, 2048 × 2048 pixels,
16 bits gray depth, Hamamatsu Inc., Japan) is used to capture
the two-dimensional image. The phase shifts of the fringe are
controlled by the DMD chip without mechanical movement.
If the fringe period is designed to occupy N pixels on the
DMD chip, the minimum value of the phase shift will be

2π∕N. Thus, to achieve a π∕2 phase shift, just setting four pixels
per period on the DMD chip, the illumination fringe phases
corresponding to φ0, φ0 þ π∕2, and φ0 þ π, will be obtained,
respectively. In order to achieve a high imaging speed and a
simplified pattern design, we apply only two perpendicular
illumination fringe orientations in the experiment. Nevertheless,
it is possible to generate multiorientation illuminations with
specifically designed illumination patterns.

The photobleaching and phototoxicity effects have con-
stantly been obstacles to long-term observation of living cells
in fluorescence microscopy. The high excitation intensity will
accelerate the photobleaching of fluorescent molecules and

Fig. 3 Reconstructed images of the simulated object using different methods at different modulation
depth of fringe illumination. (a) The wide-field image and its magnified central part of the dashed
boxed region. (b)–(g) The corresponding magnified superresolution images reconstructed by the IRT
algorithm (b)–(d), the ACR algorithm (e)–(g) and the POP algorithm (h)–(j) at different modulation
depth for comparison of the reconstructed image quality. The Fourier spectra of each reconstructed
image are illustrated at the top-right corners, respectively. Compared to the wide-field image, all of
the reconstruction methods are able to enhance the spatial resolution. However, with the decrease
of the modulation depth, the reconstructed image by the POP algorithm produces more artifacts,
while the IRT algorithm always retains a satisfactory performance. Scale bar: (a) 5 μm and
(b)–(g) 500 nm.

Fig. 4 Schematic of the DMD-projection-based LED-illumination SIM system. LED: multiwavelengths
of 405 nm∕470 nm∕565 nm∕625 nm; DMD: maximal binary pattern rate of 32 kHz at 1024 × 768 pixels
with a pixel pitch of 13.68 μm; excitation filter: quad-band bandpass of 390� 22 nm∕482� 11 nm∕563�
7 nm∕640� 10 nm; dichroic: quad-edge reflection bands of 370 to 410 nm∕473 to 491 nm∕559 to
568 nm∕633 to 647 nm; detection filter: quad-band bandpass of 446� 18 nm∕523� 23 nm∕600�
20 nm∕677� 17 nm; objective: 100 × ∕NA 1.49; camera: maximum frame rate of 100 fps at
2048 × 2048 pixels with a pixel pitch of 6.5 μm.
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be harmful to specimens.34 The excitation intensities for the
existing SIM systems (e.g., 30 to 100 W∕cm2) are usually
much stronger than that of the wide-field or light-sheet micros-
copies. In this experiment, we could image at intensities as low
as 1 W∕cm2, which is close to the life evolved condition

(0.1 W∕cm2).35 This makes the system more suitable for bioi-
maging of low excitation intensities and long-term observation
of specimens.

To demonstrate the feasibility of the IRT algorithm for the
projection-based SIM, we employ the trichrome-stained BPAE

Fig. 5 (a) The reconstructed superresolution image of F-actin in BPAE cells without artifacts by the IRT
algorithm. For comparison, the magnified views of the dash-boxed region in (a) by different methods are,
respectively, shown in (b)–(e), and the corresponding Fourier spectra are shown in (f)–(i). Some of
residual components [indicated by pale-green circles in (g) and (f)] appear in the Fourier spectrum
with the ACR algorithm and the POP algorithm, resulting in some unwanted information in the recon-
structed image (c) and (d). In contrast, the IRT algorithm separates the components well in the
Fourier spectrum (i), and thus effectively avoid artifacts and obtain a clear image (e). Scale bar:
(a) 3 μm and (b)–(e) 1 μm.

Fig. 6 Superimposed images of the trichrome-stained BPAE cells reconstructed by different methods.
(a) Deconvolution wide-field image, (b) superresolution image reconstructed by the POP algorithm,
(c) superresolution image reconstructed by the ACR algorithm, (d) superresolution image reconstructed
by the IRT algorithm. (e)–(h) The magnified views of the dash-boxed regions, respectively. Mitochondria
are rendered in red, F-actins are rendered in green and nuclei are rendered in blue. Scale bar:
(a)–(d) 5 μm and (e)–(h) 500 nm.
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cells (F36924, Thermo Fisher Scientific Inc.) as the specimen,
which are labeled with MitoTracker Red CMXRos for
Mitochondria, Alexa Fluor 488 phalloidin for F-actin, and
DAPI for nuclei. The cells are sequentially illuminated using
the excitation wavelengths of 405, 470, and 565 nm to achieve
multicolor images. In this experiment, the modulation depth of
the fringe is measured to be 0.046. Figure 5(a) shows a high-fidel-
ity superresolution image of the F-actin obtained by the IRTalgo-
rithm. By applying the POP algorithm to process the same raw
data, some unwanted residues appear in the Fourier spectrum as
indicated by the pale-green circles in Fig. 5(g), resulting in some
artifacts in the reconstructed image of Fig. 5(c). Compared to the
POP algorithm, the ACR algorithm obtains an improvement in
artifacts suppression and the residual fringes are hardly seen in
its reconstructed image [Fig. 5(d)]. But there still exist a few
extra components in the Fourier spectrum [Fig. 5(h)], leading
to the reduction of image quality. In terms of computation
time, the POP, ACR, and IRT algorithms take 2.97, 9.65, and
3.02 s, respectively, to calculate one superresolution image from
six raw images (2048 × 2048 pixels) using a personal computer
(Intel Core i7-4790K 4 GHz processor and 32 GBRAM) with the
MATLAB software (R2013a) operating under Windows 7 (SP1)
x64. Similar experimental results of superimposed tricolor images
of BPAE cells are shown in Fig. 6. Here, the mitochondria are
rendered in red, the F-actins are rendered in green, and the nuclei
are rendered in blue. By the POP algorithm, the F-actin and mito-
chondria exhibit some extra stripes in the reconstructed images
[Figs. 6(b) and 6(f)]. These artifacts may confuse the scientific
evaluation of biological morphology. However, in the IRT super-
resolution images [Figs. 6(d) and 6(h)], such residual stripes are
not observed and the image qualities are better than the ACR
images shown in Figs. 6(c) and 6(g). This once again proves that
the IRT algorithm is a robust and high-accuracy reconstruction
method for superresolution imaging.

Although the IRT algorithm is immune to the modulation
depth of the illumination fringe, it should be noticed that the
noise in the captured structured illumination images is another
challenge to the accurate determination of the initial phase. In
fact, when the image noise is too high, Eq. (15) cannot be strictly
tenable, because the noise contribution must be considered. As a
result, the solution of the initial phase of Eq. (16) will contain a
phase error. So, obtaining a high signal-to-noise ratio (SNR) of
structured illumination images is crucial for increasing the accu-
racy of initial phase determination. In our system, we use a high
sensitivity sCMOS camera with 16 bits gray depth to capture
high SNR images, which guarantees obtaining high-fidelity
superresolution images. Based on the potential advantages of
the DMD-projection-based LED-illumination SIM system,
incorporated with the proposed IRT superresolution algorithm,
future work will be extended to fast multicolor live-cell imaging
and object tracking.

5 Conclusion
We have proposed an IRT superresolution image reconstruction
algorithm for SIM. Compared to the traditional POP algorithm
and the ACR algorithm, the IRT algorithm can obtain the initial
phase of fringe with high precision, and extract the high-order
spectral components without matrix operation. Numerical sim-
ulations show that the IRT algorithm always keeps a higher
precision of initial phase estimation than the POP algorithm.
The immunity of the IRT algorithm against the modulation
depth of fringe patterns and the high precision of initial phase

determination enable reconstructing an artifact-free superresolu-
tion image as long as the SNR of the captured images is reason-
ably high. We have proved the feasibility and reliability of the
IRT algorithm by employing it in our built DMD-projection-
based, multicolor-LED-illumination SIM system to image the
BPAE cells at low excitation intensity. The experimental results
demonstrate that the IRT method can effectively avoid artifacts
to produce high-fidelity superresolution images. The IRT algo-
rithm is applicable in either the projection-based SIM or the
interference-based SIM.
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