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Abstract. The red fluorescence of dental plaque originating from porphyrins in oral bacteria may allow visuali-
zation, detection, and scoring of plaque without disclosing agents. Two studies were conducted. The first
included 24 healthy participants who abstained from oral hygiene for 24 h. Dental plaque was collected
from tooth surfaces, and a 10% solution was prepared. These were scanned by a molecular spectrometer
to identify the optimum excitation and emission wavelengths of plaque for developing a red fluorescence imaging
system. Fourteen healthy subjects completed the second study. After a washout period (1 week), participants
had a prophylaxis at baseline and abstained from oral hygiene during the study. They were monitored using the
fluorescence imaging system at baseline, 24 h, and 48 h. A dentist clinically assessed plaque after disclosing
and on red fluorescence images. Three descriptors were extracted from images and a RUSBoost classifier
derived computer fluorescence scores through cross-validation. Red fluorescence plaque levels increased dur-
ing the 48-h accumulation. Plaque progression was identified by dentist assessment and computer analysis,
presenting significant differences between visits at tooth and subject levels (p < 0.05). Moderate correlations
showed between clinical plaque and red fluorescence plaque (r ¼ 0.62 dentist, r ¼ 0.55 computer). The best
agreement was observed when disclosing plaque threshold at level 2, for both dentist evaluation (sensitivity
71.1%, specificity 67.7%, accuracy 70.2%) and computer classification (sensitivity 68.4%, specificity 62.9%,
accuracy 67.1%). Given the correlation with clinical diagnosis, red fluorescence imaging shows its potential
for providing an objective and promising method for proper oral hygiene assessment. © 2017 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.9.096008]
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1 Introduction
The accumulation of dental plaque may cause tooth decay and
gum diseases as a result of the accumulation of bacteria.1

Therefore, the removal of dental plaque is crucial for maintain-
ing oral health.

Human examination still plays a dominant role in the clinical
identification of dental plaque by using disclosing solutions
combined with index scales based on attributes such as the
plaque area and its thickness.2 However, human visual assess-
ments are subjective and often inconsistent, which generates
difficulty in comparing results between baselines and follow up
diagnosis. The use of disclosing agents may stain soft tissue,
which could decrease specificity and cause esthetic concerns.
An objective and noninvasive method to detect and quantify
dental plaque, especially at the early stage of its formation,
would be of value in dentistry.

Autofluorescence imaging has been used for the detection of
tooth defects, such as differences in mineralization, due to the
intrinsic fluorescence characteristics of teeth when irradiating
with blue light.3 It showed diagnostic values to support the clini-
cal diagnosis of caries lesions and fluorosis.4–6 Red fluores-
cence, generally believed to originate from porphyrins produced
by bacterial metabolites in the anaerobic plaque,7,8 has been
used for dental plaque monitoring without disclosing solutions.

Two types of autofluorescence imaging systems, including
Sopro camera by Acteon9 and a quantitative light-induced fluo-
rescence digital (QLF-D) system,10 were reported to apply for
the plaque detection in the literature. Rechmann et al.11 used
Soprocare camera to evaluate microbial plaque level and the
plaque scores output by the Soprocare assessment tool demon-
strated consistent with the clinical plaque indices. However, so
far, there is no published clinical study to monitor the plaque
progression using Sopro camera. It is therefore unclear about
the sensitivity of Sopro camera for quantifying the plaque
changes. On the other hand, two recent clinical studies10,12

employed the QLF-D system to compare the red fluorescence
plaque with the clinical plaque and showed moderate correla-
tions between them. But these works only included anterior
teeth. Neither study reported a prophylaxis step. It is ambiguous
whether the identified red fluorescence signal (especially
≤48 h) is primarily attributed from the plaque accumulated
during the experimental period or built up for a longer time.

There are three primary objectives of this cross-sectional
study: (1) to identify appropriate excitation and emission wave-
lengths of dental plaque for red autofluorescence and inform the
construction of a fluorescence imaging system that allows full
access into the human mouth; (2) to monitor the development of
dental plaque using the proposed system and compare it to clini-
cal scoring; and (3) to introduce an automatic plaque detection
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and quantification method for understanding the feasibility of
developing an objective platform for plaque assessment.

2 Materials and Methods

2.1 Plaque Collection Study

A plaque collection study was performed at the Technology
Center Colgate-Palmolive Piscataway, New Jersey, in January
2016 to understand the autofluorescence characteristics of
dental plaque. The study followed the instructions based on
the Declaration of Helsinki (2008) and with the U.S. Code of
Federal Regulations governing the protection of human subjects
(21 CFR 50) and the institutional review boards (21 CFR 56). It
was approved by Clinical Research Institutional Review Board,
Concordia, New Jersey, under the registration number CRO-
2015-1110-PLACOLL-JG.

Volunteers between 18 and 65 years old, having a minimum
of 20 natural uncrowned teeth, and in good general health, were
eligible to participate. They agreed to take part in this study by
reading and signing an informed consent form and completed an
oral hard and soft oral tissue exam, together with a general
health questionnaire form.

Participants were excluded with advanced periodontal dis-
ease (purulent exudate, tooth mobility, and/or extensive loss
of periodontal attachment or alveolar bone) and spontaneous
bleeding of the gums. Immune compromised individuals
(HIV, AIDS, immunosuppressive drug therapy), or subjects
taking medications that may affect the oral flora (e.g., use of
antibiotics 1 month prior to or during the study), were also
excluded from the study. Further exclusion criteria were five or
more carious lesions requiring immediate restorative treatment,
tumor of the soft or hard tissues of the oral cavity, abnormal
salivary function, premedication required for dental procedures,
pregnant women, or women who were breastfeeding.

A total of 24 subjects were enrolled in the study. Participants
abstained from oral hygiene at least for 24 h. During the experi-
ment, dental plaque was collected from tooth surfaces by a cer-
tified hygienist and stored in a preweighted cylindrical test tube.
Test tubes with plaque were then weighted again to determine
the plaque weight. For analysis, 90% phosphate-buffered solu-
tion was added to each test tube to create a 10% plaque sample,
and the tubes were vortexed for 1 min. The solution was then
dispensed into a 96-well microplate and scanned by the

Molecular Device SpectraMax M5 Spectrometer (Sunnyvale,
California), first in excitation mode, and then in emission
mode, to determine the optimal wavelength for generating a
maximum fluorescence intensity response. For each plaque
sample, the optimum excitation wavelength was determined
from the wavelength giving the strongest emission intensity
at 650 nm when scanning excitation spectrum from 300 to
600 nm. The optimum emission wavelength was defined as
the strongest emission response from 500 to 800 nm generated
using an excitation wavelength of 405 nm. The optimal excita-
tion and emission wavelengths for each subject were recorded
and used to calculate a mean and standard deviation across
all subjects to inform the construction of an autofluorescence
imaging system for plaque detection.

2.2 Red Fluorescence Imaging System

Based on the excitation and emission experiment described
above (results shown in Sec. 3.1), a fluorescence imaging equip-
ment was developed at Colgate Palmolive Dental Health Unit,
University of Manchester, for the acquisition of dental plaque
images of human teeth. This consisted of two parts: a handheld
imaging probe and an illumination controller.

The handheld probe allowed imaging of the full mouth.
It was comprised of a lipstick color camera (IK-UM51H 1/3”
Toshiba) fitted with a 17.5-mm focal length lens (58206
Edmund Optics), offering an effective field of view of
13.5 mm × 16.5 mm able to cover the full range of a single inci-
sor, canine, or molar. It is worth noting that the near-infrared
filter, cutting around 650 nm, was removed from the lipstick
camera to capture the red fluorescence signal in the spectrum
beyond 650 nm.

The control box included a near-UV LED centered at 405 nm
with power density of 37.1 μW∕mm2 (M405L2–UV, Thorlabs
Inc.) to provide the excitation light for red fluorescence imaging
of dental plaque. During the clinical study, participants were
provided with a pair of UV-protection glasses and dentist put
on UV-protection gloves across the whole image acquisition
process. The emission light was filtered by a 500 nm long-pass
filter (62976, Edmund Optics), which was placed in front of
the camera lens in the handheld probe.

A customized mirror tip, mounted on top of the handheld
probe, allowed the full access into human mouth for imaging

Fig. 1 Red fluorescence imaging system. (a) The whole imaging system, including imaging probe, con-
trol box, and custom software. (b) Imaging probe with excitation light turned on. Blue light reflected by
the disposable intraoral tip. (c) Imaging probe applied during clinical study.
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both anterior and posterior teeth. An air bump was connected to
the imaging probe to clear the fogging on the mirror window
caused by patient breathing during the measurement. In the
clinical study, this mirror tip was replaced for every patient
and every visit for infection control purposes.

Both the camera and illuminator were controlled by custom-
written software. Camera settings, such as gain, shutter speed,
image pixel resolution, etc., were preconfigured with a study
design. This study design was locked unchangeable throughout
the experiments. The brightness of the near-UV light was com-
puter controlled by changing the output of a current controller
that was connected to the LEDs. The light achieved ideal
brightness when the average pixel intensity of a standard
gray card reached a predefined value with a small tolerance
of �0.05 pixel intensity value. This made imaging illumination
at different times comparable. During the image acquisition, the
fluorescence images of human teeth were captured by moving
and focusing the camera at baseline. For the follow-up visit, an
edge detection overlay extracted from the baseline image was
displayed on top of the live video. This overlay guided the dentists
to reposition the imaging probe to capture the teeth areas as close
as those from baseline, so that the plaque changes shown on the
fluorescence images were comparable between visits. Figure 1
shows the red fluorescence imaging system stated above.

2.3 Plaque Detection Using Red Fluorescence
Imaging

2.3.1 Study design and study population

This cross-sectional study under the protocol number CRO-
2016-PLA-04-MIT-JG was conducted at the Technology Center
Colgate-Palmolive Piscataway, New Jersey, in August 2016.
The good clinical practice guideline, review board approval, and
the inclusion and exclusion criteria were the same as those in
the plaque collection study described in Sec. 2.1.

2.3.2 Clinical procedures

Upon completion of all enrollment requirements, participants
were provided with a tube of fluoride toothpaste (Colgate
Great Regular Flavor) and a Colgate adult soft bristle toothbrush
to brush twice daily for 1 week prior to the start of the study.

During the experiment, participants were requested to refrain
from any form of oral hygiene continuously for 48 h. Visits
were scheduled at baseline, 24 h, and 48 h. At the baseline,
subjects received a prophylaxis before the clinical and imaging
assessments.

For each visit, six red fluorescence images were captured at
the subject’s buccal surfaces of the upper first molars (16, 26),
the buccal surfaces of the upper laterals (12, 22), and the buccal
surfaces of first lower molars (36, 46) using the described red
fluorescence imaging system. All the images should be focused
and the target teeth were displayed in the image center. Next,
dental plaque was disclosed by gently applying a fluorescein
dye (Plaque Test; Ivoclar Vivadent, Liechtenstein) on the
tooth surfaces. The mouth was rinsed twice and subsequently
dried so that the fluorescein dye adhered to the areas covered
with plaque. Finally, a trained and certified dentist clinically
assessed the disclosing dental plaque by illuminating the teeth
with a blue light (Schott KL1600 LED filtered by a short-pass
filter cutting at 486 nm).

In this study, clinical disclosing plaque was scored using
the Turesky modification of the Quigley Hein plaque index
(T-QH).3 Dentist recorded “cannot access” when the disclosing
plaque was visually difficult to achieve. Three T-QH scores were
given for each tooth describing the plaque level at distal, buccal,
and mesial sites.

2.3.3 Red fluorescence plaque scores

Anonymized red fluorescence images were visually assessed by
a single trained and calibrated examiner using custom-scoring
software. T-QH was reported adaptive for use on the fluores-
cence plaque images.10,12 Considering the extent of fluorescence
plaque accumulated within 48 h after prophylaxis, a modified
T-QH, having a four point scale (0 to 3), was applied in this
study by merging the original T-QH scores 3 to 5 into one
plaque level. This red fluorescence plaque index was referred
to RFT-QH in the following context. Similar to disclosing
plaque scores, one more option, “cannot access,” was also listed
in the dropdown menu in the scoring software, to supplement
the cases when the red fluorescence plaque assessment was
not available.

During the evaluation, images were presented to the exam-
iner randomly and three RFT-QH scores were given at distal,
buccal, and mesial sites for each tooth. When finished, the
dentist reviewed the recorded fluorescence scores and made
changes if necessary. All the scores were thereafter exported
from the software for subsequent analysis.

For analysis purpose, the tooth level index was defined as the
maximum assessment among three site scores within each tooth
regardless of the index “cannot access.” The subject level score
was the average value of the tooth level indices of each patient.
Table 1 summarizes the dentist’s clinical evaluation and red
fluorescence plaque scores at site and tooth levels.

2.4 Automatic Plaque Detection and Classification
on Fluorescence Images

2.4.1 Automatic plaque detection

Associating autofluorescence characteristics with the spectral
responses of conventional RGB cameras, plaque areas present

Table 1 Summary of dentist’s clinical evaluation using disclosing
solution and dentist’s red fluorescence plaque scores based on fluo-
rescence images.

T-QH/RFT-QH

Clinical scores Dentist RFT-QH scores

Site level Tooth level Site level Tooth level

0 173 20 464 97

1 115 42 155 86

2 338 134 73 45

3 71 48 32 24

4 9 8 — —

5 0 0 — —

Cannot access 0 0 32 —

Total 756 252 756 252
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apparent higher intensity in the red channel while the healthy
teeth fluoresce green due to the intrinsic property of hard dental
tissues. Dental plaque distribution Dp therefore can be revealed
by the quotient between two spectral bands, as defined in
Eq. (2). According to the Lambertian law,13 this division cancels
out the shading effects due to tooth curvature:

EQ-TARGET;temp:intralink-;e001;63;686Dp ¼
IRed
IGreen

; (2)

where IRed and IGreen stand for the red and green channels of
the fluorescence image, respectively.

A binary mask Mp can be identified by setting threshold in
the plaque feature space Dp. Pixels having intensity above the
threshold were classified as plaque and labeled 1, and the rest of
the pixels were considered as healthy dental tissue marked 0. In
this study, the plaque feature was regulated to an interval of
0 to 5. The threshold was set to 1.0 as a constant throughout
the work, which means 20% of the intensity range in the feature
space Dp.

For a selected tooth outlined by the dentist, the average Dp

value of nonplaque pixels was considered as the intensity level
of sound adjunct enamel. Therefore, a plaque intensity measure
ΔP can be calculated for each plaque pixel within the chosen
tooth:

Fig. 2 Red fluorescence images scored 0 to 3 by the examiner at tooth level with detected plaque areas
displayed. (a)–(d) Red fluorescence images scored 0 to 3 (from top to bottom) by a certified dentist.
(e)–(h) Dental plaque distribution Dp of the selected tooth, where green/yellow color refers to small
Dp value and orange/red colour stands for large one. (i)–(l) Detected plaque areas (blue color) within
the selected tooth overlaid on top of fluorescence images.
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EQ-TARGET;temp:intralink-;e002;63;752ΔPðxÞ ¼ Dp;Mp¼¼1ðxÞ − Dp;Mp¼¼0; (3)

where x represents a plaque pixel, and Dp;Mp¼¼0 is the average
intensity of sound adjunct enamel in the plaque feature space.

A three-dimensional feature vector, including the average
plaque intensity ΔPave, the area percentage of plaque pixels
within the whole tooth δ, and their dot product ΔPave � δ,
was calculated. These features were then input into an ensemble
classifier as the diagnostic descriptors to estimate the plaque
level on each tooth.

Figure 2 shows the red fluorescence images scored 0 to 3 by
the certified dentist at tooth level with the detected plaque areas
overlaid.

2.4.2 Dental plaque classification

From Table 1, it should be noted that the number of red fluo-
rescence plaque scored 0 was approximately 10 times (464/32)
of those marked 3 at the site level and 5 times (97/24) at the
tooth level. Hence, the experimental dataset in the present
study was imbalanced. Traditional machine learning algorithms
would be ineffective at dealing with this skewed data, since
these methods tend to favor classifying observations as belong-
ing to the majority class. As such, an ensemble classifier,
random undersampling boost (RUSBoost),14 was employed to
alleviate the problem of class imbalance.

RUSBoost is a hybrid learning strategy to produce a predic-
tive model through integrating the outputs from a finite number
of weak learners (also known as base classifiers) that train for
the same task. It centers around two considerations: (1) data
sampling in order to balance the class distribution and (2) boost-
ing focusing on improving the classification performance
through iteratively creating an ensemble of weak hypotheses.

Random undersampling (RUS) randomly removes observa-
tions from majority class in the training data until a desired
class distribution is achieved. Although there is no universally
accepted rule for setting class ratios, an equal distribution of
all the classes is normally considered working well for most
applications. Adaptive boosting (AdaBoost),15 one of the most
common boosting algorithms, is an iterative process, which
aims at correcting the instances misclassified by the previous
learner in the subsequent one. Specifically, during one iteration
in AdaBoost, a hypothesis is constructed by a base classifier.
Then, the weight associating with each observation is adjusted
so that weights of misclassified observations increase and those
of correctly classified examples decrease. Therefore, previously
mislabeled data are most likely to be classified correctly in the
succeeding iteration. Upon completion, the hypotheses of test-
ing data from all weak learners are fused via a weighted vote,
and the object is assigned to the class giving the maximum
weight.

In this study, decision tree derived from C4.5 algorithm16

using an entropy-based splitting criterion was applied as the
weak learner. AdaBoost.M217 minimizing the pseudo-loss in
each iteration was the boosting method for creating an ensemble
of weak hypotheses. An equal distribution of all the classes was
achieved for training the weak learners using RUS approach,
and the number of iteration in AdaBoost was set to 100.

2.5 Experiments and Statistic Analysis

In this pilot study, a number of 25 subjects were screened, of
which 20 met the inclusion criteria and 15 were enrolled

after informed consent. One participant dropped out at 24 h
visit during the study. Hence, this paper reported the results
based on the 14 participants who followed the entire protocol.

Excluding the scores of “cannot access,” there were 756
clinical disclosing plaque scores and 724 dentist RFT-QH scores
included in the experiment. A threefold cross-validation18 was
combined with the ensemble classifier as the training and testing
strategy to derive the computer red fluorescence plaque scores at
tooth level.

The performance of plaque classification was evaluated
using confusion matrix. Sensitivity (true positive number/
number of plaque cases), specificity (true negative number/
number of healthy cases), and the total agreement (true
positive number þ true negative number∕total number)19 were
also recorded. A linear weighted kappa20 was performed to mea-
sure the level of agreement between dentist diagnosis and auto-
matic classification. Differences of computer features (plaque
intensity, plaque areas, and their product) between plaque levels
(RFT-QH) were calculated by t-test, and those between different
visits were analyzed by paired t-test.

Spearman rank correlation21 was used to determine the asso-
ciation between disclosing plaque indices with red fluorescence
RFT-QH scores and computer features. Differences of plaque
scores between visits were calculated by Wilcoxon signed-rank
test.

Based on the results derived from this pilot study, a post-hoc
power analysis22 was performed to outline the sample size
for future clinical trials. Power analysis was conducted using
the distributions of computer plaque scores for differentiating
plaque level at baseline from that after 48 h plaque
accumulation.

The automatic plaque detection and classification algorithms
were implemented using C++ under Visual Studio 2010
(Microsoft, United States), running on a platform of Intel
i7-4770 at 3.40 GHz CPU and 8GB DDR3-1600 RAM.
Statistical analysis was performed using SPSS (version 23,
IBM Inc., United States), and post-hoc power analysis was
conducted using R.

3 Results

3.1 Excitation and Emission Spectrum of Dental
Plaque

From Fig. 3, it is noted that there was little variation of the
excitation and emission spectrum of dental plaque in peak wave-
length among subjects. The average excitation peak of 24 sub-
jects was 403.79� 0.59 nm and the average emission peak was
639.75� 1.26 nm. This was consistent to the previous findings,
which claimed that porphyrins have the excitation band around
400 nm and the emission wavelength after 600 nm.7,8

3.2 Automatic Classification Accuracy of Red
Fluorescence Plaque

Table 2 shows the automatic classification results of red fluores-
cence plaque derived from the proposed methods taking the
dentist RFT-QH assessment as the reference standard. The
total classification accuracy was 62.7%, where the true positive
rates of plaque level 0 to plaque level 3 are 67%, 50%, 68.9%,
and 79.1%, respectively. A moderate agreement showed
between dentist RFT-QH scores and computer RFT-QH scores
with a linear weighted kappa of 0.594.
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Figure 4 demonstrates the distributions of computer features
at different plaque levels (RFT-QH) for both dentist assessment
and computer classification. Plaque intensity (ΔPave) increased
and the plaque areas (δ) enlarged with the increment of RFT-QH
scores. Taking the significant level at p < 0.05, all the computer
features resulted in significant differences between any two
plaque levels within the RFT-QH scale.

3.3 Correlation Between Clinical Disclosing Plaque
and Red Fluorescence Plaque

From Table 3, a moderate to strong correlation was identified
between clinical disclosing plaque and red fluorescence plaque
at subject level. Tooth level association was overall lower pre-
senting weak to moderate correlations. Plaque areas (δ) and
inner product (ΔPave � δ) correlated well with dentist RFT-
QH scores at tooth and subject levels throughout the experiment.
Their correlations with clinical assessment were moderate to
strong at subject level and weak to moderate at tooth level
(Table 4). This observation was consistent to the results between
clinical plaque scores and RFT-QH scores based on the red

fluorescence images. The average plaque intensity (ΔPave)
was less relevant with human visual assessment giving moderate
correlations at most.

Considering red fluorescence score RFT − QH >¼ 1 as
plaque affected, Fig. 5 demonstrates the agreement between
clinical disclosing plaque indices and red fluorescence plaque
scores, taking the disclosing parameters as assessment
references. It is noted that, with the increase of threshold in
disclosing T-QH, sensitivity of plaque detection by the red fluo-
rescence imaging increased while the corresponding specificity
decreased. The agreement between dentist disclosing scores and
computer RFT-QH scores presented comparable results with
that between disclosing scores and dentist RFT-QH assessment.
The best agreement of plaque detection was observed, when dis-
closing plaque threshold at level 2, for both dentist RFT-QH
evaluation (sensitivity 71.1%, specificity 67.7%, agreement
70.2%) and computer RFT-QH classification (sensitivity 68.4%,
specificity 62.9%, agreement 67.1%).

3.4 Plaque Progression Between Visits

Figure 6 shows tooth level plaque progressions described by
the dentist diagnosis and computer analysis during the clinical
study. Gradual increase was found in human visual assessment
of dental plaque. Similarly, the average values of computer fea-
tures increased with the visit number. Taking significant level
at p < 0.05, statistically significant differences were detected
between baseline, 24 h, and 48 h visits in the clinical disclosing
T-QH scores, dentist RFT-QH scores, and computer RFT-QH
scores at tooth and subject levels. For computer features, plaque
areas (δ) showed significant differences between any consecu-
tive visits. But there was no significant difference in plaque
intensity (ΔPave) between baseline and 24 h (p ¼ 0.076) as
well as 24 h and 48 h (p ¼ 0.07) at tooth level and between
24 h and 48 h (p ¼ 0.15) at subject level.

Because pooling cases (excess fluorescence dye not com-
pletely dried) are likely to be scored T − QH ¼ 1 but less clin-
ically relevant, this study took the disclosing score T − QH ≥ 2
and red fluorescence index RFT − QH ≥ 1 as plaque affected.
Figure 7 shows plaque progressions in terms of affected tooth

Table 2 Automatic classification results (number/percentage) of red
fluorescence plaque at tooth level using RUSBoost classifier with
threefold cross-validation. Values in the left diagonal cells represent
the true-positive number and rate in each class. Values in other cells
show the number and rate of misclassified cases of different plaque
levels.

PC RFT-QH

Dentist RFT-QH

0 1 2 3

0 65 (67%) 27 (31.4%) 3 (6.7%) 0 (0%)

1 21 (21.7%) 43 (50%) 6 (13.3%) 1 (4.2%)

2 10 (10.3%) 16 (18.6%) 31 (68.9%) 4 (16.7%)

3 1 (1%) 0 (0%) 5 (11.1%) 19 (79.1%)

Fig. 3 Excitation and emission spectrum of dental plaque from 24 subjects measured by spectraMax
M5 spectrometer. Colors represent fluorescence characteristics of plaque from different subjects.
(a) Excitation spectrum from 350 to 600 nm in excitation mode. (b) Emission spectrum from 500 to
750 nm in emission mode generated using an excitation wavelength of 405 nm.
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number per subject by human visual evaluation and computer
classification. It is noted that the affected tooth number per sub-
ject increased with time for both disclosing scores and red fluo-
rescence scores. After 48 h with no oral hygiene, all the subjects
had six teeth affected with plaque, which was detectable by
disclosing solutions in clinical assessment. Red fluorescence
plaque was not identified on all the tooth surfaces. But for sub-
jects at 48 h appointment, there were 10 out of 14 participants
having at least five teeth affected with red fluorescence plaque
by dentist diagnosis. Computer analysis showed lower plaque
level, giving eight subjects in this case.

Fig. 4 Boxplot describing the distributions of computer features at different red fluorescence plaque
levels. Red line in each box represents the median value of the feature in each class. Box boundaries
in blue lines show the 25% quartile (lower) and 75% quartile (higher) of the data. Boundaries in black
lines describe the extreme values in the tails of the feature distribution to rule out the outliers. We set
whisker parameter to 1 in this case. Red cross beyond black lines is the outlier. (a)–(c) Distribution of
computer features based on dentist plaque assessment. (d)–(f) Distribution of computer features based
on computer plaque classification. (a) and (d) Average plaque intensity ΔPave. (b) and (e) Plaque
areas δ (%). (c) and (f) Inner product of plaque intensity and plaque areas ΔPave � δ.

Table 3 Spearman rank correlation between clinical disclosing
plaque scores and red fluorescence RFT-QH index at tooth and sub-
ject levels. Correlations without superscript “*” are significant at 0.01
level (two-tailed).

Clinical
T-QH

Tooth level Subject level

Dentist
RFT-QH

PC
RFT-QH

Dentist
RFT-QH

PC
RFT-QH

BL 0.284 0.251 0.583 0.641

24 h 0.369 0.430 0.424* 0.479*

48 h 0.367 0.342 0.548 0.541

All visits 0.450 0.392 0.618 0.547

Table 4 Spearman rank correlation between computer features and
human visual assessment at tooth and subject levels. Correlations
without superscript “*” are significant at 0.01 level (two-tailed).

Computer
features

Tooth level Subject level

Clinical
T-QH

Dentist
RFT-QH

Clinical
T-QH

Dentist
RFT-QH

BL ΔPave 0.176* 0.348 0.250* 0.622

δ (%) 0.289 0.613 0.738 0.741

ΔPave � δ 0.286 0.613 0.722 0.701

24 h ΔPave 0.357 0.473 0.313* 0.682

δ (%) 0.437 0.659 0.466* 0.731

ΔPave � δ 0.443 0.656 0.488* 0.724

48 h ΔPave 0.329 0.652 0.520* 0.816

δ (%) 0.377 0.818 0.597 0.903

ΔPave � δ 0.396 0.824 0.638 0.767

All
visits

ΔPave 0.300 0.491 0.379 0.746

δ (%) 0.397 0.698 0.517 0.764

ΔPave � δ 0.395 0.698 0.534 0.772
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Fig. 5 Agreement between clinical disclosing plaque scores and red fluorescence plaque scores
(RFT-QH). (a) Disclosing plaque scores versus dentist RFT-QH scores. (b) Disclosing plaque scores
versus computer RFT-QH scores.

Fig. 6 Tooth level plaque progressions described by dentist plaque scores, computer plaque scores, and
computer features during the clinical study. (a) Case number of disclosing T-QH scores at different levels
across the visits. (b) Case number of dentist RFT-QH scores at different levels across the visits. (c) Case
number of computer RFT-QH scores at different levels across the visits. (d) Average values of computer
red fluorescence features at different visits.

Fig. 7 Plaque progressions in terms of affected tooth number per subject evaluated by (a) clinical
disclosing plaque, (b) dentist red fluorescence plaque, and (c) computer red fluorescence plaque.
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3.5 Post-hoc Power Analysis

A post-hoc power analysis was performed to outline the sample
size in the future clinical studies for differentiating plaque level
at baseline from that after 48 h plaque accumulation, based on
the distributions of computer plaque scores derived from this
pilot study. Taking the significant level p < 0.05 (Wilcoxon
signed-rank test, two tails) and statistical power >0.9, the sam-
ple size is minimum 72 at tooth level with effect size of 0.42 and
minimum 42 at subject level with effect size of 0.56.

4 Discussion
The amount of red fluorescent plaque increased in time when
participants refrained from oral hygiene continuously for
48 h after prophylaxis. Statistically significant differences
were identified in red fluorescence plaque scores (RFT-QH)
and computer features between baseline and 48 h appointment
at tooth and subject levels (p < 0.05). This indicates that the
plaque progression could be monitored using red fluorescence
imaging technique.

Taking clinical diagnosis as reference standard, moderate
correlations showed between clinical disclosing indices and
red fluorescence scores. In this pilot study, ∼30% teeth
(false-negative cases), with young plaque revealed by disclosing
solutions, showed no red fluorescence plaque in the images.
This is probably because there was an insufficient amount of
porphyrins in these young plaques and thus little signals pre-
sented in the red fluorescence images. Hence, red fluorescence
plaque generally believed as a property of matured plaque is
supported by the outcome of this study. Since young plaque
is considered relatively healthy10 while old plaque leads to
the development of tooth decay and gum diseases, red fluores-
cence imaging could provide an objective measure for evaluat-
ing the oral health risks.

On the other hand, there were 30% to 40% teeth (false-pos-
itive cases) that showed red fluorescence signals in the images
but had no disclosing plaque discovered in the clinical exami-
nation. These incidents included several tooth defects, such as
caries, calculus, hypomineralization, and discoloration, some
of which were reported detectable by the red fluorescence
imaging.4,5,9 Possible confounders were included within the
study because this work was interested in the validity of
fluorescence signal for use by a lay population, who would
not easily be able to discriminate the source of the signals.
Considering red fluorescence signal was similar for plaque
and other types of tooth defects, separation of signals from
sources other than plaque through image processing is challeng-
ing and one of the future focuses of research moving forward. In
addition, because this study only scaled and cleaned target teeth,
a number of false-positive cases resulted from matured plaque
remaining at the interproximal areas between adjacent teeth.
This deficiency in prophylaxis reflected by the dental plaque
exposed at baseline, where only two subjects had no plaque
identified in the clinical assessment.

There were great variations on the individual responses of red
fluorescence plaque after 48 h accumulation without oral
hygiene. It was reported that elderly people were more likely
to become heavy plaque former than young people.23 Hence,
it would be worthwhile to categorize individuals according to
their responses of red fluorescence plaque. The analysis of
the common characteristics of individuals within each group
could be helpful for understanding the influential factors of
plaque formation.

For computer analysis, affected plaque areas correlated well
with human visual assessment on red fluorescence images,
whereas weak to moderate correlations were found in average
plaque intensity. This indicates that plaque progression is more
obvious in terms of plaque area evolvement than redness
enhancement. Automatic fluorescence scores showed compa-
rable results with the dentist RFT-QH evaluation when associ-
ating with clinical disclosing indices. So, it could be feasible to
develop an automatic platform for the quantification of fluores-
cence plaque when the dentist evaluation was not available.

This pilot study is based on the fact that a limited number of
participants were included and only one dentist’s evaluation was
used to create the clinical references. As such, it is not possible
to perform interoperator analysis on an extensive dataset.
However, while resources were not available, in our opinion,
the study’s results still elucidate the usefulness and efficiency
of the fluorescence imaging for proper oral hygiene assessment.
Nevertheless, future studies would be conducted on a large pop-
ulation based on the post-hoc power analysis to investigate
whether the derived results are on the order of inter-rater out-
comes. Additional consideration will be given to potential con-
founders via separating the fluorescence signals from sources
using image-processing methods. Moreover, subsequent experi-
ments will perform a complete prophylaxis procedure including
adjacent teeth to understand its influence on specificity for
fluorescence plaque detection.

In conclusion, this paper introduced a red fluorescence
imaging system allowing full access into the human mouth
and demonstrated its usefulness for dental plaque detection
and quantification through a pilot study. Given the correlation
with clinical evaluation, red fluorescence imaging shows its
potential for providing an objective and promising method
for proper oral hygiene assessment. The results of the current
study present evidence to support the future work for running
a comprehensive experiment on a large dataset.
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