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Abstract. Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors.
However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal
component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results
of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent
probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal
component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and
the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The
distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor
location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the
original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that
the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluores-
cence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and
progression. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.9.096010]
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1 Introduction
Molecular imaging uses specific molecules as the source of im-
aging contrast and visually represents biological events at the
cellular and molecular level in vivo.1 Fluorescence imaging
has become a promising imaging modality as it provides non-
radiative molecular imaging capability with advantages over
other imaging modalities including decent detection sensitivity,
specificity, safety, and instrumental cost-effectiveness.2

Autofluorescence and photon absorption in biological tissues
remain at the minimum level in the near-infrared (NIR) wave-
length range (700 to 900 nm), compared with those in the visible
(350 to 700 nm) and infrared (above 900 nm) wavelength
ranges. With the huge elimination of nonspecific fluorescence,
using NIR fluorescent probes can improve the detection
sensitivity.3,4 Therefore, NIR fluorescence imaging serves as
a promising tool for detecting specific biological molecules
in vivo. Dynamic fluorescence imaging monitors the fluores-
cence signal of specific molecules over time and has been
used to provide metabolic and pharmacokinetic information.5–8

Achieving in vivo cancer detection is of vast importance for
diagnosis. To date, various types of molecular targets related to
tumorigenesis and cancer progression such as integrin, metallo-
proteinase-2, and carbonic anhydrase IX have been used for
tumor detection.9–14 Epidermal growth factor receptor (EGFR,
also known as HER-1) is another potentially effective molecular
target. The EGFR signaling pathway plays a critical role in cell

signaling. The mutation of EGFR contributes to the prolifera-
tion, progression, and metabolism of tumor cells.15,16 Numerous
solid tumors over-express EGFR on the cell surface,17–19 espe-
cially human lung carcinoma cell line A549,20–24 making EGFR
an eligible biomarker for in vivo cancer detection using fluores-
cence molecular imaging.

By combining target-binding molecules with fluorescent
dyes, tumor-targeting fluorescent probes have been developed
and employed to effectively facilitate cancer diagnosis. An NIR
dye, IRDye CW800,25–31 is coupled to recombinant human EGF,
which binds specifically to EGFR, resulting in a specific EGFR-
targeting fluorescent probe, EGF-IRDye. This probe has been
shown to be capable of labeling tumor cells with EGFR-over-
expression.32–37 Once injected intravenously, this probe quickly
reaches the liver, where it is processed and accumulated.
Moreover, studies on the biodistribution of various tumor-target-
ing probes have shown that the unspecific probe aggregation
in the liver is quite common.19,38–46 Results of ex vivo tissue
imaging40,44 and in vivo imaging19,38,39 have confirmed the
high level of probe aggregation in the liver. Probe aggregation
in the liver results in innegligible fluorescence background,
which disrupts tumor imaging, especially when the tumors
are located in the abdominal region.

To promote the specific targeting of tumor and distinguish
tumor from surrounding tissues, various approaches have been
put forward, including modifying the surface of the probe,38

designing peptide probes sensitive to the tumor microenviron-
ment,39 using radiolabeled copper fibronectin-based imaging
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agents,40 using tyrosine kinase inhibitors,41–43 blocking the
expression of EGFR in the liver,44 and using dual-tracer molecu-
lar imaging.47–49

However, these approaches have limitations. Chemical modi-
fication of the imaging probe not only requires more bench
work, but also might affect the stability, toxicity, and optical
characteristics of the probe. Using radiolabeled imaging agents
reasonably increases its uptake in tumor, but it also yields high
renal uptake and retention40 as well as high radioactivity distrib-
uted throughout the whole animal.42 The coadministration strat-
egy requires extra agents such as tyrosine kinase inhibitors41 and
radiolabeled exogenous EGF,42 which might cause undesired
physiological side-effects such as agonism and antagonism.40

Tumors have unique pharmacokinetic characteristics com-
pared with surrounding tissues. Detecting these characteristics
might be helpful in detecting and localizing the tumor. However,
these characteristics are submerged in the high-dimensional origi-
nal data of dynamic fluorescence imaging. Thus, extracting fea-
tures related to tumor pharmacokinetic profiles could be a
potential strategy for tumor detection and localization.

Functioning as a feature extraction algorithm, principal com-
ponent analysis (PCA) assesses the original data and detects new
variables called principal components (PCs), which are linear
combinations of the original data.50 Our group has used PCA to
facilitate dynamic fluorescence diffuse optical tomography,51,52

accelerate fluorescence molecular imaging,53–55 and separate
fluorescent targets with different fluorophore concentrations.56

PCA has also been applied on dynamic fluorescence image
sequences to extract in vivo anatomical maps, locate internal
organs,57 distinguish arteries and veins,58 pinpoint tumor with
the help of carbon nanotubes,59 and extract physiological fea-
tures related to both vasculopathy60,61 and rheumatoid arthritis.62

The fluorescence signal from the tumor region is usually sub-
merged by noise in the abdominal region, largely due to the
probe aggregation in the liver. PCA has been used to identify
tumors and other organs based on the different kinetics of non-
specific probes.59 To our knowledge, there are no reports of
using PCA to suppress the fluorescence noise resulting from
the aggregation of tumor-specific probes in the liver. Herein,
we develop a PCA-based strategy to decrease the influence
of probe aggregation in the liver and to facilitate tumor locali-
zation by extracting the tumor-related spatiotemporal features
from results of dynamic fluorescence imaging.

The aim of this work was to distinguish the tumor region
from the noise elicited by probe aggregation in the liver and
to facilitate tumor localization based on dynamic fluorescence
imaging. PCA was applied on the fluorescence imaging results
of tumor-bearing and control mice, and the physiological mean-
ings of the extracted PC maps were examined.

Our study provides the basis for a new way to eliminate fluo-
rescence noise emerging from fluorescent probe aggregation in
the liver to distinguish the tumor region. The results constitute
an initial step toward facilitating tumor detection using PCA on
molecular imaging with the help of a tumor-specific fluorescent
probe. This approach has the potential to serve as a diagnostic
tool for tumor detection and localization.

2 Methods

2.1 Cell Culture

A549 cells (purchased from ATCC, Manassas, Virginia) were
maintained in RPMI 1640 medium supplemented with 10%

fetal bovine serum and 1% penicillin–streptomycin at 37°C
in a humidified incubator. Cells were collected by trypsinization
and resuspended in a culture medium before injection.

2.2 Nude Mice Xenograft Model

5 × 106 A549 cells were injected subcutaneously into the back
of three BALB/c-nude mice (8-week-old, female). Dynamic
fluorescence imaging experiments were carried out when the
average tumor diameter reached ∼8 mm (measured by a cali-
per). Animal experiments were conducted with approval from
the Ethics Committee of Tsinghua University.

2.3 In Vivo Fluorescence Imaging

The fluorescent probe used to detect EGFR expression was EGF
conjugated IRDye 800CW (EGF-IRDye; LI-COR Biosciences,
Lincoln, Nebraska). A home-made reflectance fluorescence im-
aging system6,8,63 was utilized for dynamic fluorescence imag-
ing. A 300-W Xeon lamp (MAX-302, Asahi Spectra, Torrance,
California) was used as the excitation source. The excitation
light was filtered through a 770� 6 nm bandpass filter
(XBPA770, Asahi Spectra, Torrance, California) before reach-
ing the object at a power density of 0.03 mW∕cm2. The emitted
fluorescence was filtered through an 800� 10 nm bandpass fil-
ter (FBH800-10 Premium Bandpass Filter, Thorlabs, Newton,
New Jersey) and then detected by a 512 × 512 pixel, −70°C
electron multiplying charge-coupled device (EMCCD) camera
(iXon DU-897, Andor Technologies, Belfast, Northern Ireland,
UK) coupled with a 35-mm f/1.6 lens (C3514-M, Pentax,
Tokyo, Japan). Each pixel has a size of 0.16 × 0.16 mm2.

Mice were anesthetized with isoflurane, placed onto the
platform of the reflectance fluorescence imaging system, and
injected intravenously with a bolus of 1 nmol EGF-IRDye dis-
solved in 0.15 ml 1× phosphate buffer saline (PBS) (HyClone,
Logan, Utah). Dynamic fluorescence imaging was started
immediately after the intravenous injection. However, due to
the limitations of the experimental apparatus, there was a delay
(∼20 s) between the end of injection and the beginning of the
fluorescence image acquisition. The same experimental pro-
cedure was followed for every experiment to keep the length of
these delays close to each other among experiments. The begin-
ning of the fluorescence image acquisition was set to time point
zero. Fluorescence images were collected at the speed of 1.5
frames per second for 900 s with the binning of the EMCCD
camera set as one. The position of the mouse was maintained
through the whole process of imaging. A bright-field image
was collected afterward as the reference.

2.4 Probe Localization Studies

Mice were anesthetized with isoflurane and injected intra-
venously with 1 nmol EGF-IRDye (as described above) or 1×
PBS, 900 s prior to the organ harvest. Organs including tumor
xenograft, liver, and muscle (from the left thigh) were collected
after the mice were euthanized. Harvested organs were immedi-
ately immersed in 1× PBS and rinsed before being imaged.

2.5 Data Analysis

2.5.1 Principal component analysis

Our PCA-based approach was developed based on the previ-
ously described method;60 the schematic is shown in Fig. 1.
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Fluorescence images affected by motion artifacts were removed
prior to the analysis (∼5% of all original images). Removed
images were recovered by interpolation to maintain the continu-
ity of original image series. High-frequency noise was sup-
pressed by applying lowpass filters on the original fluorescence
images. The mouse body region was selected on the bright-field
image and set as the mask [Fig. 1(a)], which was applied to the
fluorescence images to select mouse body area and remove
noise from the surface of the animal-holding platform.

Each fluorescence image was denoted by a two-dimensional
matrix with its element representing the fluorescence intensity at
the corresponding location. Each image in the sequence of m
frames was vectorized to a column vector I, which has a length
of n ¼ 512 × 512 ¼ 262, 144 as follows:

EQ-TARGET;temp:intralink-;e001;63;598Ik ¼

2
6664

ik1
ik2
..
.

ikn

3
7775; (1)

where ikn is the fluorescence intensity of the n’th pixel on the
k’th frame.

An input matrix S was formed by gathering and arranging
those m column vectors according to the order of time as
follows:

EQ-TARGET;temp:intralink-;e002;63;468S ¼ ½ I1 I2 · · · Im �: (2)

Therefore, the whole spatiotemporal features were incorporated
in the input matrix S. Each row of S represents the temporal
variation of fluorescence intensity at a certain pixel. Each
column of S corresponds to the fluorescence intensities of all
the pixels at a specific time point. [Fig. 1(b)]. The covariance
matrix C was calculated as

EQ-TARGET;temp:intralink-;e003;63;371C ¼ 1

n − 1
S̄TS̄; (3)

where S̄ is the centered data of S, calculated by subtracting the
mean value from each column of S, and n is the length of each

column, as in Eq. (1). The eigenvectors U and eigenvalues λ of
matrix C were then calculated as

EQ-TARGET;temp:intralink-;e004;326;730C ¼ UTλU: (4)

The PCs were extracted and ranked in order of their eigen-
values. The eigenvector that has the highest eigenvalue was
chosen as the first principal vector. The eigenvector with the
second highest eigenvalue was considered the second principal
vector and so on. The energy of the first i PC was calculated as

EQ-TARGET;temp:intralink-;e005;326;644pi ¼
P

i
k¼1 λkP
m
k¼1 λk

: (5)

The first two PCs contributed more than 99% of the total energy
(p2 > 99%); therefore, the first two PCs were considered to pre-
serve the original information and were kept for further analysis.

The original fluorescence image sequence S was projected
onto the new linear space xp expanded by the PCs so that
key features of the original data could be extracted and stored
in matrix F as follows:

EQ-TARGET;temp:intralink-;e006;326;521F ¼ SU: (6)

Each column of F was rearranged into a distribution map of
each PC (PC1 map, PC2 map, etc.).

2.5.2 Time-dependent pharmacokinetic curves

Two rectangular regions of interest (ROIs) with a size of 15 ×
15 pixels were selected on each fluorescence image to represent
the fluorescence intensities of the tumor and liver. On each fluo-
rescence image, the approximate location of the tumor region
was determined according to the bright-field image; then, the
tumor ROI was selected around the pixel with the maximum
fluorescence intensity in the tumor region. As for the liver,
since the high-frequency noise was removed, the ROI was
selected around the pixel that had the maximum fluorescence
intensity of the entire image. The fluorescence intensity of
the ROI was calculated by averaging the intensities of all pixels
in that ROI. The intensities of the ROIs in the liver and tumor

Fig. 1 A schematic of PCA on dynamic fluorescence image data. (a) In the original sequence with m
fluorescence images, a mask was applied to each image; thus, only the fluorescence intensities of the
mouse body were taken into account. Each image was then vectorized into an n × 1 column vector I (n is
the number of pixels in the mask). (b)m vectors were gathered to generate an n ×m matrix S. S contains
all spatiotemporal information of the original image sequence. Eigenvectors and eigenvalues were cal-
culated from C, which is the covariance matrix of S. The eigenvector with the highest eigenvalue was
regarded as the first PC, and the eigenvector with the second highest eigenvalue was regarded as the
second PC. Two PCs were kept for future analysis as they maintained more than 99% of total energy.
(c) Features of the original data were extracted by calculating the inner product of S and PCs, and then
these features were stored in thematrix F . Each column of F was rearranged to form a distribution map of
corresponding PC, which represents feature of the original fluorescence image data.
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were normalized base on the intensities at the first time point and
then plotted against time, resulting in pharmacokinetic curves of
these regions. It should be noted that, due to the aforementioned
delay before fluorescence image acquisition, the liver and tumor
region already exhibited fluorescence signals in the first fluores-
cence image, which was used later for normalization.

2.5.3 Tumor-to-liver ratio

The tumor-to-liver ratio is the ratio between the fluorescent
probe uptake quantity in the tumor and liver.44,64 In this study,
it is defined as the ratio between the fluorescence intensities of
the tumor and liver as follows:

EQ-TARGET;temp:intralink-;e007;63;612r ¼ FItumor

FIliver
; (7)

where FItumor and FIliver are the fluorescence intensities
extracted from the ROIs selected in the tumor and liver, respec-
tively. The tumor-to-liver ratio was used to evaluate the capabil-
ity of distinguishing the tumor from the liver in the PC2 map.

2.5.4 Jaccard’s similarity index

The tumor region was determined based on the bright-field
image as the reference. The tumor location on the PC2 map was
identified as the region with intensities higher than 70% of the
maximum intensity of PC2. This threshold value was deter-
mined empirically. To quantify the similarity between the tumor
locations on the PC2 map and on the bright-field image, the
Jaccard’s similarity index65 was employed as an overlapping-
based approach. The Jaccard’s similarity index of two regions
A and B, JðA; BÞ, is defined as

EQ-TARGET;temp:intralink-;e008;63;396JðA;BÞ ¼ cardðA ∩ BÞ
cardðA ∪ BÞ ; (8)

where cardðA ∩ BÞ and cardðA ∪ BÞ are the cardinalities (i.e.,
numbers of elements) of A ∩ B (the intersection of A and B)
and A ∪ B (the union of A and B), respectively. The
Jaccard’s similarity index ranges from 0 to 1, with 1 indicating
a complete overlap of the two regions.

2.5.5 Contrast-to-noise ratio

The contrast-to-noise ratio (CNR) is defined according to
Ref. 66 as follows:

EQ-TARGET;temp:intralink-;e009;63;245CNR ¼ μS − μB
½ωSσ

2
S þ ωBσ

2
B�1∕2

; (9)

where μS is the mean intensity in the target region and μB is the
mean intensity in the background, σS and σB are the standard
deviations of the intensities in the target region and the back-
ground, respectively, and ωS ¼ areaS∕ðareaS þ areaBÞ and
ωB ¼ areaB∕ðareaS þ areaBÞ are the noise weights. areaS and
areaB are the sizes of the target region and the background,
respectively. The target region is the tumor region, which
was determined based on the bright-field image. After the target
region is excluded from the whole mouse body region, the rest
of the mouse body region is determined as the background
region.

2.5.6 Statistical analysis

Data were expressed as mean� standard deviation. Statistical
differences were calculated by a two-tailed Student t-test. A
p value <0.05 is considered statistically significant.

3 Results

3.1 Probe Accumulation in Liver and Tumor

To validate that the fluorescence signals were actually emitted
from the fluorescent probe and to examine probe localization,
the mice were injected with EGF-IRDye or 1× PBS. Organs
were harvested and imaged 15 min after the injection. A
bright-field image was taken to show the harvested organs
[Fig. 2(a), top]. Upon injection, the EGF-IRDye probe exhibited
stronger emission in the tumor (a5) than in the muscle (a6).
Neither the tumor (a2) nor muscle (a3) emitted strong fluores-
cence after PBS injection. Moreover, while the liver from the
control group (a1) showed nearly nondetectable emission fol-
lowing probe injection, a stronger fluorescence signal was
observed from the liver (a4) compared with the tumor (a5)
after probe injection. Corresponding fluorescence intensity val-
ues were extracted from the images [Fig. 2(b)] to better visualize
the fluorescence intensity difference between the tumor and
the liver.

3.2 Time-Dependent EGF-IRDye Pharmacokinetic
Characteristics

The pharmacokinetic features of EGF-IRDye in the mice with
xenograft tumor are presented in Fig. 3. Dynamic fluorescence
images at several time points were selected to represent the tem-
poral sequence [Fig. 3(a)]. The tumor region was difficult to
observe and distinguish from the strong fluorescent signal of
the liver, which corresponded to the ex vivo results [Fig. 2].
ROIs were selected in the tumor and liver regions and labeled
in red and cyanine colors, respectively [Fig. 3(b)]. The average
fluorescence intensities in these ROIs were extracted and
normalized according to the initial fluorescence intensities.
Pharmacokinetic dynamics of the corresponding region were
represented by time-solving curves, which exhibited the unique
pharmacokinetic profiles of the tumor and liver. [Fig. 3(c)].

3.3 Distinctive Characteristics and Distribution Maps
of Principal Components

The spatial distribution maps of the first two PCs were obtained
by projecting the original dynamic fluorescence intensity data
onto the principal vectors, as described in Sec. 2. Interestingly,
the PC2 map exhibited a distinct pattern compared with the
original fluorescence images in the xenograft mice group
[Fig. 4(a)]. Strong intensities on the PC2 map were mainly
located in the tumor region rather than in the liver; thus, the
PC2 map visually distinguished the tumor region. The tumor-
to-liver ratio on the PC2 map was significantly increased com-
pared with that on the original fluorescence image [Fig. 4(b)].
The tumor areas were selected on the bright-field image and
PC2 map, respectively [Fig. 4(c)], as described in Sec. 2, and
then the location similarity of selected tumor areas was evalu-
ated by the Jaccard’s similarity index. The Jaccard’s similarity
indexes between the tumor regions on the PC2 map and those on
bright-field image were 0.86, 0.70, and 0.71 for three mice
injected with EGF-IRDye probe, respectively. The PC2 maps
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exhibited higher tumor-to-liver ratios (2.34, 2.87, and 3.06)
than the original fluorescence images (0.88, 0.67, and 0.64,
respectively) [Fig. 4(d), left] and higher CNRs (4.55, 5.42,
and 5.63 for three mice, respectively) than the original fluores-
cence image (2.56, 3.82, and 4.61, respectively) [Fig. 4(d),
right].

Mice with tumor xenografts (the tumor-bearing groups) and
healthy mice (the control groups) were injected with EGF-
IRDye, and then the PC1 and PC2 maps of tumor-bearing
groups and control groups were compared (Fig. 5). Notably,
the PC2 map of normal controls showed an overall low level
of fluorescence intensity, which was consistent with the fact

Fig. 3 Original dynamic image sequences and pharmacokinetics. (a) Fluorescence images at different
time points (50, 300, 500, 700, and 900 s after the first fluorescence image was collected). (b) ROIs were
selected in the tumor and liver region, indicated by the square boxes of red and cyanine colors, respec-
tively. The tumor location was indicated by the red arrow. (c) The normalized average fluorescence inten-
sities of the liver and tumor were extracted from the original fluorescence images and plotted over time.

Fig. 2 EGF-IRDye aggregated in the liver and tumor after intravenous injection. (a) Liver, tumor, and
muscle were harvested from the mice injected with PBS (a1, a2, and a3, respectively) or EGF-
IRDye (a4, a5, and a6, respectively). A bright-field image showed harvested organs (top). Following
probe injection, the tumor showed significantly lower fluorescence intensity (a5) than the liver (a4),
while they both exhibited higher fluorescence intensity compared with the muscle (a6). In the control
group, the mice were injected with PBS, and all organs (a1, a2, and a3) emitted low level of fluorescence.
(b) Fluorescence intensities of the liver, tumor, and muscle of the two groups.
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Fig. 4 Distribution maps of the first two PCs in the tumor-bearing mice. (a) The bright-field image, original
fluorescence image, PC1 map, and PC2 map. Note that the pattern of the PC2 map showed good accor-
dance with the tumor location, as shown in the superposed image of the PC2 map and bright-field image.
The tumor was indicated by the red arrow. (b) The ROIs used to calculate the CNR and tumor-to-liver
ratio are indicated by the square boxes. The CNR (4.5 in the PC2 map and 2.5 in the original image) and
the tumor-to-liver ratio (2.87 in the PC2map and 0.67 in the original image) were labeled under the figure.
(c) The tumor region was determined on the PC2map (indicated by the blue curve) and bright-field image
(indicated by the green curve), which served as the reference tumor location, as the tumor region could
not be distinguished from the original fluorescence image. The Jaccard’s similarity index between the
tumor regions selected on the PC2 map and bright-field image was 0.86. (d) The tumor-to-liver ratio (left)
and CNR (right) on the original fluorescence images and PC2 maps in the tumor-bearing group (n ¼ 3),
respectively. The error bar indicated the standard deviation.

Fig. 5 Distribution maps of PC1 and PC2 of the mice with tumor xenografts (the tumor-bearing groups)
and healthy mice (the control groups) after they were injected with EGF-IRDye. The PC1 maps are in
good accordance with the original fluorescence images, in both the tumor-bearing and control groups.
The PC2 map of controls showed no prominent fluorescence signal.
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that no tumor existed in the normal controls. The fluorescence
intensity patterns of the PC1 map were in good accordance
with those of the original fluorescence images in both the
tumor-bearing mice and controls.

4 Discussion
The main goal of this study was to distinguish the tumor region
from the noise elicited by probe aggregation in the liver and to
facilitate tumor localization based on dynamic fluorescence im-
aging. In this study, distribution maps of PCs were extracted
from dynamic fluorescence image data on the EGFR-expressing
tumor xenograft model. The results show that the tumor region
could be represented by PCs and distinguished from its nearby
noise as the tumor-to-liver ratios were significantly increased.

Previous approaches to promote tumor localization include
modifying the surface of probes,38 designing microenvironment
sensitive probes,39 using radiolabeled imaging probes,40 and
using tyrosine kinase inhibitors and EGFR blockers.41–44 Those
approaches have helped the tumor targeting; however, they had
limitations including extra bench work, toxicity of modified
probes, and alteration of normal physiology.40,42 PCA has been
applied to help locate the tumor with the help of single-wall car-
bon nanotubes (SWNTs).59 However, as a type of nonspecific
probe, SWNTs accumulate in the tumor region mainly via
the enhanced permeability and retention effect, rather than spe-
cific binding. In our study, the fluorescent probe could specifi-
cally bind to the surface of tumor cells, which enhances its
accumulation in the tumor region. Our work attempted to facili-
tate tumor targeting by mathematically extracting the physio-
logical features from the fluorescence image sequences with the
help of the tumor-specific fluorescent probe. Moreover, our
approach did not require extra modification of the imaging
procedure. Notably, our strategy selected 900 s as the time
for fluorescence image acquisition based on the considerations
of promoting sufficient differences between probe kinetics of
tumor and liver, as well as reducing the noise in the liver region
on the PC2 map.

Unique pharmacokinetic characteristics of different regions
[Fig. 3(b)] are the foundation of PCA in our study. Through
PCA, the original high-dimensional fluorescence data were con-
verted to low-dimensional data, and the important biological
features were retained. These features could be potentially iden-
tified and represented by the PC maps.

Seo et al. have utilized PCA for vasculopathy diagnosis.60

They found that the PC2 map was capable of representing vas-
cular parameters and its dispersion showed a reverse pattern in
diabetic patients and controls. We have adopted a similar
strategy and acquired the tumor-related biological information
directly from the PC maps. Our work used PCA with a
tumor-specific fluorescent probe to facilitate the tumor detection
with dynamic fluorescence imaging. Notably, our approach
required only one kind of fluorescent probe and one emission
wavelength to distinguish the tumor region from fluorescence
noise in the abdominal region.

In the original fluorescence images, the tumor and the liver
regions were joined with each other; thus, the tumor cannot be
identified [Fig. 4(a)]. As the results show, the tumor was clearly
indicated on the PC2 map, and these results suggested that our
approach could facilitate tumor localization from two aspects.
The first is the ability to distinguish the fluorescence signal
of the tumor area from its nearby fluorescence noise (mainly
from the liver). This could be validated by the increased

tumor-to-liver ratio and contrast-to-noise ratio of the PC2 map
compared with the original image. The second aspect is the
accuracy of tumor localization. By far, there is no “gold stan-
dard” for identifying the tumor location on the mouse xenograft
model. The bright-field image directly presents the location of
the subcutaneous tumor. Therefore, it was chosen as the refer-
ence for the tumor location. Herein, the Jaccard’s similarity
index62 was used to measure the location similarity of the
tumor area determined by the PC2 map and the tumor area deter-
mined by the bright-field image. The Jaccard’s similarity index
results (0.86, 0.70, and 0.71 for three mice, respectively) sug-
gested that the tumor area identified by the PC2 map overlapped
closely with the reference tumor location. Based on these find-
ings, the PC2 map appeared to provide the information relevant
to the tumor location. The overall original pharmacokinetic
characteristics were visually represented in the PC1 map, and
the PC2 map of the controls showed no prominent fluorescence
signal (Fig. 5).

A number of limitations might have influenced the results.
The first is the noise in the abdominal region on the PC2
map. This could be attributed to motion artifacts during the im-
aging process caused by respiration, although data affected by
obvious artifacts had been removed prior to the analysis, as
described in Sec. 2. The second limitation is the limited stage
of tumor. In this study, experiments were conducted after the
tumor sizes met certain preestablished criteria. Tumor vascula-
ture rapidly changes during tumor development, and the vascu-
lature affects the probe distribution. Tumors at different stages
need to be examined to determine the exact stage when the
tumor reaches maturity and exhibits pharmacokinetic character-
istics that are distinct enough for the PCA strategy to detect.
Third, the location of the tumor was determined directly on the
bright-field images. This approach could be improved by label-
ing marker dots on the back skin of the nude mice along the
margin of tumor xenografts and then using these markers for
tumor localization on the bright-field images.

Furthermore, although the results are encouraging, the pro-
posed method should be validated with a larger cohort size.
Future work will also focus on further suppressing the motion
artifacts elicited by respiration during the imaging process to
reduce the noise level in the PC maps. Moreover, we intend
to examine tumors of different stages to further evaluate the
targeting capability of our PCA-based approach. Finally, yet
importantly, we need to develop quantitative measurements of
tumor pharmacokinetic profiles to thoroughly understand the in
vivo tumor metabolism.

The encouraging results of our experiments indicate that the
noise resulting from probe aggregation in the liver can be largely
reduced by our PCA-based approach. The distribution maps of
tumor-related PCs, which were extracted from dynamic fluores-
cence image sequences, could distinguish the tumor area from
the noise in the abdominal region and improve tumor investiga-
tion. The approach has implications for future studies of in vivo
tumor metabolism and progression.
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