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Abstract. We propose an efficient blind/no-reference image quality
assessment algorithm using a log-derivative statistical model of natu-
ral scenes. Our method, called DErivative Statistics-based QUality
Evaluator (DESIQUE), extracts image quality-related statistical fea-
tures at two image scales in both the spatial and frequency domains.
In the spatial domain, normalized pixel values of an image are mod-
eled in two ways: pointwise-based statistics for single pixel values and
pairwise-based log-derivative statistics for the relationship of pixel
pairs. In the frequency domain, log-Gabor filters are used to extract
the fine scales of the image, which are also modeled by the log-deriva-
tive statistics. All of these statistics can be fitted by a generalized
Gaussian distribution model, and the estimated parameters are fed
into combined frameworks to estimate image quality. We train our
models on the LIVE database by using optimized support vector
machine learning. Experiment results tested on other databases
show that the proposed algorithm not only yields a substantial
improvement in predictive performance as compared to other state-
of-the-art no-reference image quality assessment methods, but also
maintains a high computational efficiency. © 2013 SPIE and IS&T
[DOI: 10.1117/1.JEI.22.4.043025]

1 Introduction
Rapid advances in digital image processing technology have
revolutionized the way in which images are captured, stored,
transmitted, and accessed. A crucial task for any image pro-
cessing system is the ability to assess image quality in a man-
ner that is consistent with human subjective judgment. To
address this need, numerous image quality assessment (IQA)
algorithms have been proposed over the past several decades,
using a wide variety of image analysis techniques. Based on
the availability of a reference image, these algorithms can be
divided into three main categories: full-reference (FR),
reduced-reference (RR), and no-reference (NR) IQA.

In this paper, we address the task of NR IQA, in which no
reference image is available to the IQA algorithm. Although
humans can easily assess the quality of a distorted image in
an NR setting, this task remains extremely challenging for
an algorithm. The vast majority of NR IQA algorithms have
been designed for specific distortion types. These distortion-
specific methods often assume that a particular distortion

type is known, such as additive white noise (WN) or
Gaussian blur (Gblur) (e.g., Refs. 1 to 4), or JPEG/
JPEG2000 compression (e.g., Refs. 5 to 8). Then, based
on the assumed distortion type, specific distortion-related
features are extracted to assess image quality.

Another class of NR IQA methods has been recently
developed which does not require knowledge of the distor-
tion type, but instead evaluates image quality assuming that
the distorted image shares some properties with those in
the training database. Machine-learning techniques are used
to develop a mapping from the input features to the target
quality scores in the training database, and then the quality
of the distorted image is estimated based on the mapping.
Such non-distortion-specific approaches usually follow
(1) a learning-based approach; (2) a natural scene statistics-
based (NSS-based) approach (e.g., Refs. 9 to 11) usually rely
on a large number of quality-related features that are de-
signed based on the physical properties of image distortions.
Assuming that image quality can be measured by various
features (e.g., wavelet coefficient magnitude and phase,
texture statistics), and assuming that certain features that
are effective for one particular distortion type may not be
applicable to others, various regression models are learned
to combine these features such that high performance is
always achieved for a variety of distortions. In comparison,
the NSS-based NR IQA approaches (e.g., Refs. 12 to 15)
also extract quality-related features, but these features are
based on a statistical representation of the image’s coeffi-
cients in the original/transformed domain under certain dis-
tribution models. Quality is estimated based on the extent
to which these statistics match those of natural images. In
Sec. 2, we provide a more detailed review of existing NR
IQA algorithms.

Despite the difference of the statistical models and image
transforms employed, these NSS-based NR IQA algorithms
share a common thread: they estimate image quality based on
single-domain properties. However, we argue that informa-
tion from both the spatial domain and the frequency domain
can play important roles in representing distortions. For in-
stance, it is well known that a blurred image will lose some
sharp edges in the spatial domain, which means a reduction
in the variance of edge pixel values throughout the image,
while in the frequency domain, blurring results in a reduction
of the high-frequency components. As we have previously
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demonstrated in Ref. 16, the quality of a blurred image
can be estimated by utilizing both the spatial and spectral
properties. We argue that this dual-domain approach can be
useful for general NR IQA.

In this paper, we present an NSS-based non-distortion-
specific approach called derivative statistics-based quality
evaluator (DESIQUE), which builds upon BRISQUE15 by
utilizing statistical features measured in both the spatial and
spectral domains. Our work draws on the concept of log-
derivative statistics proposed by Huang and Mumford,17

and on the concepts proposed by Ruderman.18 We employ
combined frameworks consisting of both one- and two-
stage frameworks that are commonly used in NSS-based
NR IQA algorithms to predict image quality.

For the spatial domain analysis, images are first decorre-
lated through local mean subtraction and divisive normal-
ization18 to obtain normalized pixel values [also called
mean-subtracted contrast-normalized (MSCN) coefficients].
Then, these normalized pixel values are statistically modeled
in two ways: (1) pointwise-based statistics for single pixel
values (following Ref. 15) and (2) pairwise-based log-deriva-
tive statistics for the relationship of pixel pairs. Figure 1
gives an example of three blurred images [Fig. 1(a)] and
their computed histogram profiles [Fig. 1(b)] based on the
two above-mentioned statistics. As shown in the figure, dif-
ferent distortion levels give rise to different histogram shapes
in the spatial domain. Image3 is the most blurred, and thus
we see its spatial-domain histograms are most narrow at the
base and have sharp peaks. In comparison, the histograms
for image1 appear to be less peaked, a result of the much
sharper content in edge areas. Image2 is somewhat in
between: it is clearly sharper than image3, but more blurred
than image1, and thus its histogram’s shape is somewhere in
between the other two. This figure and other correspond-
ing histograms for another distortion type shown later (see
Sec. 3) demonstrate that statistics in the spatial domain can
effectively indicate different amounts of distortions.

However, although the spatial-domain-based statistics
can be a potential measure of image quality, they do not take
into account spectral properties, which can also be a good
indicator of perceived distortion. For example, two images
can have very similar statistics in the spatial domain but
appear to be of different visual quality. We demonstrate
this assertion in Fig. 2, which shows two images corrupted
by different amounts of high-frequency noise. As shown in
the figure, the computed histograms of the spatial-domain-
based log-derivative statistics appear to be quite similar.
However, when applying such statistics to the high-
frequency components of the image in the frequency domain,
the resulting histograms can be distinct.

To obtain the spectral properties contained in an image,
we utilize log-Gabor filters. Numerous studies have shown
that the response properties of simple cells in primary visual
cortex can be well-modeled by Gabor filters,21,22 which offer
simultaneous localization of spatial and frequency informa-
tion. Log-Gabor filters overcome the frequency distribution
problem encountered by the classical Gabor filters by main-
taining Gaussian passbands on a logarithmic frequency
scale.23 In our implementation, we decompose an image
into several spatial frequency bands at two orientations
(horizontal and vertical) and compute the log-derivative
statistics of the high-spatial frequency log-Gabor

coefficients. As shown in Figs. 1 and 2, the histograms
computed in both domains can be fitted by a two-parameter
generalized Gaussian distribution (GGD), which has been
demonstrated in Ref. 24 to be an effective model of the sub-
band statistics of natural images for RR IQA. The param-
eters of these GGD fits are utilized as the DESIQUE
features, which are then fed into combined frameworks
to estimate the image’s quality.

Although DESIQUE is built upon BRISQUE, there are
key differences between the two algorithms. First, the two
algorithms use different types of analyses. As opposed to
the paired-product-based analysis used in BRISQUE, the
log-derivative-based analysis used in DESIQUE provides
the latter with (1) greater sensitivity to local contrast changes
and (2) distributions that are symmetric and more easily
modeled. To demonstrate these facts, Fig. 3 shows three
images [Fig. 3(a)] with different contrast, as well as their
corresponding paired product and log-derivative coefficient
histograms in four orientations [Fig. 3(b)]. As shown in this
figure, the computed histograms of log-derivative values
in the spatial domain yield profiles that can be used to dis-
tinguish between the three images, whereas the histograms of
the paired-product values do not provide such discriminabil-
ity. Also, as shown in Fig. 3, the MSCN coefficients have
a symmetric distribution when modeled by log-derivative
statistics, whereas the paired product statistics give rise to
asymmetric distributions. Thus, when using log-derivatives,
fewer parameters are required for the histogram fitting. This
reduction in parameters (and thus in the number of features)
allows for the computational resources to be devoted to
the frequency-domain analysis to improve the predictive per-
formance without penalizing the computational (runtime)
performance.

Second, DESIQUE uses a two-domain approach, whereas
BRISQUE uses a single-domain approach. As mentioned
previously, BRISQUE operates in the spatial domain only,
while we have shown in Figs. 1 and 2 that both the spatial
and spectral properties can be important indicators of per-
ceived distortion. It is well known that some distortions
are more easily detected in the frequency domain rather
than in the spatial domain and vice versa. For example,
the fast-fading distortion in the LIVE database is more
detectable in the spatial domain, whereas different types of
noise are more detectable in the frequency domain. As we
will demonstrate, by adopting a dual-domain approach,
the proposed DESIQUE algorithm can achieve not only
better performance on various distortions across different
databases, but also relatively higher robustness to images
distorted by different types of noise (see Sec. 4.4).

The main contributions of this work are as follows:
(1) DESIQUE analyzes distorted images in both the spatial
and frequency domains by extracting NSS-based quality-
related features, and the ultimate quality score is predicted
based on combined frameworks. We show in this work
that distortions affect image statistics in both domains and
both can play important complementary roles in assessing
image quality. (2) We propose to use the seven types of
log-derivative statistics to model the relationship between
neighboring pixel/coefficient values, which are sensitive to
distortion. All of these statistics have symmetrical distribu-
tions and can be characterized by using a two-parameter
GGD model. (3) We also show that DESIQUE can be
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Fig. 1 Three blurred images from the LIVE database19 with different histogram profiles in the spatial domain. D1 through D7 denote the log-
derivatives computed at six orientations with various spatial contexts (see Sec. 3.2.1 for details about computing the spatial-domain-based
statistics).
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adaptive to images distorted by other types of noise on which
it was not trained. Although DESIQUE was trained on addi-
tive white Gaussian noise, it still performs well on other
types of noise such as additive color noise, spatially corre-
lated noise, and high-frequency noise. (4) DESIQUE not
only demonstrates good predictive performance, but also
maintains significant computational efficiency; the algorithm
can achieve near-real-time performance.

This paper is organized as follows. In Sec. 2, we give
a brief review of the previous work on NR IQA. In Sec. 3,
we provide details of the DESIQUE algorithm. In Sec. 4,
we present results of the proposed algorithm on different
image databases and evaluate the performance of different
algorithms. General conclusions are provided in Sec. 5.

2 Previous Work
Current NR IQA algorithms can generally be divided
into two categories: (1) those which assume that the dis-
tortion type is known, only determining the severity and
(2) those which do not consider the prior knowledge of dis-
tortion type, but assume that the distortion information of the
tested image can be similar to the training database. In this
section, we provide a brief review of these NR IQA methods.

2.1 Distortion-Specific NR IQA Algorithms
2.1.1 JPEG IQA

JPEG artifacts mainly contain blocking, blurring, and alias-
ing due to the quantization of discrete cosine transform
(DCT) coefficients. Therefore, the general approach to JPEG

IQA is to measure the blocking artifacts or edge strength
at block boundaries to estimate image quality.

In Ref. 5, the blocky image is modeled as a non-blocky
image distorted by a pure blocky signal, and then the the
blocking artifact is measured by detecting and estimating
the power of the blocky signal. In Ref. 6, blocking artifacts
are measured in DCT domain by modeling the blocking arti-
facts as two-dimensional (2-D) step functions. This informa-
tion is then used with a human-visual-system (HVS)-based
measurement of blocking artifact severity to esitimate qual-
ity. In Ref. 26, image blockiness is measured by detecting the
low-amplitude step edges and estimating the edge parame-
ters using a Hermite transform. In Ref. 7, image blockiness
is measured based on the average differences across block
boundaries and the activity of the image signal. The activity
is measured using two factors: (1) the average absolute
difference between in-block image samples and (2) the zero-
crossing rate. Other JPEG-based NR IQA algorithms have
used the DCT (e.g., Refs. 27 and 28), discrete Fourier trans-
form (DFT) (e.g., Ref. 29), Sobel operator (e.g., Refs. 30
and 31), selected gradient and uniformity measures (e.g.,
Ref. 32), HVS models (e.g., Ref. 33), and machine learning
(e.g., Ref. 34). In summary, each algorithm measures block-
ing artifacts in JPEG compressed images by using either
the transformed domain properties or the fundamental char-
acteristics introduced by quantization to the signal.

2.1.2 JPEG2000 IQA

For JPEG2000-compressed images, the predominant arti-
facts introduced are blurring and ringing. Algorithms for
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Fig. 2 Two high-frequency noise-corrupted images from the TID database20 with different visual qualities. Notice that the spatial-domain-based
log-derivative statistics have similar histogram profiles, but the histogram shape varies in the frequency domain. (These histograms were generated
from measure D6; see Sec. 3.2.2 for details about computing the frequency-domain-based statistics.)

Journal of Electronic Imaging 043025-4 Oct–Dec 2013/Vol. 22(4)

Zhang and Chandler: No-reference image quality assessment based on log-derivative statistics. . .



assessing quality of this type of image are mainly focusing
on measuring the amount of blurring or edge spreading by
using edge-detection techniques. For example, Li et al.35 pro-
posed a principal component analysis–based method to
assess the quality of JPEG2000 image. First, by viewing
all edge points in an image as distorted or undistorted,
local features are extracted at each of the edge points,
which indicate both blurring and ringing. Then, a model
is built to describe the relationship between these local fea-
tures and a local distortion metric through the probability
of the edge point being distorted versus undistorted. The
image’s quality is estimated based on these edge points (a
similar method can be found in Ref. 36). Sazzad et al.37,38

proposed to use pixel distortion and edge information for
the quality evaluation of JPEG2000 images. Their algorithms
assume that the HVS is very sensitive to edge information
and any kinds of artifacts that create pixel distortion from
neighborhood pixels.

Other methods for NR JPEG2000 IQA may utilize certain
kinds of transform such as the wavelet transform or DCT.
Statistical regularizations of the coefficients are then used
to assess image quality. For instance, Sheikh et al.8 found
that wavelet coefficient distributions of JPEG2000 images
provide a good indication of the loss of visual quality.
Thus, by computing features from all wavelet subbands
and applying a nonlinear combination, a weighted average
of the transformed features is used for quality prediction.

Zhou et al.39 proposed to evaluate JPEG2000 images
based on three steps: (1) image is divided into blocks,
among which textured blocks are employed for quality
prediction; (2) projections of wavelet coefficients between
adjacent scales with the same orientation are utilized to
measure the positional similarity; and (3) a general regres-
sion neural network is adopted to conduct quality prediction
according to features from (1) and (2). Zhang et al.40 utilized
kurtosis in the DCT domain to blindly appraise quality of
JPEG2000 images based on three measurements: frequency
band-based one-dimensional (1-D) kurtosis, basis function-
based 1-D kurtosis, and 2-D kurtosis. The method is simple
(without edges/features extraction), parameter free, and cor-
relates well with subjective quality scores.

2.1.3 Blur/noise IQA

Researchers have also developed various methods to mea-
sure image quality when other distortion types and combi-
nations are present. Since the most common distortion
types in images are noise and blur (due, e.g., to the transmis-
sion, storage, and reconstruction), numerous algorithms have
been proposed to estimate noise degradation and blurring.
For instance, Corner et al.41 developed a noise estimation
technique using data masking. Li et al.1 proposed an NR
IQA technique by joining three different NR measures for
three different image distortion types (blur, noise, and

Fig. 3 Three images with different contrast and their corresponding paired product/log-derivative coefficient histograms in four orientations. Note
that image3 is from the CSIQ database;25 image1 and image2 are generated by adjusting the local contrast in image3 using Adobe Photoshop CS3
software.
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block/ringing artifacts). Brandao and Queluz3 proposed an
NR IQA algorithm for estimating quantization noise intro-
duced by lossy encoding such as JPEG or MPEG based on
the statistics of DCT coefficients. Cohen and Yitzhaky4 pre-
sented an NR method to identify noise and blur by assuming
that common statistics of natural images can be obtained
from their power spectra. Vu and Chandler16 proposed
a spectral and spatial measure of local perceived sharpness
in natural images by using the slope of the magnitude spec-
trum and the total spatial variation.

2.2 Non-Distortion-Specific NR IQA Algorithms
2.2.1 Learning-based IQA

Learning-based NR IQA methods estimate quality by learn-
ing a mapping from a high-dimensional feature space to
a scalar quality value. The feature space contains a number
of quality-related features that are designed to capture relevant
factors that affect image quality. Different techniques on fea-
ture extraction and regression lead to various algorithms.

Tong et al.42 proposed a learning-based method that
estimates quality by learning from training examples that
contain both the high- and low-quality classes. A binary clas-
sifier is built and the quality metric of the tested image is
denoted by the extent to which it belongs to these two classes.
Tang et al.9 proposed a learning-based blind image quality
measurement that first extracts low-level image features
from natural image measure and texture statistics. Then,
via a machine-learning framework, the algorithm learns a
mapping from these features to the subjective quality score.
Li et al.43 developed an NR IQA algorithm based on a general
regression neural network (GRNN). The features extracted
include the mean value of a phase congruency image, the
entropy of the phase congruency image, the entropy of the
distorted image, and the gradient of the distorted image.
Quality is estimated by learning the functional relationship
between these features and subjective mean opinion scores
using the GRNN. In Refs. 10 and 11, Ye et al. used the visual
codebook to quantize Gabor-filter-based features and then
learned a mapping from the quantized feature space to
image quality scores using either an example-based method
or a support vector machine (SVM). This method extracts
patch-level features and has the potential to be used in
real-time applications with parallel implementation.

2.2.2 NSS-based IQA

NSS-based NR IQA methods assume that some statistical
properties of natural scenes will remain across different refer-
ence images, but will change significantly in the presence of
distortions. Thus, by measuring how the statistical properties
of a distorted image deviate from those of a typical natural
image, the distortion types as well as the image quality can be
estimated. Typical NSS-based NR algorithms include BIQI,12

BLIINDS-II,14 DIIVINE,13 BRISQUE,15 and NIQE.44

BIQI12 is a wavelet-based NR IQA method that extracts
image features by modeling the wavelet subband coefficients
based on a two-parameter GGD model. It utilizes a discrete
wavelet transform with three scales and three orientations
using Daubechies 9/7 wavelet basis. A total of 18 wave-
let-based statistical features are extracted for each image.

BLIINDS-II14 measures image quality based on the sta-
tistics of DCT coefficients of local image patches via two

stages. In the first stage, non-overlapping small image blocks
are prepared and statistical features are extracted. In the sec-
ond stage, a multivariate GGD model is used to perform
quality prediction. In order to perform prediction in the
second stage, BLIINDS-II requires training, during which
a Bayesian probabilistic model is obtained containing all
information in the training database.

DIIVINE13 operates based on a steerable pyramid trans-
form, from which the coefficient statistics of the distorted
image are used as the feature values for IQA. The algorithm
employs a two-stage framework: distortion identification
followed by distortion-specific quality assessment, and 88
features are extracted to perform the IQA task through
SVM learning.

BRISQUE15 is another NSS-based NR IQA method that
operates in the spatial domain. The underlying features
derive from the empirical distribution of the local normalized
luminance values, as well as their neighboring products
under a spatial NSS model. No required transformation
and a small feature number allow the algorithm to run
almost in real-time. Despite its simplicity, the algorithm
represents the currently best-performing NSS-based NR IQA
method.

The recently developed NIQE44 algorithm is the first
NSS-based approach that does not require training on the
distorted images. The algorithm extracts local image features
based on the work in Ref. 15, and the quality of a given test
image is expressed as the distance between the multivariate
Gaussian fit of the NSS features extracted from the test image
and from the corpus of natural images. Although NIQE does
not perform as well as DIIVINE or BRISQUE, it demonstrates
the possibility to extend current NSS-based NR IQA to a no-
distortion-trained approach.

3 Algorithm
The proposed DESIQUE algorithm is based on the assump-
tion that log-derivative-based statistical properties of natural
images in both the spatial and frequency domains are gen-
erally consistent across reference images, but vary signifi-
cantly in the presence of distortions. In this way, it is
possible to measure deviations in these expected (natural)
statistical features as proxy measures of quality degradation.
DESIQUE extracts log-derivative-based statistical features
in two domains using seven derivative types and employs
combined frameworks consisting of one used in BRISQUE
(one-stage framework) and the other one in DIIVINE (two-
stage framework).

3.1 Log-Derivative Statistics
The derivative statistics of natural images were first studied
in Ref. 17, in which the differences of gray-level values
between one pixel and its neighboring pixels were consid-
ered as the derivatives. Motivated by the work in Refs. 45
and 15, derivatives between pairs of pixels can have six
orientations: horizontal (H), vertical (V), main-diagonal
(MD), secondary-diagonal (SD), horizontal-vertical (HV),
and combined-diagonal (CD). Based on the six orientations
and the spatial location of pixel values, we propose seven
types of derivatives defined as

H∶∇xIði; jÞ ¼ Iði; jþ 1Þ − Iði; jÞ; (1)
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V∶∇yIði; jÞ ¼ Iðiþ 1; jÞ − Iði; jÞ; (2)

MD∶∇xyIði; jÞ ¼ Iðiþ 1; jþ 1Þ − Iði; jÞ; (3)

SD∶∇yxIði; jÞ ¼ Iðiþ 1; j − 1Þ − Iði; jÞ; (4)

HV∶∇x∇yIði; jÞ ¼ Iði − 1; jÞ þ Iðiþ 1; jÞ − Iði; j − 1Þ
− Iði; jþ 1Þ; (5)

CD1∶∇cx∇cyIði; jÞ1 ¼ Iði; jÞ þ Iðiþ 1; jþ 1Þ − Iði; jþ 1Þ
− Iðiþ 1; jÞ; (6)

CD2∶∇cx∇cyIði;jÞ2¼ Iði−1;j−1Þþ Iðiþ1;jþ1Þ
− Iði−1;jþ1Þ−Iðiþ1;j−1Þ; (7)

where Iði; jÞ represents the pixel value (or coefficient) cor-
responding to spatial location i, j. Note that Eqs. (1) to (4)
and Eq. (6) are defined on neighboring pixels/pixel pairs and
Eqs. (5) and (7) are defined on a patch size of 3 × 3.

In order to efficiently model natural images/image sub-
bands by using the distribution of derivative statistics, we
compute the logarithm of each pixel’s value to create new
images/image subbands J by

Jði; jÞ ¼ log½Iði; jÞ þ K�; (8)

where K is a small constant that prevents Iði; jÞ from being
zero. Thus, based on Eqs. (1) to (8), we define seven types of
log-derivatives as

D1∶∇xJði; jÞ ¼ Jði; jþ 1Þ − Jði; jÞ; (9)

D2∶∇yJði; jÞ ¼ Jðiþ 1; jÞ − Jði; jÞ; (10)

D3∶∇xyJði; jÞ ¼ Jðiþ 1; jþ 1Þ − Jði; jÞ; (11)

D4∶∇yxJði; jÞ ¼ Jðiþ 1; j − 1Þ − Jði; jÞ; (12)

D5∶∇x∇y ¼ Jði − 1; jÞ þ Jðiþ 1; jÞ − Jði; j − 1Þ
− Jði; jþ 1Þ; (13)

D6∶∇cx∇cyJði; jÞ1 ¼ Jði; jÞ þ Jðiþ 1; jþ 1Þ
− Jði; jþ 1Þ − Jðiþ 1; jÞ; (14)

D7∶∇cx∇cyJði;jÞ2¼Jði−1;j−1ÞþJðiþ1;jþ1Þ
−Jði−1;jþ1Þ−Jðiþ1;j−1Þ: (15)

In the following sections, we will show that histograms
computed from these seven types of log-derivative statistics
are effective in modeling natural images; they exhibit con-
sistent profiles across different scenes but vary significantly
in the presence of distortions. We, thus, extract statistical
features that capture changes in these profiles.

3.2 Log-Derivative Statistics–Based Features
As mentioned in Sec. 2, recent work has focused on model-
ing natural-scene statistics either in the spatial domain15 or in
a transform domain (see, e.g., Refs. 12 to 14). However, we
believe that the visual quality of an image can be influenced
by the statistical information contained in both the spatial
and frequency domains. Thus, the proposed DESIQUE fea-
tures consist of two parts: the spatial domain features and
the frequency domain features, and we will demonstrate
that these statistical features are generally consistent across
different images but change in the presence of distortion.
Figure 4 shows a block diagram illustrating how DESIQUE
features are extracted in these two domains.

3.2.1 Modeling log-derivative statistics in
the spatial domain

The features extracted in the spatial domain consist of two
types: (1) pointwise-based statistics for single pixel values
(following Ref. 15) and (2) pairwise-based log-derivative sta-
tistics for the relationship of pixel pairs. Specifically, given
an image Iði; jÞ, we first compute locally normalized pixel
values via local mean subtraction and divisive normaliza-
tion18 defined as

Î ¼ Iði; jÞ − μði; jÞ
σði; jÞ þ C

; (16)

where i ∈ 1; 2; · · · ;M, j ∈ 1; 2; · · · ; N are spatial indices;
M, N are the image height and width, respectively; and C ¼
1 is a constant that prevents division by zero. The quantities
μði; jÞ and σði; jÞ are defined as

μði; jÞ ¼
XK
k¼−K

XL
l¼−L

ωk;lIk;lði; jÞ; (17)

σði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
k¼−K

XL
l¼−L

ωk;l½Ik;lði; jÞ − μði; jÞ�2
vuut ; (18)

Fig. 4 A block diagram of DESIQUE feature extraction. Note that the filter band coefficients will only contain the first scale of the log-Gabor filter
subbands corresponding to the high-frequency components of the image. LP denotes low-pass filter.
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where ω ¼ fωk;ljk ¼ −K; · · · ; K; l ¼ −L; · · · ; Lg is a 2-D
circularly symmetric Gaussian weighting function sampled
out to three standard deviations and rescaled to unit volume.
As in Ref. 15, we also define K ¼ L ¼ 3.

According to Ref. 15, the MSCN coefficients Îði; jÞ can
be modeled by a zero-mean GGD given by

fðx; α; σ2Þ ¼ α

2βΓð1∕αÞ exp½−ðjxj∕βÞ
α�; (19)

where β ¼ σ
ffiffiffiffiffiffiffiffiffiffi
Γð1∕αÞ
Γð3∕αÞ

q
and ΓðxÞ ¼ ∫ ∞

0 t
x−1e−tdt; x > 0 is the

gamma function. The parameter α controls the general
shape of the distribution and σ controls the variance. We esti-
mate the two-parameter GGD model by using the moment-
matching-based approach proposed in Ref. 46, and these
two values form the first set of features in the spatial domain
that will be used to capture image distortion, denoted by α0
and σ0.

The other set of features we extract in the spatial domain
are formed by modeling the relationship of neighboring
MSCN coefficient pairs based on the log-derivative statistics.
In Ref. 15, statistical relationships between neighboring
pixels are modeled by using the empirical distributions of
pairwise products of neighboring MSCN coefficients along
four orientations. These paired products can be parameter-
ized by an asymmetric GGD.

In our implementation, we model the relationship
between two adjacent MSCN coefficients by using the seven
types of log-derivatives previously defined by Eqs. (9) to
(15). Here Jði; jÞ ¼ lnðjÎði; jÞj þ KÞ and K ¼ 0.1 is a con-
stant that prevents Îði; jÞ from being zero. Under the
Gaussian coefficient model, and assuming that the MSCN
coefficients are zero mean and unit variance, these log-
derivative values also follow a generalized Gaussian distri-
bution and thus their parameters (α, σ) can be estimated by
using the method proposed in Ref. 46. These 14 parameters
form the second part of DESIQUE features in the spatial

Fig. 5 Histogram of mean-subtracted contrast-normalized (MSCN) coefficients (a) and the seven types of log-derivative statistics [(b) to (h)] for
each of the five reference images (shown in Fig. 6). Notice that the histograms exhibit consistent profiles that are largely independent of the
particular reference image from which log-derivative statistics are computed.
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domain. In all, we extract 16 spatial domain features at one
image scale denoted by

fspatial ¼ ½α0; αD1
; αD2

; αD3
; αD4

; αD5
; αD6

; αD7
;

σ0; σD1
; σD2

; σD3
; σD4

; σD5
; σD6

; σD7
�:

Here, D1 through D7 denote seven types of log-deriva-
tives. In order to visualize how the aforementioned two sta-
tistics of MSCN coefficients in the spatial domain vary as
a function of distortions, Fig. 5 plots their corresponding
histograms for five reference images (shown in Fig. 6),
and Fig. 7 plots the histograms for five distorted versions
of one reference image (image sailing2, shown in Fig. 8).
Notice that both the pointwise-based statistics and the pair-
wise-based log-derivative statistics of MSCN coefficients
exhibit almost consistent profiles; they are largely indepen-
dent of the particular reference image but change signifi-
cantly in the presence of distortions.

3.2.2 Modeling log-derivative statistics in
the frequency domain

Most distortion types have a pronounced effect on the
higher-frequency components, resulting in considerable
magnitude differences in the high-frequency band. To cap-
ture this change, we first decompose an image by using
a log-Gabor filter defined by

Gs;oðω; θÞ ¼ exp

�
−

½logðω∕ωsÞ�2
2½logðσs∕ωsÞ�2

�
× exp

�
−
ðθ − μoÞ2

2σ2o

�
;

(20)

where Gs;o is the log-Gabor filter denoted by spatial scale
index s and orientation index o. The parameter ω is the

normalized radial frequency and θ is the orientation. The
decomposition is computed at the highest frequency scale
(s ¼ 1) and two orientations (o ¼ 1; 2). We set the center
frequency of that scale to be 1/3, corresponding to ω1 ¼
2∕3. The value of σ1∕ω1, which determines the bandwidth,
is set to be 0.975. These values result in an approximately 1.5
octave bandwidth. Two orientations are computed using
μo ¼ ðo − 1Þπ∕2, resulting in orientations of 0 and 90 deg.

Next, we apply the log-derivative statistics to model
the log-Gabor filter subband coefficients. Note that we only
apply six types of them corresponding to neighboring pixels/
pixel pairs previously defined in Eqs. (9) to (12) and (14) to
(15). Here, Jði; jÞ ¼ ln½jgði; jÞj þ K�, where jgði; jÞj repre-
sents the coefficient magnitude and K ¼ 0.1 is a constant
that prevents gði; jÞ from being zero. Again, we fit the histo-
gram of log-derivative statistics for each of these subbands
with a generalized Gaussian distribution model. The param-
eters ðα; σÞ are estimated and yield 24 DESIQUE features
(2 subbands × 6 derivative types × 2 parameters∕derivative
type) extracted in the frequency domain at the original scale.

f frequency ¼ ½αD1;0°
; αD2;0°

; αD3;0°
; αD4;0°

; αD6;0°
; αD7;0°

;

σD1;0° ; σD2;0° ; σD3;0° ; σD4;0° ; σD6;0° ; σD7;0° ;

αD1;90° ; αD2;90° ; αD3;90° ; αD4;90° ; αD6;90° ; αD7;90° ;

σD1;90°
; σD2;90°

; σD3;90°
; σD4;90°

; σD6;90°
; σD7;90°

�:

Here, D1 through D4, D6, and D7 denote six types of
log-derivatives; 0 deg and 90 deg denote the horizontal
and vertical log-Gabor filter subbands, respectively.

To illustrate how the log-derivative statistics of the filter
responses behave as a function of distortions, Fig. 9 plots the
corresponding histograms for five reference images (shown
in Fig. 6) as well as the histograms for five distorted versions

Fig. 6 Five reference images from the LIVE database19 used to demonstrate the consistency of natural scene statistics in both the spatial and
frequency domains. Top row: Images ocean, stream. Bottom row: Images sailing2, sailing3, and statue.
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of one reference image (image sailing2, shown in Fig. 8)
as a comparison. Notice that for both orientations of the
log-Gabor filters, the log-derivative statistics of the subband
coefficients exhibit consistent profiles that are largely inde-
pendent of the particular reference image, but change sig-
nificantly in the presence of distortions. As demonstrated

in Fig. 9, these features extracted in the frequency domain
are effective at identifying distortion and thus can be used
for measuring image quality.

Since images are naturally multiscale and distortions
affect image structure across scales, following from Ref. 15,
we extract all spatial features at two scales: the original

Fig. 7 Histogram of MSCN coefficients (a) and their seven types of log-derivative statistics [(b) to (h)] for each of the five distorted versions of image
sailing2 (shown in Fig. 8). Distortions from the LIVE database—JPEG2000 (JP2K) and JPEG compression (JPEG), additive white noise (WN),
Gaussian blur (Gblur), and a Rayleigh fast-fading channel simulation (FF). Notice that the distortions tend to affect the peakiness of the character-
istic profile observed for the reference images.

Fig. 8 Distorted versions of image sailing2. From left to right: Fast-fading, Gaussian blur, JPEG2000 compression, JPEG compression, and
Gaussian white noise.
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image scale and a low-pass downsampled (by a factor of 2)
scale. The frequency features are extracted based on the six
types of log-derivatives at the original scale, and one type
(D7) at the low-pass downsampled scale. Thus, a total of

60 features (32 spatial features, 24 frequency features at
the original scale, and 4 at the downsampled scale) are
used to identify distortions and to perform distortion-specific
quality assessment.

Fig. 9 Histograms of the log-derivative statistics of the log-Gabor filter subband coefficients for five reference images in the LIVE database,19 and
the five distorted versions of one of the reference images (image sailing2 shown in Fig. 8). D1 to D4 and D6 to D7 correspond to the six log-
derivative types defined by Eqs. (9) to (12) and (14) to (15). Distortions from the LIVE database: JPEG2000 (JP2K) and JPEG compression
(JPEG), additive white noise (WN), Gaussian blur (Gblur), and a Rayleigh fast-fading channel simulation (FF). Notice that for the five reference
images, the histograms exhibit consistent shapes, but they vary significantly when distortions are present.
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3.3 Quality Evaluation
The final step is to map the feature vectors to estimates of
image quality. For this task, we employ the existing learn-
ing-based approaches commonly used in other NSS-based
NR IQA algorithms. We have specifically tested and reported
the results of the following approaches: (1) the one-stage
framework used in BRISQUE; (2) the two-stage framework
used in DIIVINE; (3) a winner-take-all-based variation of
(2); and (4) a combination of (1) and (2).

The one-stage framework employs a support vector
regression (SVR) to train a regression model, which directly
maps the feature vector to an associated quality score,
denoted as DESIQUE-I. For the two-stage framework,
DESIQUE features are used to perform (1) distortion iden-
tification and (2) distortion-specific quality assessment. As
in Ref. 13, the distortion identification stage employs support
vector classification (SVC) to measure the probability that
the distortion in the distorted image falls into one of n dis-
tortion classes, and the distortion-specific quality assessment
stage employs an SVR to obtain n regression modules, each
of which maps the feature vectors to an associated quality
score. Note that because each module is trained specifically
for each distortion, these regression modules function as
distortion-specific quality estimators. Let p denote this
n-dimensional vector of probabilities and q denote the
n-dimensional vector of estimated qualities obtained from
these n regression modules; then the overall estimated qual-
ity, denoted by DESIQUE-II, is computed as follows:

DESIQUE-II ¼
Xn
i¼1

pðiÞqðiÞ; (21)

where pðiÞ and qðiÞ denote elements of p and q, respectively.
We have also investigated a variation of the two-stage

framework in which the overall quality estimate is based
only on the distortion-specific quality estimate correspond-
ing to the greatest probability. This approach, denoted by
DESIQUE-hp, is computed as follows:

DESIQUE-hp ¼ qðimÞ; im ¼ arg maxfpðiÞg: (22)

Another variation that we have investigated, and which
is the approach that generally yields the best results (as we
will demonstrate shortly) and is thus the approach we recom-
mend, is to use the minimum of the one-stage and two-stage
outputs. This approach, denoted by DESIQUE, is computed
as follows:

DESIQUE ¼ minfDESIQUE-I;DESIQUE-IIg: (23)

Smaller values of DESIQUE denote predictions of greater
image quality. Note that both the SVC and SVR require
training. As we demonstrate next, training these stages on
images from one database can yield excellent predictive per-
formance on similarly distorted images from other databases.

4 Results
In this section, the performance of DESIQUE is analyzed in
terms of its ability to predict subject ratings of image quality.

4.1 Training
We trained our models on the LIVE database,19 which con-
tains 29 reference images and 779 distorted images that span
various distortion categories: JPEG compression, JPEG2000
compression, white noise, Gblur, and a Rayleigh fading
channel (fast fading). Each distorted image has an associated
score that indicates a representative of the perceived quality
of the image. We use the LIBSVM package47 to implement
the training. To improve predictive performance, optimal
radial basis function kernel parameters were used for both
classification and regression.

4.2 Testing
To assess its predictive performance, four databases of sub-
jective image quality were used: (1) the LIVE database19

(note that the LIVE database was used for both training
and cross-validation test), (2) the CSIQ database,25 (3) the
TID database,20 and (4) the Toyama database. The CSIQ
database consists of 30 original images distorted using six
different types of distortions at four to five different levels
of distortion, and the overall ratings are given by 25 different
observers in the form of differential mean opinion scores
(DMOS). The TID database consists of 25 reference images
and 1700 distorted images over 17 distortion types, ratings of
which are presented as mean opinion scores (MOS). Among
these 25 reference images, only 24 are natural images, and
we test our algorithm only on these 24 images. The Toyama
database contains 14 original images and 168 distorted
versions that cover only two distortion types: JPEG and
JPEG2000 compression. The subjective ratings in the
Toyama database are provided in the term of MOS values.
We compared DESIQUE with various FR and NR quality
assessment methods for which code is publicly available. The
five FR methods were peak signal-to-noise ratio (PSNR),48

SSIM,49 multiscale structure similarity (MS-SSIM),50 visual
information fidelity (VIF),51 and most apparent distortion
(MAD).52 The three NR methods were DIIVINE,13

BLIINDS-II,14 and BRISQUE,15 all of which are NSS-
based and trained on LIVE. Since DESIQUE is trained on
the LIVE database containing five distortion types, we tested
and compared these algorithms only on those distortion types
on which the algorithms have been trained: JPEG compres-
sion, JPEG2000 compression, WN, and Gblur.

Before evaluating the performance of a particular quality
assessment method on a particular database, we applied
a logistic transform to bring the predicted values on the
same scales as the DMOS/MOS values. The logistic trans-
form recommended by Video Quality Experts Group53 is
a four-parameter sigmoid given by

fðxÞ ¼ τ1 − τ2

1þ exp
�
− x−τ3

jτ4j
� þ τ2; (24)

where x denotes the raw predicted score and τ1, τ2, τ3, and τ4
are free parameters selected to provide the best fit of the pre-
dicted scores to the MOS/DMOS values. Note that the
Spearman rank-order correlation coefficient (SROCC) relies
only on the rank-ordering and is thus unaffected by the logis-
tic transform due to the fact that fðxÞ is a monotonic function
of x that does not change the rank-order.

Three criteria were used to measure the prediction
monotonicity and prediction accuracy of each algorithm:
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(1) SROCC, (2) the Pearson linear correlation coefficient
(CC), and (3) the root mean square error (RMSE) after non-
linear regression. As recommended in Ref. 53, the SROCC
serves as a measure of prediction monotonicity, while the CC
and RMSE serve as measures of prediction accuracy. Avalue
close to 1 for SROCC and CC, and 0 for RMSE, indicates
good predictive performance.

Two additional criteria were used to measure the predic-
tion consistency of each algorithm: (1) outlier ratio and
(2) outlier distance (OD).52

4.3 Cross-Validation Test on LIVE
In this subsection, we performed a cross-validation test on
LIVE by splitting the database into two non-overlapping
sets—an 80% subset of the database for training and an
extra 20% subset for testing. We compared with three NR
and three FR IQA methods in terms of median SROCC

and CC values computed over 1000 trials. For comparison,
we also include the DESIQUE result of using only one-stage
framework, two-stage framework, and two-stage framework
with regression module corresponding to the higher proba-
bility, denoted byDESIQUE-I/II/hp, respectively. The results
are shown in Table 1.

In order to evaluate statistical significance, we performed
a one-sided t-test54 with 95% confidence level between
SROCC values generated by these algorithms across 1000
train-test trials. The results are shown in Table 2, in which
“1,” “0,” “−1” indicate that the mean correlation of the algo-
rithm in row is statistically superior, equivalent, or inferior
to the mean correlation of the algorithm in colunm. Also
included are DESIQUE-I, DESIQUE-II, and DESIQUE-
hp for comparison.

To demonstrate that DESIQUE features can be used for
different distortion identification, Table 3 shows the median

Table 1 Median Spearman rank-order correlation coefficient (SROCC) and correlation coefficient (CC) values across 1000 train-test combinations
on the LIVE database. Italicized entries denote no-reference image quality assessment (NR IQA) algorithms; others are full-reference (FR) IQA
algorithms.

JPEG2000 JPEG Additive white noise (WN) Blur Rayleigh fast-fading channel ALL

SROCC PSNR 0.8646 0.8831 0.9410 0.7515 0.8736 0.8636

SSIM 0.9389 0.9466 0.9635 0.9046 0.9393 0.9129

MS-SSIM 0.9627 0.9785 0.9773 0.9542 0.9386 0.9535

BLIINDS-II 0.9323 0.9331 0.9463 0.8912 0.8519 0.9124

DIIVINE 0.9123 0.9208 0.9818 0.9373 0.8694 0.9250

BRISQUE 0.9139 0.9647 0.9786 0.9511 0.8768 0.9395

DESIQUE-I 0.9354 0.9667 0.9849 0.9448 0.8612 0.9406

DESIQUE-II 0.9275 0.9683 0.9835 0.9382 0.8661 0.9406

DESIQUE-hp 0.9236 0.9690 0.9822 0.9328 0.8587 0.9374

DESIQUE 0.9359 0.9693 0.9858 0.9482 0.8672 0.9437

CC PSNR 0.8762 0.9029 0.9173 0.7801 0.8795 0.8592

SSIM 0.9405 0.9462 0.9824 0.9004 0.9514 0.9065

MS-SSIM 0.9746 0.9793 0.9883 0.9645 0.9488 0.9511

BLIINDS-II 0.9386 0.9426 0.9635 0.8994 0.8789 0.9164

DIIVINE 0.9233 0.9348 0.9866 0.9370 0.8916 0.9270

BRISQUE 0.9229 0.9735 0.9851 0.9506 0.9030 0.9424

DESIQUE-I 0.9485 0.9782 0.9910 0.9573 0.8729 0.9429

DESIQUE-II 0.9416 0.9801 0.9896 0.9496 0.8887 0.9430

DESIQUE-hp 0.9374 0.9803 0.9886 0.9483 0.8835 0.9407

DESIQUE 0.9480 0.9803 0.9915 0.9585 0.8819 0.9465
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and mean classification accuracy of the classifier in the
two-stage framework for each of the distortions in the LIVE
database, as well as across all distortions. To show the
performance consistency of each of the algorithms consid-
ered here, Fig. 10 plots the mean and standard deviation
of SROCC values across these 1000 trials for each of them.

According to the cross-validation results, DESIQUE per-
forms better than DESIQUE-I and II, which demonstrates
that combined frameworks can achieve better performance
than using either of them alone. Also, notice that the perfor-
mance of DESIQUE-I and II are equivalent and are better
than DESIQUE-hp. Such a slight dip in the performance
of DESIQUE-hp might be attributable to imperfect distortion
identification in the first stage of the two-stage framework.
Compared with FR IQA methods, DESIQUE is more
consistent than PSNR and SSIM, but still remains slightly
inferior to MS-SSIM, indicating that there is more space for
further improvement. Compared with other three NR IQA
algorithms, DESIQUE is statistically the best. However,
it is important to note that this cross-validation is not
necessarily the best way to gauge the performance of any
given algorithm because the amounts of distortions (i.e.,
the severity levels) are similar in both training and testing
sets. Thus, in the following sections, we will show more
results of these NR IQA algorithms in assessing image
quality on other databases.

4.4 Performances on Other Databases
In this section, we evaluate the performance of DESIQUE
on subsets of the CSIQ, TID, and Toyama databases
corresponding to the individual distortion types of JPEG,
JPEG2000, Gaussian blurring, and additive Gaussian
white noise to demonstrate the capability of the proposed

Table 2 Results of the one-sided t -test performed between SROCC values generated by different measures. “1,” “0,” “−1” indicate that the algo-
rithm in the row is statistically superior, equivalent, or inferior to the algorithm in the column.

PSNR SSIM MS-SSIM BLIINDS-II DIIVINE BRISQUE DESIQUE-I DESIQUE-II DESIQUE-hp DESIQUE

PSNR 0 −1 −1 −1 −1 −1 −1 −1 −1 −1

SSIM 1 0 −1 1 −1 −1 −1 −1 −1 −1

MS-SSIM 1 1 0 1 1 1 1 1 1 1

BLIINDS-II 1 −1 −1 0 −1 −1 −1 −1 −1 −1

DIIVINE 1 1 −1 1 0 −1 −1 −1 −1 −1

BRISQUE 1 1 −1 1 1 0 0 0 1 −1

DESIQUE-I 1 1 −1 1 1 0 0 0 1 −1

DESIQUE-II 1 1 −1 1 1 0 0 0 1 −1

DESIQUE-hp 1 1 −1 1 1 −1 −1 −1 0 −1

DESIQUE 1 1 −1 1 1 1 1 1 1 0

Table 3 Mean and median classification accuracy across 1000 train-test trials.

Classification accuracy (%) JP2K JPEG WN BLUR FF ALL

Mean 86.1 97.6 99.9 95.6 82.2 92.3

Median 86.1 100.0 100.0 96.7 83.3 92.6

Fig. 10 Mean SROCC and standard error bars for various algorithms
across the 1000 train-test trials on the LIVE database.
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algorithm on assessing quality of images with any distortion
types on which it was trained. We also tested DESIQUE on
different noise-corrupted images in the TID database to show
a degree of adaptiveness to other noise distortion types.

4.4.1 Overall performance

The overall testing results on CSIQ, TID, and Toyama are
shown in Table 4. Italicized entries denote FR algorithms.
Notice that all these FR IQA algorithms compared are
only applied on those four distortion types that have been
trained. The results of the best-performing FR algorithm
in each case are italicized and bolded, and the results of
the best-performing NR algorithm are bolded.

From Table 4 it is clear that compared with other NR IQA
methods, DESIQUE performs quite well in predicting qual-
ity. It improves upon BRISQUE and is superior to DIIVINE
and BLIINDS-II. Further, it even challenges some of the FR
IQA methods such as PSNR and SSIM. The last rows of the
SROCC, CC, and RMSE results in Table 4 show the average
values, where the averages were weighted by the number of

distorted images tested in each database. On average,
DESIQUE demonstrates the best NR IQA performance.
Note that OD is dependent on the dynamic range of the
database and, therefore, cannot be used to compare across
databases.

Figure 11 shows scatter-plots of logistic-transformed
DESIQUE quality predictions versus subjective ratings
(MOS or DMOS) on different databases. Although for each
database there are some images whose quality scores are pre-
dicted far from their true MOS/DMOS values, the proposed
DESIQUE algorithm can predict quality for most of them.

In summary, when looking at the overall performance
across databases, DESIQUE has a better average perfor-
mance than other NR IQA methods.

4.4.2 Statistical significance

A statistical significance test allows one to quantify whether
the numerical difference between IQA performance is sta-
tistically significant. To assess the statistical significance,
an F-test was employed to compare the variances of two

Table 4 Overall performances of DESIQUE and other algorithms on subsets of the CSIQ, TID, and Toyama databases. Italicized entries denote
FR algorithms. Results of the best-performing FR algorithm are italicized and bolded, and results of the best-performing NR algorithm are bolded.

PSNR SSIM MS-SSIM VIF MAD DIIVINE BLIINDS-II BRISQUE DESIQUE

CC CSIQ 0.908 0.851 0.950 0.967 0.974 0.854 0.901 0.924 0.942

TID 0.848 0.736 0.912 0.950 0.947 0.877 0.864 0.907 0.925

Toyama 0.635 0.796 0.893 0.914 0.941 0.634 0.754 0.850 0.871

Average 0.848 0.805 0.929 0.954 0.960 0.830 0.867 0.907 0.926

SROCC CSIQ 0.922 0.876 0.953 0.959 0.967 0.828 0.873 0.900 0.928

TID 0.870 0.767 0.897 0.940 0.935 0.891 0.840 0.898 0.919

Toyama 0.613 0.786 0.886 0.909 0.936 0.642 0.724 0.848 0.872

Average 0.860 0.827 0.924 0.945 0.952 0.822 0.840 0.892 0.917

RMSE CSIQ 0.119 0.148 0.088 0.072 0.064 0.147 0.123 0.108 0.095

TID 0.840 1.072 0.650 0.495 0.509 0.760 0.798 0.668 0.600

Toyama 0.966 0.757 0.564 0.507 0.425 0.968 0.864 0.660 0.615

Average 0.483 0.545 0.345 0.276 0.265 0.468 0.456 0.375 0.339

Outlier ratio CSIQ 0.272 0.332 0.220 0.187 0.157 0.365 0.320 0.262 0.243

TID 0.727 0.784 0.734 0.630 0.622 0.706 0.766 0.693 0.659

Toyama 0.190 0.095 0.066 0.030 0.024 0.214 0.155 0.066 0.060

Average 0.412 0.448 0.369 0.312 0.293 0.457 0.444 0.377 0.355

Outlier distance CSIQ 11.331 19.309 6.473 5.013 3.243 24.561 16.318 12.697 9.812

TID 176.350 233.982 120.957 78.159 79.194 137.472 162.692 121.259 101.156

Toyama 20.904 9.396 3.172 1.397 1.673 16.517 12.685 4.156 5.671
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algorithms’ residuals (errors in predictions) if the residuals
are Gaussian-distributed. The test statistic is the ratio of vari-
ance, denoted by F ¼ σ2A∕σ2B, where σ2A and σ2B denote the
variance of the residuals from each IQA algorithm. A smaller
residual variance indicates a better prediction. Values of F >
Fcritical (or F < 1∕Fcritical) indicate that at a given confidence
level, algorithm A has significantly larger (or smaller) resid-
uals than algorithm B, where Fcritical is computed based on
the number of residuals and the confidence level. Also, note
that if residuals are not Gaussian, then the significance test is
often inconclusive. In this paper, a formal test using Jarque-
Bera (JB) statistic55 is used to measure the Gaussianity of the
residuals. A smaller value of the JB statistic denotes less
deviation from Gaussianity, and vice versa.

Table 5 shows the summary for the overall statistical per-
formance of each NR IQA algorithm on subsets of the CSIQ,
TID, and Toyama databases. Each entry is the ratio of the
residual variance of the algorithm in the row to the algorithm
in the column. Bold entries denote that the algorithm in the
row has a statistically smaller residual variance than the algo-
rithm in the column with confidence greater than 95%.
Italicized entries denote that the algorithm in the row has sta-
tistically greater residual variance with the same confidence.
Also contained in Table 5 are the JB statistic measures of
Gaussianity. Larger values of the JB statistic denote larger
deviations from Gaussianity.

Although DESIQUE has statistically the smallest residual
variance on the subsets of the CSIQ and TID databases, note
that none of the DESIQUE residuals on these databases
can be deemed as Gaussian, which is attributable to several
outliers (see Fig. 11). However, the residual variance of
DESIQUE is inflated by the existence of these outliers,
and thus the fact that it can achieve significantly lower
residual variance with these outliers is noteworthy. For the
subsets of the Toyama database, the statistical significance
is less selective due to the small number of images tested.
Nonetheless, DESIQUE still performs competitively well.

4.4.3 Performance on individual distortion types

We also tested the performance of DESIQUE on subsets of
the three testing databases corresponding to the individual
distortion types of JPEG, JPEG2000, Gaussian blurring,
and additive Gaussian white noise. For this evaluation,
we used the same logistic transform computed for each
full database and then extracted the transformed scores

corresponding to each distortion type. Three other NR IQA
methods and five FR IQA algorithms were included to make
the comparison. The results are shown in Table 6 in terms of
SROCC and CC values; highlighted entries indicate the best
performance. All of these NR IQA methods were trained on
the 779 distorted images in the LIVE database with the same
distortion types.

Fig. 11 Scatter plots of objective scores predicted by DESIQUE algorithm after logistic transform versus subjective scores on different image
databases. Note that the x axis across all three figures represents the predicted value transformed via Eq. (24); the y axis represents the
true differential mean opinion score (DMOS) value for the CSIQ database, true MOS value for the TID and Toyama databases.

Table 5 Statistical significance relationships (ratio of residual vari-
ance) between NR IQA algorithms on subsets of the CSIQ, TID,
and Toyama databases. A value <1 denotes that the algorithm in
the row has smaller residuals than the algorithm in the column;
a value > 1 denotes larger residuals. See text for details.

DIIVINE BLIINDS-II BRISQUE DESIQUE

CSIQ DIIVINE — 1.429 1.836 2.382

BLIINDS-II 0.700 — 1.285 1.667

BRISQUE 0.545 0.778 — 1.297

DESIQUE 0.420 0.600 0.771 —

JBSTAT 143.7 78.5 958.6 661.0

TID DIIVINE — 1.649 2.351 2.912

BLIINDS-II 0.607 — 1.426 1.766

BRISQUE 0.425 0.701 — 1.239

DESIQUE 0.343 0.566 0.807 —

JBSTAT 120.7 2.3 5.7 104.7

Toyama DIIVINE — 1.255 2.153 2.478

BLIINDS-II 0.797 — 1.716 1.975

BRISQUE 0.465 0.583 — 1.151

DESIQUE 0.404 0.506 0.869 —

JBSTAT 2.6 15.0 4.0 96.2
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Table 6 SROCC, CC, and RMSE of DESIQUE and other quality assessment algorithms on different types of distortion on the CSIQ, TID, and
Toyama databases. Italicized entries denote NR algorithms. Results of the best-performing FR algorithm are italicized and bolded, and results of
the best-performing NR algorithm are bolded.

PSNR SSIM MS-SSIM VIF MAD DIIVINE BLIINDS-II BRISQUE DESIQUE

CC

CSIQ JPEG2000 0.947 0.923 0.977 0.978 0.983 0.893 0.912 0.896 0.925

JPEG 0.891 0.940 0.981 0.988 0.983 0.697 0.912 0.946 0.973

Gblur 0.925 0.900 0.959 0.974 0.976 0.898 0.897 0.928 0.922

WN 0.953 0.926 0.947 0.961 0.956 0.786 0.897 0.938 0.942

TID JPEG2000 0.885 0.875 0.974 0.971 0.982 0.879 0.919 0.906 0.928

JPEG 0.878 0.937 0.966 0.973 0.961 0.899 0.889 0.950 0.971

Gblur 0.930 0.938 0.951 0.942 0.801 0.840 0.825 0.873 0.885

WN 0.942 0.807 0.810 0.907 0.819 0.810 0.714 0.810 0.873

Toyama JPEG 0.377 0.652 0.786 0.900 0.919 0.709 0.826 0.864 0.877

JPEG2000 0.858 0.918 0.949 0.962 0.961 0.603 0.686 0.869 0.880

SROCC

CSIQ JPEG2000 0.936 0.921 0.969 0.967 0.975 0.830 0.884 0.867 0.913

JPEG 0.888 0.922 0.962 0.970 0.962 0.704 0.881 0.909 0.944

Gblur 0.929 0.924 0.972 0.975 0.968 0.871 0.870 0.903 0.901

WN 0.936 0.925 0.947 0.957 0.954 0.797 0.886 0.925 0.930

TID JPEG2000 0.825 0.878 0.973 0.970 0.974 0.907 0.911 0.904 0.928

JPEG 0.875 0.925 0.940 0.931 0.925 0.871 0.838 0.910 0.932

Gblur 0.934 0.945 0.963 0.958 0.847 0.859 0.826 0.874 0.894

WN 0.918 0.812 0.818 0.913 0.833 0.834 0.715 0.823 0.882

Toyama JPEG 0.285 0.626 0.835 0.907 0.916 0.702 0.820 0.857 0.880

JPEG2000 0.861 0.914 0.945 0.956 0.955 0.612 0.627 0.867 0.882

RMSE

CSIQ JPEG2000 0.102 0.122 0.067 0.066 0.058 0.130 0.142 0.140 0.120

JPEG 0.139 0.104 0.059 0.047 0.057 0.125 0.219 0.099 0.070

Gblur 0.109 0.125 0.081 0.065 0.062 0.127 0.126 0.107 0.111

WN 0.051 0.064 0.054 0.047 0.050 0.074 0.104 0.058 0.056

TID JPEG2000 0.891 0.928 0.430 0.459 0.366 1.178 0.756 0.810 0.712

JPEG 0.809 0.592 0.435 0.388 0.468 0.741 0.774 0.528 0.403

Gblur 0.428 0.402 0.359 0.390 0.694 0.621 0.655 0.566 0.540

WN 0.206 0.362 0.359 0.258 0.351 0.343 0.428 0.359 0.298

Toyama JPEG 1.145 0.937 1.236 0.540 0.488 0.872 0.708 0.622 0.595

JPEG2000 0.650 0.502 0.398 0.344 0.348 1.007 0.983 0.625 0.601
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As shown in Table 6, DESIQUE provides better pre-
dictions in comparison to BLIINDS-II, DIIVINE, and
BRISQUE on most distortion types. Notice that for the
white noise images in the TID database, DESIQUE demon-
strates better predictive performance compared with the
other three NSS-based NR IQA algorithms. For some distor-
tion types, such as the JPEG compression, in both the CSIQ
and TID databases, DESIQUE performs competitively with
many FR IQA methods. In summary, when looking at the
performance on individual distortion types, DESIQUE also
demonstrates the best NR IQA performance.

4.4.4 Performance on noise-corrupted images

Although DESIQUE was trained on WN images in the LIVE
database, it can also yield valid predictions of quality when
other types of noise are present. To demonstrate the adap-
tiveness of DESIQUE to different noise types, we tested
the algorithm on three other noise distortion types in the
TID database: additive noise in color components (ACN),
spatially correlated noise (SCN), and high-frequency noise
(HFN) (notice that in this test all NR algorithms were still
trained on LIVE with its five standard distortion types).
We compared with three other NR algorithms in terms of
CC, SROCC, and RMSE. The results are listed in Table 7.

As shown in Table 7, DESIQUE demonstrates better per-
formance than DIIVINE, BLIINDS-II, and BRISQUE on
these three noise distortion types, despite the fact that
none of them were trained on these distortions. These results
demonstrate that different noise categories can be detected
and measured by using both spatial and spectral feature
types. Figure 12 shows the scatter plots of BRISQUE and
DESIQUE on these different noise-corrupted images before
logistic transform. Notice that BRISQUE even fails on pre-
dicting qualities of the spatially correlated noise images, as
it produces an increasing relationship with DMOS values in
the view of all data points, even though the corresponding
SROCC and CC values are computed as 0.569 and 0.570,
respectively. Also notice that for the HFN images,
DESIQUE provides even more competitive results than

BRISQUE, again owing to DESIQUE’s dual-domain analy-
sis. In summary, our proposed DESIQUE algorithm demon-
strates not only a competitive performance for the distortion
types on which it was trained, but also a degree of adaptive-
ness to images distorted by different types of noise.

4.4.5 Performance on reference images

In this section, we show the performance of DESIQUE on
reference images from the three testing databases. Notice
that there are no valid human subjective quality scores for
the reference images in the CSIQ and TID databases.
Although in the Toyama database, human subjective quality
scores are provided in terms of MOS values, it still seems to
be inappropriate to measure an algorithm’s performance
using SROCC/CC because the MOS values of reference
images are too close to provide any meaningful linear/non-
linear relationships. Therefore, to show the performance of
our proposed algorithm, we first predicted the original
DMOS value of each reference image using our algorithm
and then applied the logistic transform defined in Eq. (24)
to bring the predicted values on the same scales as the true
DMOS/MOS values for the distorted images. Here, the four
parameters of the sigmoid function were estimated by using
the distorted images in the same database. Finally, we com-
pared these linearized predicted DMOS values to the corre-
sponding scatter plots in Fig. 11 for each database to see if
they are all located in a region representing the highest
quality.

Figure 13 shows results of DESIQUE tested on all refer-
ence images in CSIQ, TID, and Toyama. Note that we tested
only 24 undistorted versions of the natural images in the
TID database. By referring to Fig. 11, we conclude that
DESIQUE works well for most reference images.
Specifically, for the CSIQ database, 28 out of 30 reference
images are given quality scores below 0.15 (note in Fig. 11
that the true DMOS values of the reference images in the
CSIQ database should be close to zero). Thus, quality scores
of only two reference images were predicted slightly higher
than their true DMOS values. For the TID databases, all

Table 7 Performances on three other noise distortion types in the TID database.

DIIVINE BLIINDS-II BRISQUE DESIQUE

SROCC Additive noise in color components (ACN) 0.776 0.737 0.747 0.852

Spatially correlated noise (SCN) 0.364 0.462 0.569 0.825

High-frequency noise (HFN) 0.894 0.871 0.755 0.925

CC ACN 0.790 0.754 0.768 0.866

SCN 0.403 0.533 0.570 0.811

HFN 0.908 0.895 0.705 0.946

RMSE ACN 0.313 0.336 0.328 0.256

SCN 0.569 0.526 0.511 0.363

HFN 0.400 0.426 0.679 0.310

Journal of Electronic Imaging 043025-18 Oct–Dec 2013/Vol. 22(4)

Zhang and Chandler: No-reference image quality assessment based on log-derivative statistics. . .



reference images seem to be evaluated quite well (note in
Fig. 11 that the undistorted/reference images in the TID data-
base should have true MOS values around/above six). For the
Toyama database, only one reference image was predicted
below four, a bit far away from its true MOS value (note again
in Fig. 11 that the undistorted/reference images in the TID
database should have true MOS values around/above 4.5).
All three figures demonstrate that the proposed DESIQUE
algorithm performs quite well on these reference images.

4.5 Contribution Analysis
To analyze the contributions of the log-derivative statistics
and each of the two domains (spatial domain and frequency
domain) toward the final performance, we performed the
prediction test on the aforementioned four databases by
using only the spatial-domain-based features (denoted by
DESIQUE-S) and only the frequency-domain-based features

(denoted by DESIQUE-F), respectively. Three types of test-
ing were performed: (1) the 1000 cross-validation test of
DESIQUE-S and F were performed on the LIVE database;
(2) the overall performance of DESIQUE-S and F were
tested on subsets of the CSIQ, TID, and Toyama databases;
and (3) the performance of DESIQUE-S and F were tested on
noise-corrupted images from both the CSIQ and TID data-
bases. Note that in (3) we tested on ACN, SCN, and HFN
images from TID, and on WN images from both CSIQ and
TID (denoted by WN-CSIQ/TID). Also note that models of
DESIQUE-S and F for (2) and (3) were obtained via training
on the whole LIVE database, and quality was predicted in all
three tests using the combined frameworks as recommended
in this paper. For comparison, we also listed the correspond-
ing results of the BRISQUE algorithm and of DESIQUE
with combined domains employed. The experiment results
are shown in Tables 8 and 9.

Fig. 12 Scatter plots of objective quality scores (before logistic transform) predicted by BRISQUE and DESIQUE on different noise-corrupted
images in the TID database. Note that the x axis across all three figures represents the algorithm predicted DMOS value; the y axis represents
the true MOS value.

Fig. 13 Objective quality scores predicted by DESIQUE algorithm after logistic transform. Note that the x axis across all three figures represents
the index of reference images in each database; the y axis represents the predicted value transformed via Eq. (24).
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According to Table 8, the log-derivative-based analysis in
either of the two domains (spatial and frequency) seems to be
inferior to the paired-product-based analysis in the spatial
domain when performing the cross-validation test on the
LIVE database. However, combining the two domain analy-
ses together can improve the performance significantly.

According to Table 9, the log-derivative statistics improve
upon paired product statistics in predicting image quality
when training on LIVE and testing on other databases
(note that although DESIQUE-S only has SROCC and
CC values of 0.449 and 0.469 on SCN, BRISQUE actually
fails on SCN as illustrated in Sec. 4.4.4), and this fact also

Table 8 Median SROCC, CC, and RMSE values of BRISQUE, DESIQUE-S, DESIQUE-F, and DESIQUE algorithms across 1000 train-test com-
binations on the LIVE database.

JP2K JPEG WN BLUR FF ALL

SROCC BRISQUE 0.9139 0.9647 0.9786 0.9511 0.8768 0.9395

DESIQUE-S 0.9361 0.9636 0.9862 0.9519 0.8423 0.9305

DESIQUE-F 0.9082 0.9623 0.9840 0.9261 0.8000 0.9188

DESIQUE 0.9359 0.9693 0.9858 0.9482 0.8672 0.9437

CC BRISQUE 0.9229 0.9735 0.9851 0.9506 0.9030 0.9424

DESIQUE-S 0.9459 0.9725 0.9914 0.9631 0.8576 0.9354

DESIQUE-F 0.9181 0.9732 0.9900 0.9389 0.8503 0.9238

DESIQUE 0.9480 0.9803 0.9915 0.9585 0.8819 0.9465

RMSE BRISQUE 9.6934 7.1641 4.7856 5.6450 12.1024 9.1315

DESIQUE-S 8.0470 7.3600 3.6319 4.9680 14.1329 9.6542

DESIQUE-F 9.9836 7.2440 3.9111 6.3000 14.3949 10.4679

DESIQUE 7.9692 6.2123 3.6172 5.2285 13.3172 8.7985

Table 9 SROCC, CC, and RMSE values of BRISQUE, DESIQUE-S, DESIQUE-F, and DESIQUE algorithms on subsets of the CSIQ, TID, and
Toyama databases, as well as on different noise-corrupted images in the TID and CSIQ databases.

CSIQ TID Toyama ACN SCN HFN WN-TID WN-CSIQ

SROCC BRISQUE 0.900 0.898 0.848 0.747 0.569 0.755 0.823 0.925

DESIQUE-S 0.921 0.918 0.894 0.846 0.449 0.905 0.849 0.928

DESIQUE-F 0.919 0.885 0.816 0.805 0.644 0.903 0.880 0.935

DESIQUE 0.928 0.919 0.872 0.852 0.825 0.925 0.882 0.930

CC BRISQUE 0.924 0.907 0.850 0.768 0.570 0.705 0.810 0.938

DESIQUE-S 0.933 0.925 0.893 0.856 0.469 0.930 0.841 0.939

DESIQUE-F 0.932 0.877 0.819 0.817 0.664 0.935 0.873 0.945

DESIQUE 0.942 0.925 0.871 0.866 0.811 0.946 0.873 0.942

RMSE BRISQUE 0.108 0.668 0.660 0.328 0.511 0.679 0.359 0.058

DESIQUE-S 0.102 0.600 0.563 0.264 0.549 0.352 0.331 0.058

DESIQUE-F 0.103 0.760 0.718 0.295 0.465 0.340 0.298 0.055

DESIQUE 0.095 0.600 0.615 0.256 0.363 0.310 0.298 0.056
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demonstrates that the two statistics are fundamentally differ-
ent. Although the log-derivative statistics in the frequency
domain analysis contributes less than that in the spatial
domain when consulting with the overall performance on
subsets of the three testing databases, it does help improve
or maintain the predicting performance on CSIQ and TID,
and especially on those different noise-corrupted images.
On the Toyama database, however, the frequency-domain
analysis seems to be ineffective. In summary, in regards to
the performance, when all databases are evaluated together,
the log-derivative statistics proposed in this paper are supe-
rior to the paired product statistics in predicting image qual-
ity, and both domains (spatial and frequency) are required to
achieve better performance across different databases and
distortions.

4.6 Computational Analysis
DESIQUE also exhibits relatively low computational com-
plexity. Although DESIQUE extracts statistical features in
both the spatial and frequency domains to evaluate image
quality, and its number of features (60) is larger than that
of BRISQUE (which uses only 36 features), it is still
quite efficient in computation. To demonstrate this fact,
we compared the overall computational complexity of
DESIQUE with three other NR IQA methods: BLIINDS-
II, DIIVINE, and BRISQUE on different image sizes
(256 × 256, 512 × 512, 1024 × 1024, and 1600 × 1600
pixels). The test was performed on a modern desktop com-
puter (AMD Phenom II X4 965 Processor at 3.39 GHz,
4.00 GB RAM, Windows 7 Pro 64-bit, Matlab 7.8.0).
Table 10 shows the average runtime of each algorithm in sec-
onds, where the average was taken over 100 trials.

As shown in Table 10, DESIQUE is only a little slower
than BRISQUE when images have large sizes. This is due to
the fact that DESIQUE has to compute both the spatial- and
frequency-domain features and that the parameter estimation
needs to be performed 30 times for an entire image
(BRISQUE only has 10 estimations) in total. However, con-
sidering its predictive performance improvement, we believe
that the time cost is justified, and it is still much faster than
DIIVINE and BLIINDS-II.

5 Conclusion
This paper presented an algorithm for NR image quality
assessment (DESIQUE), which operates by using log-deriva-
tive statistics of natural scenes. DESIQUE extracts log-
derivative-based statistical features at two image scales
in both the spatial and frequency domains, upon which

combined frameworks perform NR IQA. We demonstrated
that DESIQUE can achieve better performance in predicting
image quality than many other well-known NR IQAmethods
across various databases. We also showed that DESIQUE
demonstrates a degree of adaptiveness to different types
of noise and is well performed on reference images. We
also showed that DESIQUE is computationally efficient: it
is among the fastest NSS-based NR IQA methods currently
available. Future work involves building a more comprehen-
sive training database and testing DESIQUE on a wider
range of distortion types. Future work will also include
exploring other features/feature combinations, as well as
other frameworks (e.g., Dempster-Shafer framework56,57) to
further improve the algorithm performance.
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