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Abstract. Nowadays, typical active contour models are widely applied in image segmentation. However, they
perform badly on real images with inhomogeneous subregions. In order to overcome the drawback, this paper
proposes an edge-preserving smoothing image segmentation algorithm. At first, this paper analyzes the edge-
preserving smoothing conditions for image segmentation and constructs an edge-preserving smoothing model
inspired by total variation. The proposed model has the ability to smooth inhomogeneous subregions and pre-
serve edges. Then, a kind of clustering algorithm, which reasonably trades off edge-preserving and subregion-
smoothing according to the local information, is employed to learn the edge-preserving parameter adaptively.
At last, according to the confidence level of segmentation subregions, this paper constructs a smoothing
convergence condition to avoid oversmoothing. Experiments indicate that the proposed algorithm has superior
performance in precision, recall, and F-measure compared with other segmentation algorithms, and it is
insensitive to noise and inhomogeneous-regions. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JEI.25.5.053022]
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1 Introduction
As a technology used to extract a region of interest automati-
cally or semiautomatically, image segmentation is a key step
in image analysis and understanding studies.1 It is used for
object model representation, parameter extraction, object
recognition, and for video encoding of objects in MPEG4.2

Until now, there have been lots of segmentation methods
for all kinds of purposes, such as organ extraction in medical
applications3 and object detection in the remote sensing
systems.4 However, they are all only used for some specific
purposes, and it is difficult to generalize them to any image
segmentation tasks. Consequently, a uniform segmentation
framework is required for researchers and developers.5

Generally, image segmentation is implemented based on
similarity and dissimilarity among subregion features,6 such
as color, intensity, statistical characteristics, and specific
shape. However, real images contain a large amount of
inhomogeneous subregions and are unavoidably affected
by noise. On the one hand, inhomogeneous subregions may
form weak edges or deteriorate the similarity of the subre-
gion, i.e., intensity uniformity. On the other hand, since noise
causes pseudo-edges and weakens the significant difference
among subregions,7 the nonrobustness of the subregion char-
acteristics is aggravated.

Active contour models for image segmentation are popular
algorithms for dividing an image into foreground and back-
ground. The basic idea is a deformable curve, which conforms
to various shapes of objects. Combining the piecewise
smoothing with the statistical properties of the noise, Chan
and Vese proposed the region-based active contour model

(CV model).8 In this model, the object and background
regions are represented as the mean of subregions respectively.
Thus, it is insensitive to noise and helpful for enhancing the
computational efficiency of the Mumford–Shah model.9

The results of segmentation using the CV model are
unsatisfactory for real images. The reason is that in-homo-
geneity reduces significant differences of the mean of sub-
regions. In order to improve the segmentation performance,
Tsai and Yezzi proposed a piecewise smooth (PS) model10 by
approximating pixels of subregion into a function. Compared
to the CV model, the PS model is insensitive to inhomo-
geneous subregions, but it is difficult to apply it in practice
due to the expensive computational cost. Therefore, Li and
Kao proposed a local binary fitting model,11 which employs
the Gauss kernel function to approximate the neighborhood
pixels of the active contour. Peng and Liu proposed an
active contour model driven by normalized local image fit-
ting energy.12 Although the above models have strong locat-
ing capabilities, the results of segmentation rely on the
assumption of approximation function and the initial curve.

In order to overcome these shortcomings, a large number
of research works were investigated. To strengthen the
robustness of the initial curve, Jiang and Feng proposed a
segmentation model based on improved level set and region
growth, which takes the statistical information of an object as
seed.13 Based on regional-similarity and the level set, Kong
and Wang proposed the segmentation model to improve the
hypothesis of approximation function model.14

Although region-based active contour segmentation mod-
els are generally robust to noise, they are valid only for
images with homogeneous region given the number of sub-
regions. According to the relationship between contour and
edge, Li et al. proposed an edge-based active contour seg-
mentation model.15 Unfortunately, it is sensitive to noise*Address all correspondence to: Dan Wang, E-mail: 535459443@qq.com
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and inhomogeneous subregions. To cope with this, images
are often smoothed with a Gaussian filter. However, a
Gaussian filter is an isotropic point diffusion that crosses the
boundaries of subregions and leads to the level set curve con-
verging at the neighbor of object contours. Furthermore,
a Gaussian filter with large standard variance may seriously
blur boundaries formed by weak edges. This leads to the
overconvergence of curves, and conversely the curves will
be premature. It is difficult to adaptively choose standard
variance for different regions in an image.16 By incorporating
prior object-shape information into the initial evolving curve,
Yeo and Xie improved the accuracy of segmentation for
specific shape regions.17

Under- and over-segmentation phenomenon exist when
traditional active contour models are applied to real images
due to inhomogeneous subregions and weak edges. In order
to smooth the inhomogeneous subregions and preserve
edges, we propose the smoothing conditions for image seg-
mentation: (1) isotropic smoothing inside the subregions and
(2) anisotropic smoothing along the edge. Unfortunately, the
aforementioned conditions are incompatible. Inspired by
total variation,18 we construct an edge-preserving smoothing
model, which is a compromise of the above conditions.
Further, due to the location of edges, a fixed edge-preserving
parameter is not a reasonable trade-off between edge-preserv-
ing and subregion smoothing. It will cause blurred-edges and
residual nonuniformity in the smoothing component. To solve
this problem, we investigate the two-clustering algorithm of
center pixel and four neighbors to adjust the edge-preserving
parameter adaptively. Fixed-point iteration is employed to
compute the smoothing component. While the number of iter-
ation is high, the smoothing component converges to the mean
of the image, and the difference between the feature of an
object and that of the surrounding region is not significant.
To avoid these, we construct a smoothing convergence con-
dition according to the confidence level of segmentation sub-
regions on different smoothing components. The experimental
results show that this segmentation model is insensitive to
noise and inhomogeneous-regions.

The outline of the paper is as follows. In the next section,
two conditions on image piecewise smoothing are proposed
to construct an edge-preserving smoothing model, and the
clustering algorithm is employed to learn the edge-preserv-
ing parameter. In Sec. 3, a new segmentation model for the
edge-preserving smoothing component is proposed. The pro-
posed image segmentation model is implemented in Sec. 4.
The experimental results are given in Sec. 5. Finally, the
conclusion is given in Sec. 6.

2 Proposed Edge-Preserving Model
The active contour model for image segmentation is curve
evolution implementation based on the Mumford–Shah
model.9 It is formulated as the following minimization
problem:
EQ-TARGET;temp:intralink-;e001;63;158

Eðu; CÞ ¼ τ

2

Z
Ω
½uðx; yÞ − u0ðx; yÞ�2dxdy

þ
Z
Ω∕C

j∇uðx; yÞj2dxdyþ γkCk; (1)

where C is the segmentation curve, u0∶Ω → ½0;1� is a given
image, u is a piecewise smoothing component of an image u0

and contains homogeneous subregions and significant
differences among subregions. The piecewise smoothing
component u is a solution of the following problem:

EQ-TARGET;temp:intralink-;e002;326;719inf
u

�
Eðu; CÞ ¼ τ

2

Z
Ω
ðu − u0Þ2dxdyþ

Z
Ω∕C

fðj∇ujÞdxdy
�
:

(2)

To analyze the diffusibility performance for the smoothing
function fðj∇ujÞ, the function fðj∇ujÞ is decomposed
using the local image structures, i.e., the tangent and
normal directions. The diffusibility performances along the
tangent and normal directions are denoted by ρT and ρN,
respectively:

EQ-TARGET;temp:intralink-;e003;326;595ρT ¼ f 0ðj∇ujÞ
j∇uj ; ρN ¼ f 0 0ðj∇ujÞ: (3)

2.1 Edge-Preserving Smoothing
In order to smooth subregions and preserve edges for real
images, the diffusibility performance of the function fðj∇ujÞ
along the tangent and normal directions should satisfy the
following two conditions:

1. Inside the subregion where gradients are low, we
would like to encourage smoothing along the tangent
and normal directions, which makes the intensities of
the subregions equal or nearly equal to constant. In
other words, it is isotropic diffusion. Assume that
the function is regular, this condition may be achieved
by imposing:

EQ-TARGET;temp:intralink-;e004;326;404 lim
j∇uj→0

ρT ¼ lim
j∇uj→0

ρN ¼ α > 0: (4)

2. In an edge where the image presents a strong gradient,
we prefer to diffuse along this edge and not across it.
To do this, it is sufficient to annihilate, for strong gra-
dients, the coefficient of ρN and assume that the ρT
does not vanish:

EQ-TARGET;temp:intralink-;e005;326;308 lim
j∇uj→∞

ρT ¼ β > 0; lim
j∇uj→∞

ρN ¼ 0: (5)

In the Mumford–Shah model,9 the L2-norm of the gra-
dient is a smoothing function for segmentation. The diffus-
ibility performances of this function along the tangent and
normal directions are the same, i.e., ρT ¼ ρN ¼ 1. The dif-
fusion actions in the normal direction cross the edge; thus,
this function cannot satisfy the second condition. To preserve
the edge, Chan et al.18 proposed the total variation that the
L1-norm of the gradient replaces the L2-norm. The perfor-
mance along the normal direction is zero. It does not satisfy
the first condition, which leads to a pseudoedge in the
smoothing subregions.

Unfortunately, the above two conditions are incompatible.
Compared with the piecewise smoothing functions of the
Mumford–Shah model9 and total variation,18 we design an
edge-preserving smoothing function for image segmentation.
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EQ-TARGET;temp:intralink-;e006;63;752fðj∇ujÞ ¼ lnð1þ j∇ujÞ: (6)

The diffusibility performance in the tangent and normal
directions are as follows:

EQ-TARGET;temp:intralink-;e007;63;708ρT ¼ 1

ð1þ j∇ujÞj∇uj ; ρN ¼ −
1

ð1þ j∇ujÞ2 : (7)

Inside the subregion where gradients are low, limj∇uj→0ρT ¼
∞, limj∇uj→0ρN ¼ −1; at the edge where gradients are strong,
limj∇uj→∞ρT ¼ limj∇uj→∞ρN ¼ 0, and limj∇uj→∞

ρN
ρT

¼ −1
(see Fig. 1). It is a compromise of two conditions on
edge-preserving smoothing. This function preserves the
edge and smooths the inhomogeneous subregion. Therefore,
the edge-preserving smoothing model is given as

EQ-TARGET;temp:intralink-;e008;63;585inf
u

�
EðEPÞðuÞ¼ τ

2

Z
Ω
ðu−u0Þ2dxdyþ

Z
Ω
lnð1þj∇ujÞdxdy

�
:

(8)

This problem allows for a unique solution characterized
by the Euler–Lagrange equation:

EQ-TARGET;temp:intralink-;e009;63;504τðu − u0Þ − div

�
∇u

ð1þ j∇ujÞj∇uj
�
¼ 0: (9)

To compute the smoothing component, we use a semi-
implicit finite difference scheme. Let a set Λ is four neigh-
bors region of the center pixel (i; j), and p is a member of set
Λ, the approximation of Eq. (9) can be simply written as

EQ-TARGET;temp:intralink-;e010;63;416uði; jÞ ¼ 1

τ þP
p∈ΛωðpÞ

�
τu0ði; jÞ þ

X
p∈Λ

ωðpÞuðpÞ
�
;

(10)

where τ is the edge-preserving parameter, in other words, it is
the weight coefficient of the center pixel. The ωðpÞ is the
weight coefficient of the neighbor pixel p, the relationship
between ωðpÞ and the gradient is shown in Fig. 2.

EQ-TARGET;temp:intralink-;e011;326;752ωðpÞ ¼ 1

½1þ j∇uðpÞj�j∇uðpÞj : (11)

2.2 Adaptive Edge-Preserving Smoothing
In traditional edge-preserving smoothing algorithms (i.e.,
TV18), the edge-preserving parameter τ in Eq. (10) often
is fixed by an artificial setting. If τ ≫ ωðpÞ, then
uði; jÞ ≈ u0ði; jÞ. The smoothing component contains the
redundancy of inhomogeneous subregion, which causes the
level set converge to local optima. If τ ≫ ωðpÞ, the uði; jÞ
approximates the weighted-mean of four neighborhood
pixels. The edge of the smoothing component is blurred,
the segmentation-curve is overconvergence. Above all, the
fixed parameter cannot weigh up the edge-preserving and
subregion smoothing according to local information of
an image.

To solve the above problem, we analyze the two-cluster-
ing of the center pixel and four neighbors based on their
possible spatial relationship.

• If four neighborhood pixels locate in the object region,
the center pixel belongs to the object region according
to the subregion connectivity.

• If the center pixel locates at the object boundaries, one
of the following three cases applies:

– One of the four neighbor pixels locates in back-
ground, others in an object region. There are�
4

1

�
¼ 4 kinds of situations.

– Two of the four neighbor pixels locate in back-
ground and others in an object region, there are�
4

2

�
¼ 6 kinds of situations.

– According to the continuity of the object contour,
three or all of neighbor pixels cannot locate in the
background.

The two-clustering of the center pixel and its four
neighbors are shown in Fig. 3. Observed from Fig. 3, the

Fig. 1 The diffusibility performance of this function. The solid and
dash dot curve denote the diffusibility in the tangent and normal direc-
tion, respectively. Fig. 2 The weight coefficient of the neighbor pixel.
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edge-preserving parameter τ is set as the medium of the
weight coefficients of the center pixel and its four-neighbor:
EQ-TARGET;temp:intralink-;e012;63;563

τ¼ k×medium

�
1

½1þj∇u0ði;jÞj�j∇u0ði;jÞj
;ωðpÞ

�
p∈Λ0;

(12)

where k is the constant, which normalizes parameter τ.

3 Segmentation Model
In terms of the analysis in Sec. 2, the segmentation model on
the smoothing component is proposed as the following
minimization problem:
EQ-TARGET;temp:intralink-;e013;63;434

inf
C

�
Eðu; CÞ ¼

Z
Ω
ðuðx; yÞ − u0ðx; yÞ2dxdy

þ
Z
Ω
lnð1þ j∇uðx; yÞjÞdxdyþ γkCk

�
:

(13)

During image segmentation, the curve may have
a topological deformation (split or merge). To cope with
this problem, active contours based on the level set are
applied into image segmentation. The basic idea is to
represent contours as the level set of an implicit function
ϕðx; yÞ, i.e., C ¼ fðx; yÞjϕðx; yÞ ¼ 0g. The inside-region
denotes fðx; yÞjϕðx; yÞ < 0g and outside-region is
fðx; yÞjϕðx; yÞ > 0g. To simplify, both regions are approxi-
mated by the Heaviside function HðϕÞ. The curve is repre-
sented as the Dirac measure δðϕÞ, which is the derivative of
HðϕÞ, where HðϕÞ and δðϕÞ are defined as, respectively,

EQ-TARGET;temp:intralink-;e014;63;222HðϕÞ ¼
�
1 ϕ ≥ 0

0 ϕ < 0
; δðϕÞ ¼ dHðϕÞ

dϕ
: (14)

However, ϕðx; yÞ cannot satisfy the regularity condition
j∇ϕj ¼ 1, the penalty term is introduced15

EQ-TARGET;temp:intralink-;e015;63;155pðϕÞ ¼ 1

2

Z
Ω
j∇ϕ − 1j2dxdy: (15)

Since the circumference and the area of the closed curve
become smaller, the optimal segmentation curve is repre-
sented as

EQ-TARGET;temp:intralink-;e016;326;752

inf
ϕ

�
εðϕÞ ¼ λ

Z
Ω
gδðϕÞj∇ϕjdxdyþ ν

Z
Ω
gHð−ϕÞdxdy

þ μ

2

Z
Ω
j∇ϕ − 1j2dxdy

�
; (16)

where λ and ν are the weight of the circumference and area of
curve, respectively, and g is the edge indicator function of
the smoothing component

EQ-TARGET;temp:intralink-;e017;326;655g ¼ ð1þ j∇ujÞ−1: (17)

If the level set curve locates in where the gradients are
low, the edge indicator function is almost the maximum of
the entire image. Otherwise, the edge indicator function is
the minimum, and the level set curve convergence to the
boundary.

Consequently, we incorporate the edge-preserving smooth-
ing model into the above segmentation model, and construct
the energy function of the edge-preserving smoothing seg-
mentation model.
EQ-TARGET;temp:intralink-;e018;326;524

inf
ϕ

�
Eðu;ϕÞ ¼

Z
Ω
½uðx; yÞ − u0ðx; yÞ�2dxdy

þ τ

2

Z
Ω
ln½1þ j∇uðx; yÞj�dxdyþ λ

Z
Ω
gδðϕÞj∇ϕjdxdy

þ ν

Z
Ω
gHð−ϕÞdxdyþ μ

2

Z
Ω
j∇ϕ − 1j2dxdy

�
: (18)

To minimize the function Eðu;ϕÞ, we denote the Gateaux
derivative19 of the function Eðϕ; uÞ as ∂Eðϕ; uÞ∕∂ϕ. By
calculating variations, the Gateaux derivative of the function
Eðϕ; uÞ in Eq. (18) can be written as
EQ-TARGET;temp:intralink-;e019;326;379

∂Eðu;ϕÞ
∂ϕ

¼ −μ
�
Δϕ − div

�
∇ϕ
j∇ϕj

��
− λδðϕÞdiv

�
g
∇ϕ
j∇ϕj

�

− νgδðϕÞ; (19)

where Δ is the Laplacican operator. Therefore, ϕ satisfies
the Euler–Lagrange equation. By introducing an artificial
temporal variable t, we use the steepest descent process to
get minimization of the function Eðu;ϕÞ, whose gradient
flow is
EQ-TARGET;temp:intralink-;e020;326;262

∂ϕ
∂t

¼ μ

�
Δϕ − div

�
∇ϕ
j∇ϕj

��
þ λδðϕÞdiv

�
g
∇ϕ
j∇ϕj

�

þ νgδðϕÞ: (20)

4 Implementation
In Eq. (20), the Dirac measure δðϕÞ is noncontinuous. When
calculating the level set, take continuous δaðϕÞ (a ¼ 1.5)
instead of δðϕÞ

EQ-TARGET;temp:intralink-;e021;326;145δaðϕÞ ¼
8<
:

0 jϕj > a
1
2a

h
1þ cos

�πϕ
a

	i jϕj ≤ a : (21)

In this paper, the ∂ϕ∕∂t is approximated by the forward
difference, and the ∇ϕ is approximated by the central

Fig. 3 The two-clustering of the center pixel and its four neighbors,
the white and black circles denote object and background, respec-
tively. (a) All pixels in the object region, (b) one of the four neighbor
pixels locates in background and others in object region, and (c) two of
the four neighbor pixels locate in background and others in object
region.
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difference. The approximation of Eq. (20) for the smoothing
component um can be simply written as
EQ-TARGET;temp:intralink-;e022;63;730

ϕkþ1
i;j − ϕk

i;j

Δt
¼ μ

�
Δðϕk

i;jÞ − div

� ∇ϕk
i;j

j∇ϕk
i;jj

��

þ λδaðϕk
i;jÞdiv

�
gmi;j

∇ϕk
i;j

j∇ϕk
i;jj

�
þ νgmi;jδaðϕk

i;jÞ;

(22)

where, Δt is the time step, and gmi;j is edge indicator function
of the smoothing component um. um is calculated by the
fixed-point iteration algorithm

EQ-TARGET;temp:intralink-;e023;326;752umi;j ¼
1

τm þ P
p∈Λ0

ωmðpÞ
�X
p∈Λ0

ωmðpÞum−1ðpÞ þ τmu0ði; jÞ
�
:

(23)

For Eq. (23), the smoothing component converges to
the mean of the initial image without constraint conditions,
which leads to the difference between the features of the
object and the surrounding region not being significant. To
avoid this phenomenon, we present the confidence level of
segmented subregions on two adjacent iterations of the
smoothing component, which is defined as following:

Fig. 4 The results of segmentation, edge indicator functions, and smoothing components with different
parameter k . (a) The flowerbed, (b) the edge indicator function, and (c) the cartoon component. Row 1:
original images and initial curves, rows 2 to 5: the results of segmentation, edge indicator function, and
smoothing component using 0.005, 0.05, 0.2, 0.25, and 0.5, respectively.
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EQ-TARGET;temp:intralink-;e024;63;752Pr ¼ cardðAm ∩ Am−1Þ
max½cardðAmÞ; cardðAm−1Þ� : (24)

Here the set Am and Am−1 represent the segmented subre-
gions ½ðx; yÞjϕðx; yÞ ≤ 0� for the smoothing component um

and um−1, respectively. When the confidence level satisfies
the following condition, the smooth is terminated:

EQ-TARGET;temp:intralink-;e025;63;672Pr ≥ T; (25)

where T is the threshold of the regional confidence level.
The steps of image segmentation (output)
{Initial: k; λ; μ; ν;Δt; T;ϕ0ðx; yÞ and u0 ¼ u0}
N is the iterative number of image smoothing
Begin
N:= 0;
Repeat
Computing the weight coefficient ωðpÞ of smoothing
component uN uses:

EQ-TARGET;temp:intralink-;e026;63;538ωNðpÞ ¼ 1

ð1þ j∇uN−1ðpÞjÞj∇uN−1ðpÞj : (26)

Computing the edge-preserving parameter τ:

EQ-TARGET;temp:intralink-;e027;63;479 τN ¼ k×medium

�
1

ð1þj∇u0ði;jÞjÞj∇u0ði;jÞj
;ωNðpÞ

�

p∈Λ0: ð27Þ

Computing the smoothing component uN uses:

EQ-TARGET;temp:intralink-;e028;63;401 uNi;j ¼
1

τN þ P
p∈Λ0

ωNðpÞ
�X
p∈Λ0

ωNðpÞuN−1ðpÞþ τNu0ði; jÞ
�
:

(28)

Computing the edge indicator function of the smooth-
ing component uN uses:

EQ-TARGET;temp:intralink-;e029;326;730gðuNÞ ¼ 1

1þ j∇uN j : (29)

Segmentation of the smoothing component uN uses:
Eq. (22)
Until
The convergence condition: Eq. (25)

Output: the result of segmentation.
End

5 Experimental Results

5.1 Implementation Details
The experiments are conducted using VC 6.0 on a PC with
Intel-Core i5 CPU @ 3.40 GHz and 4 GB of RAM without
any particular code optimization. During the implementation
of the proposed model, we used the parameters λ ¼ 5.0,
μ ¼ 0.04, ν ¼ 3.0 and time step Δt ¼ 5.0 for all experi-
ments. Here, we propose the following functions as the initial
function ϕ0ðx; yÞ. Let ∂Ω0 be all the points on the boundaries
of Ω0 which is a subset in the image domain Ω. Then, the
initial function ϕ0ðx; yÞ is defined as
EQ-TARGET;temp:intralink-;e030;326;476

ϕ0ðx; yÞ ¼

8><
>:

−ξ ðx; yÞ ∈ Ω0 − ∂Ω0

0 ðx; yÞ ∈ ∂Ω0

ξ ðx; yÞ ∈ Ω − Ω0

; (30)

where ξ is a constant. We suggest to choose ξ larger than 2a,
where a is the width in the definition of the regularized Dirac
function δaðϕÞ in Eq. (21).

In this paper, we use three universally agreed on, stan-
dard, and easy-to-understand measures for evaluating a seg-
mentation model, those are precision, recall, and F-measure.
The first two evaluation metrics are based on the overlapping

Fig. 5 The CPU time (in seconds) and score of segmentation in Fig. 4. (a) The CPU time of the seg-
mentation using the different parameter k . (b) The red, green, and blue curves show the F-measure,
precision, and recall of the segmentation the different parameter using the different parameter k ,
respectively.
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area between ground truth and segmentation regions.
Usually, neither precision nor recall can comprehensively
evaluate the quality of segmentation. So the F-measure is
proposed as a harmonic mean of them. For a segmentation
object region, we can convert it to a binary mask M and
compute precision and recall by comparing M with ground-
truth G
EQ-TARGET;temp:intralink-;e031;63;450

precision ¼ jM ∩ Gj
jMj ; recall ¼ jM ∩ Gj

jGj ;

F-measure ¼ 2 × precision × recall

precision þ recall
: (31)

5.2 Discussion
The image is smoothed using the edge-preserving smoothing
model in the proposed model, so the segmentation perfor-
mance depends on the parameter k in Eq. (12). To analyze

the relationship between k and the scores of image segmen-
tation (precision, recall, and F-measure), a 480 × 320-pixel
image with grass and sand in the Berkeley segmentation data-
base is smoothed with different parameter k, and the results of
segmentation are shown in Fig. 4. The initial curve and ground
truth are represented as a red rectangle and yellow curve,
respectively, in the top left-hand corner subimage of Fig. 4.

As illustrated in the second row, the subregion pixels
close to constant and the edge are blurred by this smoothing
algorithm with k ¼ 0.005. The blurred edge leads to the
over-convergence of the level set, which results in parts of
the object region pixels being mistaken as the background.
Thus, the recall is low at 0.862. The precision and the F-mea-
sure are 0.995 and 0.915, respectively.

As illustrated in the last row, when k ¼ 0.5, the smooth-
ing component contains remnants of an inhomogeneous sub-
region, which leads to the level set convergence at the local
optimum. The precision is low, and the F-measure is 0.848.

Fig. 6 The results of segmentation with different thresholds. (a) Initial curve and the ground truth and (b)–
(f) the results of segmentation using different thresholds 0.95, 0.96, 0.97, 0.98, and 0.99, respectively.

Fig. 7 The CPU time and score of segmentation in Fig. 6. (a) The CPU time of the segmentation using
the different threshold T . (b) The red, green, and blue curves show the F-measure, precision, and recall
of segmentation with the different threshold T , respectively.
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Figure 5 shows CPU times and scores of the segmentation
on Fig. 4 using this model with different parameters k. While
k is smaller, the precision, recall, and F-measure of the
segmentation are lower and the CPU time is shorter.

If k is large, the remnants inhomogeneous subregion leads
to the level set’s fast convergence at the local optimum.
When k ∈ ½0.05; 0.18�, this model preserves the edge and

smooths the inhomogeneous subregion. The maximum dif-
ference of the F-measure is 0.005, e.g., the F-measures of
the segmentation with k ¼ 0.05 and 0.18 are 0.98 and
0.975, respectively.

In this model, the smooth components converge to the
mean of the image without constrained conditions, which
leads to the difference between the feature of the object and

Fig. 8 Comparison of the proposed method with Li’s model13 and the TB model,20 and the CV model8 on
real images. (a) The lotus, (b) the eagles, and (b) the butterfly. Row 1: original images and initial curves,
row 2: segmentation results of the CV, row 3: the segmentation results of Li’s model, row 4: segmentation
results of the TB model, row 5: the segmentation results of the proposed model, and row 6: the ground
truth.
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that of the surrounding region not being significant. To avoid
this, we use the threshold of segmented subregions confi-
dence level. To validate how the threshold affects the seg-
mentation performance, a 480 × 320-pixel potted-tree image
of the Berkeley segmentation database, in which some sub-
regions are inhomogeneous (crown of the tree), is segmented
with different thresholds.

The segmentation results are shown in Fig. 6. The initial
curve and the ground truth, represented as a red rectangle and

blue curve, respectively, are shown in Fig. 6(a). The smooth-
ing component retains an inhomogeneous subregion by this
smoothing algorithm using the threshold T ¼ 0.95, which
leads to parts of background region pixels being mistaken
as the object [shown in Fig. 6(b)]. The precision of segmen-
tation is 0.937, and the F-Measure is 0.959. When T ¼ 0.99,
the weak edge is smoothed [see the inside circle in Fig. 6(f)]
and the computation time is longer. The F-measure, recall,
and precision are 0.978, 0.961, and 0.997. The CPU time

Fig. 9 Comparison of the proposed method with Li’s models13 and the CV model8 on real images with
serious in-homogeneity. (a) The blossom, (b) the viburnum, and (c) the cycas. Row 1: original images and
initial curves, row 2: segmentation results of the CV model, row 3: the segmentation results of Li’s model,
row 4: segmentation results of the TB model, row 5: the segmentation results of the proposed model, and
row 6: the ground truth.
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and score of segmentation using this model with the different
threshold are shown in Fig. 7. As shown in Fig. 7, when the
threshold increases, the computation time using this model is
longer. If the threshold closes to one, the F-measures of seg-
mentation descend.

The parameter k is the constant that normalizes parameter
τ and parameter T is the threshold of the regional confidence
level. In order to preserve the edge and smooth the inhomo-
geneous subregion, we suggest to choose k ¼ 0.05 and
T ¼ 0.98.

5.3 Segmentation Algorithm Comparisons
To test segmentation performance using the proposed
method on real images with slightly inhomogeneous subre-
gions, the experiments are carried on to compare with the
Li’s model,15 TB model,20 and the CV model.8 The choice

of these algorithms is motivated by the following reasons:
these four algorithms all employ the level set. Li’s model
and TB model exploited the edge feature; the image is
preprocessed by the Gaussian filter and the classical TV,
respectively. In the TB model, the TV smoothing and
the smoothing-component segmentation are individual steps.
The number of iterations was not taken into consideration.
The CV model uses the regional characteristics of the sub-
region to represent the object as the mean of the subregion.
The different sizes of images are segmented, which are from
the International web and the Berkeley segmentation data-
base. The partial results are shown is shown in Fig. 8. The
effects of the four algorithms on the homogeneous image are
almost similar, such as Fig. 8(a). For the image with weak
edges [i.e., Fig. 8(b)], the results of segmentation using
the proposed method and TB model are better than those of

Table 1 The comparison of CPU time and scores of segmentation in Figs. 8 and 9.

Method

Image and its size

Fig. 8(a) Fig. 8(b) Fig. 8(c) Fig. 9(a) Fig. 9(b) Fig. 9(c)

320 × 240 480 × 320 580 × 385 480 × 320 512 × 384 600 × 392

Proposed method

Precision 0.995 0.996 0.999 0.932 0.989 0.994

Recall 0.943 0.863 0.967 0.948 0.965 0.950

F-measure 0.969 0.925 0.983 0.940 0.977 0.972

CPU time (s) 6.006 8.985 9.672 11.66 22.17 39.34

Li’s model

Precision 0.985 0.981 0.986 0.813 0.914 0.928

Recall 0.953 0.866 0.989 0.967 0.960 0.857

F-measure 0.968 0.920 0.988 0.883 0.937 0.891

CPU time (s) 3.666 9.579 8.892 8.277 9.406 28.97

TB model

Precision 0.988 0.996 0.998 0.936 0.949 0.921

Recall 0.947 0.862 0.968 0.929 0.957 0.952

F-measure 0.967 0.924 0.983 0.932 0.953 0.936

CPU time (s) 4.509 8.799 9.454 9.771 11.62 25.45

CV model

Precision 0.999 0.891 0.999 0.756 0.995 0.889

Recall 0.946 0.932 0.684 0.696 0.828 0.922

F-measure 0.972 0.911 0.812 0.724 0.904 0.905

CPU time (s) 3.182 6.365 9.313 3.559 9.016 17.55
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the other two models. Segmentation performance using
the CV model is poor for inhomogeneous subregions, e.g.,
Fig. 8(c), and the F-measure is 0.812. This is the reason that
the intensity mean of a subregion indicates the region.

However, the effect of the proposed method for images
with a seriously inhomogeneous region, such as the images
in Fig. 9, is better than that of the other three models.

The objector region is divided into many subregions
using the CV model,8 which is that the object region contains
many subregions with different intensities. The Li’s model13

avoids oversegmentation, but the segmentation curve is far
away from the true boundaries where gradients are low.

The positional accuracy using the TB model20 is higher
than that of Li’s model, there is oversegmentation, as
shown in Fig. 9(c). The segmentation curve using the pro-
posed method cannot locate at the object boundaries with
weak edges [i.e., Fig. 9(a)]. For the images in Figs. 8 and 9,
the CPU time and scores of segmentation are given in
Table 1.

Compared to the effect of Li’s model, the TB model and
the CV model on real images with inhomogeneous subre-
gions and weak edges, the effect of the proposed method
is better. Nevertheless, the computation time using the pro-
posed method is costly, which is the reason that this method

Fig. 10 Comparison of the proposed method with Li’s models13 and the CV model8 on real images with
noise. (a) The original image, (b) noisy image with PSNR=23.4, and (c) noisy image with PSNR=18.8.
Row 1: noisy images and initial curves, row 2: segmentation results of the CV model, row 3: the seg-
mentation results of Li’s model, row 4: segmentation results of the TB model, row 5: the segmentation
results of the proposed model, and row 6: the ground truth.
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uses iteration smoothing to deal with the inhomogeneous
subregion. However, Li’s model uses the Gaussian smooth-
ing only one time, and the CV model does not smooth the
image. For images of the same size, the iterative number
mainly depends on the region’s inhomogeneous degree, such
as for images in Figs. 8(b) and 9(a), the CPU time using
the proposed method is 8.985 and 11.66 s, respectively.

To test the proposed method’s robustness against noise,
segmented experiments on a 320 × 240 degraded image
with additive white noise are conducted and compared
with Li’s model,15 the TB model,20 and the CV model.8

Partial results are shown in Fig. 10. With the PSNR decreas-
ing, the isotropic diffusion in Li’s model blurs the object con-
tour, and the fixed variance of Gauss kernel function cannot
remove all kinds of noise. The level set curve could not
locate accurately. The subregions in the object are separated
using the CV model. Furthermore, the results of segmenta-
tion become terrible with lower PSNR. Compared to the
ground truth, the positional accuracy of the segmentation
curve using the proposed method is higher than that of
the TB model. The edge-preserving parameter preserves
edges and smooths subregions, according to local informa-
tion. The scores of different models with different PSNR are
shown in Table 2.

From Table 2, with decreasing image quality, the precise
and the F-measure of these four segmentation models reduce.
The variance of F-measure using the proposed method, Li’s
model,15 the TB model,20 and the CV model8 are 0.015,
0.081, 0.047, and 0.043, respectively. The variance of F-
measure using the proposed method is smaller than those
of other three models. The mean of the F-measure using
the proposed method, Li’s model, the TB model, and the
CV model are 0.892, 0.745, 0.878, and 0.829, respectively.
The mean of F-measure using the proposed method is higher
than those of other three models. It shows that our proposed
method is insensitive to noise. Although the proposed
method is insensitive to noise, the computer time is longer
than that of other three models. The CPU time comparison of
segmentation on an image with noise is shown in Table 3.

To test robustness against salt-and-pepper noise of the
proposed method, segmented experiments on a 500 × 375
degraded image are conducted and compared with Li’s
model,15 the TB model,20 and the CV model.8 Partial results
are shown in Fig. 11. The linear smoothing (Gauss smooth-
ing) cannot effectively remove salt-and-pepper noise, so Li’s
segmentation curve could not converge with the object
contour, and the F-Measure is 0.849. The CV model could
converge with the object contour, but oversegmentation

Table 2 The scores of different algorithms on noisy images (where Pre, Rec, and F-M denote precision, recall, and F-measure, respectively).

PSNR (dB)

Model

Proposed method Li model TB model CV model

Pre Rec F-M Pre Rec F-M Pre Rec F-M Pre Rec F-M

29.9 0.992 0.838 0.909 0.915 0.717 0.804 0.989 0.827 0.901 0.976 0.785 0.870

23.4 0.992 0.838 0.909 0.901 0.719 0.799 0.988 0.812 0.891 0.967 0.785 0.866

22.3 0.989 0.831 0.903 0.891 0.722 0.797 0.987 0.828 0.901 0.965 0.786 0.866

21.7 0.988 0.817 0.894 0.868 0.722 0.788 0.979 0.821 0.893 0.945 0.790 0.860

20.1 0.981 0.826 0.897 0.857 0.726 0.786 0.974 0.812 0.886 0.926 0.792 0.853

19.5 0.986 0.826 0.899 0.847 0.725 0.781 0.971 0.817 0.887 0.905 0.791 0.844

18.8 0.981 0.819 0.893 0.837 0.731 0.78 0.963 0.831 0.892 0.874 0.791 0.830

17.6 0.973 0.839 0.901 0.781 0.732 0.756 0.955 0.835 0.891 0.855 0.793 0.823

16.7 0.951 0.818 0.879 0.759 0.731 0.745 0.915 0.824 0.867 0.814 0.793 0.803

15.4 0.942 0.817 0.875 0.637 0.729 0.679 0.855 0.817 0.836 0.792 0.794 0.793

14.8 0.911 0.831 0.869 0.518 0.732 0.607 0.801 0.786 0.793 0.733 0.796 0.763

12.9 0.904 0.833 0.867 0.445 0.735 0.554 0.716 0.791 0.752 0.686 0.801 0.739

Original image 0.992 0.838 0.909 0.915 0.717 0.804 0.989 0.827 0.901 0.976 0.785 0.870

Mean 0.968 0.829 0.892 0.782 0.726 0.745 0.929 0.818 0.868 0.878 0.791 0.829

Variance 0.031 0.009 0.015 0.155 0.006 0.081 0.086 0.015 0.047 0.097 0.005 0.043
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exists, the F-measure is 0.909, and the recall is 0.853;
nonlinear smoothing (TV or median filter) can effectively
remove the salt-and-pepper noise, the precisions of the
proposed model and the TB model are 0.994 and 0.986,
respectively. In the TB model, the TV smoothing and the
smoothing-component segmentation are individual steps.
It could not adaptively adjust the relationship between the
number of smoothing iteration and region-confidence level.
The F-measure of the proposed method is 0.98, and 0.021
higher than that of TB model.

6 Concluding Remarks
To improve segmentation performance of the active contour
model on real images, we propose an image segmentation
model based on edge-preserving smoothing. Compared to
Li’s model, the CV model, and TB model on real images, the
experimental results have shown that this method is insensi-
tive to noise and can deal with inhomogeneous subregions.
However, the proposed edge-preserving smoothing just
retains the edge information, but could not sharpen weak
edges. Thus, the proposed method cannot precisely locate
the object contour formed by a weak edge. Furthermore, the
computational cost is high. In the future, we plan to design
an efficient model to sharpen the weaken edge.
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